
Equations over free inverse monoids with
idempotent variables

Volker Diekert1, Florent Martin2, Géraud Sénizergues3, and
Pedro V. Silva4

1FMI, Universität Stuttgart, Universitätsstr. 38, 70569
Stuttgart, Germany

2 Fakultät für Mathematik, Universität Regensburg,
Universitätsstr. 31, 93040 Regensburg, Germany

3LaBRI, Unité Mixte de Recherche du C.N.R.S. Nr 5800,
Université Bordeaux; 351, cours de la Libération, 33405

Talence Cedex, France
4Centro de Matemática, Faculdade de Ciências, Universidade

do Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal

September 15, 2015

2010 Mathematics Subject Classification: 20M18, 20F70, 03D40

Keywords: equation, language equation, free inverse monoid, idempotent
variable, one-variable equation.

Abstract

We introduce the notion of idempotent variables for studying equa-
tions in inverse monoids. It is proved that it is decidable in singly expo-
nential time (DEXPTIME) whether a system of equations in idempo-
tent variables over a free inverse monoid has a solution. Moreover the
problem becomes hard for DEXPTIME, as soon as the quotient group
of the free inverse monoid has rank at least two. The upper bound

1

is proved by a direct reduction to solve language equations with one-
sided concatenation and a known complexity result by Baader and
Narendran. For the lower bound we show hardness for a restricted
class of language equations.

Decidability for systems of typed equations over a free inverse
monoid with one irreducible variable and at least one unbalanced equa-
tion is proved with the same complexity upper-bound.

Our results improve known complexity bounds by Deis, Meakin,
and Sénizergues (Equations in free inverse monoids, IJAC, 17:761–
795, 2007). Our results also apply to larger families of equations
where no decidability has been previously known. The lower bound
confirms a conjecture made in the conference version of that paper
which appeared at Computer Science in Russia (CSR 2015).

1 Introduction

It is decidable whether equations over free monoids and free groups are solv-
able. These classical results were proved by Makanin in his seminal papers
[12, 13]. A first estimation of the time complexity for deciding solvability was
more than triple or four times exponential, but over the years it was lowered.
It went down to PSPACE by Plandowski [17, 18] for free monoids. Extending
his method Gutiérrez showed that the same complexity bound applies in the
setting of free groups [8]. In [9] Jeż used his “recompression technique” and
achieved the best known space complexity to date: NSPACE(n log n). Per-
haps even more importantly, he presented the simplest known proof deciding
the problem Wordequations leading to an easy-under-stand algorithmic
description for the set of all solutions for equations over free monoids and
free groups (with rational constraints) [6]. Actually, [4] showed that the set
of all solutions in reduced words over a free group is an indexed language.
More precisely it is an EDT0L language.

In the present paper we study equations over inverse monoids. Inverse
monoids are monoids with involution and constitute the most natural in-
termediate structure between monoids and groups. They are well-studied
and pop-up in various applications, for example when investigating systems
which are deterministic and codeterministic. Inverse monoids arise naturally
as monoids of injective transformations closed under inversion. Indeed, up
to isomorphism, these are all the inverse monoids, as stated in the classical
Vagner-Preston representation theorem. This makes inverse monoids ubiq-

2

uituous in geometry, topology and other fields.
The fifties of the last century boosted the systematic study of inverse

monoids. However, the word problem remained unsolved until the early sev-
enties, when Scheiblich [20] and Munn [14] independently provided solutions
for free inverse monoids. The next natural step is to consider solvability of
equations, i.e., the existential theory. Rozenblat’s paper [19] destroyed all
hope for a general solution: solving equations in free inverse monoids is un-
decidable. Thus, the best we can hope is to prove decidability for particular
subclasses. For almost a decade, the reference paper on this subject has been
the paper of Deis, Meakin, and Sénizergues [5]. The authors considered the
following lifting problem. The input is given by an equation over a free in-
verse monoid together with a solution over the free quotient. The question is
whether the solution over the group can be lifted to a solution in the inverse
monoid. [5] showed decidability of the lifting problem using Rabin’s tree
theorem. The result is an algorithm which is super-exponential (and at least
doubly exponential in their specific setting). In the present paper, we achieve
various improvements. Our main result lowers the complexity of the lifting
problem to singly exponential time; and as soon as the input is a system of at
least two equations, then the the lifting problem becomes DEXPTIME-hard.
Moreover, we study equations with idempotent variables instead of lifting
properties, which leads to a uniform approach and simplified the proof. It
also enabled us to generalize some results concerning one-variable equations
to a broader setting, thereby leading to new decidability results.

A more precise statement about the progress achieved is as follows. First,
Theorem 5.1 shows that deciding solvability of systems of equations in idem-
potent variables over FIM(A) is DEXPTIME-complete. The upper bound
improves the [5, Thm. 8]. Our proof is based on a well-known result from
[2] by Baader and Narendran, while the complexity of the algorithm in [5,
Thm. 8] is much higher, since the algorithm involves Rabin’s Tree Theo-
rem1. The lower bound, which is DEXPTIME-hardness (for systems of two
equations and where the quotient group of the free inverse monoid has rank
at least two) confirms a conjecture in the conference version of the present
paper [7]. Second, with respect to unbalanced one-variable equations and [5,

1The DEXPTIME result was obtained first by the second and third author, but not
published. The same improvement was discovered later independently by the two other
authors; and the present paper joins both approaches. In addition, we take the opportunity
to correct a mistake in [5] about some special one-variable equations, where Assumption 2
in Definition 6.5 was missing.

3

Thm. 13], our Theorem 6.8 admits the presence of arbitrarily many idem-
potent variables, and the complexity very much improved in view of Theo-
rem 5.1. Morover, our proofs are shorter and easier to understand by a direct
reduction to language equations.

2 Preliminaries and notation

Sets and finite subsets. Given a set S, we denote by 2Sf the set of finite
subsets of the set S.

Complexity. A function p : N → N is called polynomial, if p(n) ∈ nO(1).
It is singly exponential, if f(n) ≤ 2p(n) where p is some polynomial. The
complexity class DEXPTIME refers to problems which can be solved on de-
terministic Turing machines within a singly exponential time bound. A
problem is encoded as a subset over the binary alphabet {0, 1}. A prob-
lem P is DEXPTIME-hard, if for every problem L ∈ DEXPTIME there exists
a polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that:
w ∈ L ⇔ f(w) ∈ P . It is called DEXPTIME-complete if it belongs to
DEXPTIME and, in addition, it is DEXPTIME-hard. In a few places also
refer to other complexity classes like PSPACE (=polynomial space) or NP
(=nondeterministic polynomial time). The notation is standard, see for ex-
ample [15]. As usual in the literature, explicit encodings of problems are
omitted. Our reductions are actually “logspace” reductions. Formally, this
makes the lower bound results stronger, but this is not our primary goal: so
we contend with the framework of polynomial-time reductions.

Monoids and groups. A monoid is a nonempty set M with a binary asso-
ciative operation: (x, y) 7→ x · y together with a neutral element 1 satisfying
1 · x = x · 1 = x for all x ∈ M . Frequently, we write xy instead of x · y. A
group is a monoid G where for each x ∈ G there exists some x ∈ G such that
xx = 1. If G is a group, then its inverse x = x−1 is uniquely defined.

Words and languages. An alphabet is a (finite) set; and an element of
an alphabet is called a letter. The free monoid generated by an alphabet
A is denoted by A∗. The elements of A∗ are called words : these are the
finite sequences of letters. The empty word is denoted by 1 as the neutral
element in other monoids as well, provided the operation is written as a

4

multiplication. The length of a word u is denoted by |u|. We have |u| = n
for u = a1 · · · an where ai ∈ A. The empty word has length 0, and it is the
only word with this property. A word u is a factor of a word v if there exist
p, q ∈ A∗ such that puq = v. It is a a prefix, if uq = v for some q ∈ A∗, and
it is a suffix, if pu = v for some p ∈ A∗. A language L over A is a subset
of A∗. It is called factor- (resp. prefix-) (resp. suffix-) closed, if with every u
every factor, (resp. prefix), (resp. suffix) of u belongs to L as well. We write
Pref(L) for its prefix-closure, thus

Pref(L) = {u ∈ A∗ | ∃v ∈ L : u ≤ v} .

Involutions. An involution is a mapping such that x = x for all elements.
In particular, an involution is a bijection. The identity is an involution.

Monoids with involutions. If an involution is defined for a monoid, then
we additionally require xy = y x for all its elements x, y. Every group is a
monoid with involution by letting x = x−1.

If an alphabet is equipped with an involution, then we extend it to the
free monoid A∗ by

a1 · · · am = am · · · a1.

When a = a for all a ∈ A, then w simply means to read the word from
right-to-left. Every alphabet B (without involution) can be embedded into
an alphabet A with involution without fixed points by letting A = B ∪ B
where B = {a | a ∈ B} is a disjoint copy of B. The involution maps a ∈ B
to a and vice versa.

The identity is a morphism for monoids with involution if and only if the
monoid is commutative. In particular, given a set S the set of finite subsets
2Sf is a commutative monoid where the operation is the union. Thus, we
also write L + K instead of L ∪ K. Elements of s ∈ S are identified with
singletons {s} ∈ 2Sf . According to the additive notation the neutral element
in 2Sf is denoted as 0. We have 0 = ∅. Actually, in our application we have
1 ∈ S ⊆ A∗ and then 1 ∈ 2Sf denotes the singleton {1}. Thus, 0 6= 1 in 2Sf .
There is however no risk of confusion: similar conventions are standard for
N or Z.

Homorphisms and morphisms. A homomorphism is a mapping which
respects the algebraic structure, whereas the notion morphism refers to a

5

mapping which respects the involution and in addition, depending on the
category, respects the algebraic structure, too. Hence, a morphism between
sets with involution is just a mapping respecting the involution, whereas
a morphism between monoids with involution is a monoid homomorphism
respecting the involution.

Free groups. Let A be an alphabet with involution. It defines a quotient
group F (A) by adding defining relations aa = 1 for all a ∈ A. If we can
write A as a disjoint union B ∪ {a | a ∈ B}, then F (A) is nothing but the
free group FG(B) in the standard meaning. In general, F (A) is a free product
of a free group with cyclic groups of order 2. Although our primary interest
is the usual free group FG(B), the notation F (A) is more convenient for us.
Moreover, various results hold for F (A) and without changing the proofs.
Last but not least, F (A) is the “free group” with respect to the category of
sets with involution: every morphism of A to a group G extends uniquely to
a morphism from F (A) to G.

As a set (with involution) we can identify F (A) with the subset of reduced
words in A∗. As usual, a word is called reduced if it does not contain any
factor aa where a ∈ A. Observe that this embedding of F (A) intoA∗ is indeed
compatible with the involution. In the following we let π : A∗ → F (A) be
the canonical morphism from A∗ onto F (A). It is well-known (and easy to
see) that every word u ∈ A∗ can be transformed into a unique reduced word
û by successively erasing factors of the form aa where a ∈ A. This leads to
the assertion

∀u, v ∈ A∗ : π(u) = π(v) ⇔ û = v̂.

We systematically identify the set F (A) with the subset of reduced words
in A∗. Concepts such as length, factor, prefix, and prefix-closure are inherited
from free monoids to free groups via reduced words. For the same reason, it
makes sense to write û = π(u), for u ∈ A∗, because π(u) ∈ F (A) is identified

with û ∈ A∗. If L ⊆ A∗ is prefix-closed, then L̂ = {û | u ∈ L} ⊆ F (A) is

prefix-closed, too (Lemma 5.3). We have L̂ ⊆ Â∗ = F (A) ⊆ A∗.

Free inverse monoids A monoid M is said to be inverse if for every
x ∈M there exists a unique element x ∈M satisfying xxx = x and xxx = x.
Clearly, x = x by uniqueness of x and, hence, M is a set with involution.
The mapping x 7→ x is also called an inversion. Idempotents commute in
inverse monoids (see e.g., [16]), hence the subset E(M) = {e ∈M | e2 = e}

6

is a commutative submonoid. Since necessarily e = e for e ∈ E(M) one
easily deduces that xy = y x for all x, y ∈ M . As a consequence, an inverse
monoid is a monoid with involution.

In the literature the notation x = x−1 is also used for elements of inverse
monoids, just as for groups (which constitute a proper subclass of inverse
monoids). By default, the involution on an inverse monoid (and hence in
every group) is supposed to be given by its inversion. We proceed now to
describe Scheiblich’s construction of the free inverse monoids FIM(A) where
A is an alphabet with involution.

The elements of FIM(A) are pairs (P, g), where the second component is
a group element g ∈ F (A) and the first component is a finite prefix-closed
subset P of F (A) such that g ∈ P . In other terms, this means that P is
a finite connected subset of the Cayley graph of F (A) (over A) such that
1, g ∈ P . Formally, we let

FIM(A) = {(P, g) | |P | <∞∧ g ∈ P = Pref(P) ⊆ F (A)} .

The multiplication on FIM(A) is defined through

(P, g)(Q, h) = (P ∪ gQ, gh).

It is easy to see that FIM(A) is a monoid with identity ({1} , 1) and every
(P, g) has a unique inverse (g−1P, g−1), hence FIM(A) is an inverse monoid.

Let ψ : A∗ → FIM(A) be the homomorphism of monoids defined by
ψ(a) = ({1, a}, a). Then we have ψ(a) = ({1, a} , a) = ({1, a}, a) and ψ is a
morphism of monoids with involution. We obtain the universal property of
being free with respect to sets with involution: let M be an inverse monoid
and ϕ : A→M a morphism of sets with involution, then there is exactly one
morphism η : FIM(A) → M of monoids with involution such that Φ(a) =
ϕ(a) for all a ∈ A. In other words, let ι = ψ|A and ϕ : A → M be any
mapping respecting the involution where M is an inverse monoid. Then
there exists a unique morphism of inverse monoids η : FIM(A) → M such
that the following diagram commutes.

A

ϕ

��

ι // FIM(A)

η
vv

M

In particular, π : A∗ → F (A) factorizes through η. The monoid FIM(A) is,
up to isomorphism, uniquely defined by this universal property: FIM(A) is

7

a free inverse monoid in the category of sets with involution. If A can be
written as a disjoint union A = B ∪ {a | a ∈ B}, then FIM(A) is the free
inverse monoid over B in the category of sets (without involution).

The following diagram summarizes our notation.

A∗

π

��

ψ // FIM(A)

η
vv

F (A) = {ŵ | w ∈ A∗} ⊆ A∗ as sets

3 Language equations

Henceforth, A, and B denote alphabets of constants and Ω denotes an al-
phabet of variables. The alphabets are finite and disjoint. We assume that
B ⊆ A and that A∪Ω is a set with involution. However, for technical reasons
we require that X = X for all variables. We use a, b, c, . . . to denote letters
of A, whereas variables are denoted by capital letters X, Y, Z

Our complexity results for solving certain equations over free inverse
monoids rely on a paper of Baader and Narendran [2]. The paper shows that
the satisfiability problem of language equations with one-sided concatenation
is DEXPTIME-complete for free monoids. As we need the corresponding re-
sult for free groups as well, we define the notion of language equation and its
solutions in a more general framework.

A system of language equations S (with one-sided concatenation) has the
form

Lk +
∑
i∈Ik

ukiXi = Kk +
∑
j∈Jk

ukjXj for 1 ≤ k ≤ n. (1)

Here, n ∈ N and Ik, Jk are finite (disjoint) index sets, Lk, Kk are finite
subsets of A∗, uki, ukj ∈ A∗ are words, and Xi, Xj ∈ Ω.

If Lk, Kk are subsets of B∗ and uki, ukj ∈ B∗, then we say that S is a
system with coefficients over B.

The size of S is defined as

‖S‖ = |A ∪ Ω|+
n∑
k=1

|Ik|+ |Jk|+
∑

u∈Lk∪Kk

|u|+
∑
i∈Ik

|uki|+
∑
j∈Jk

|ukj| .

8

Example 3.1 Recall that a word u is identified with the singleton {u} ⊆ A∗.
Consider A =

{
a, a, b, b

}
and

aa+ aaX + bbY = bb+ aaY + bbX. (2)

It is a system in one equation and its size is 22.

The notion of solution depends on the context. In our paper we use
solutions in finite subsets of free groups and free monoids. Let M denote
either the free monoid A∗ or the group F (A). In particular, we have inclusions
of sets with involution A ⊆M ⊆ A∗; and A generates M as a monoid.

A solution of S in (1) is a mapping σ : Ω→ 2A
∗

f such that

Lk +
∑
i∈Ik

ukiσ(Xi) = Kk +
∑
j∈Jk

ukjσ(Xj)

becomes an identity in 2Mf for all 1 ≤ k ≤ n. Thus, a solution substitutes
each X ∈ Ω by some finite subset σ(X) of A∗, but the interpretation is in M .
Of course, for M = F (A) we can demand that each σ(X) must be a finite
subset in reduced words: σ(X) ⊆ F (A).

Theorem 3.2 ([2], Thm. 6.1 and Thm. 7.6) The following problem can
be solved in DEXPTIME; and it is DEXPTIME-complete for |B| ≥ 2.

Input. A system S of language equations with coefficients over B.
Question. Does S have a solution in the free monoid B∗?

Remark 3.3 [2] states Theorem 3.2 for a single equation. However, this
covers the general case. Indeed, assume that a system S of language equations
over the free monoid A∗ has n equations. Without restriction we have |A| ≥
2. Choose n pairwise different words p1, . . . pn ∈ A∗ of equal length (say
dlog2 ne); and for 1 ≤ k ≤ n replace the k-th equation Lk +

∑
i∈Ik ukiXi =

Kk +
∑

j∈Jk ukjXj by

pkLk +
∑
i∈Ik

pkukiXi = pkKk +
∑
j∈Jk

pkukjXj.

Summing all left-hand sides and all right-hand sides yields a single equation
n∑
k=1

(pkLk +
∑
i∈Ik

pkukiXi) =
n∑
k=1

(pkKk +
∑
j∈Jk

pkukjXj). (3)

The reduction works since {p1, . . . , pn} is a prefix code. Note that the trans-
formation of the system S to Equation (3) preserves the set of solutions.

9

Consider again Equation (2): aa + aaX + bbY = bb + aaY + bbX. Over
M = F (A) the equation becomes trivial: it states 1 + X + Y = 1 + Y + X
which is a tautology. Hence every substitution in finite subsets of A∗ is a
solution over M . However, for M = A∗ the structure of solutions is more
restricted. In the spirit of Remark 3.3 we see that Equation (2) encodes over
A∗ a system of two equations: 1 +X = Y and Y = 1 +X. Hence, the set of
solutions over A∗ is the set of mappings σ : Ω→ 2A

∗

f such that σ(X) = σ(Y)
and and 1 ∈ σ(X) ∩ σ(Y).

4 Typed equations over free inverse monoids

An equation over FIM(A) is a pair (U, V) of words over A ∪ X , sometimes
written as U = V . Here A is an alphabet of constants and X is a set of
variables. Variables X ∈ X represent elements in FIM(A) and therefore
X is an alphabet with involution, too. Without restriction we may assume
X 6= X for all X ∈ X . A solution σ of U = V is a mapping σ : X → A∗ such
that σ(X) = σ(X) for all X ∈ X and such that the replacement of variables
by the substituted words in U and in V give the same element in FIM(A),
i.e., ψ(σ(U)) = ψ(σ(V)) in FIM(A), where σ is extended to a morphism
σ : (A ∪ X)∗ → A∗ leaving the constants invariant. Clearly, we may specify
σ also by a mapping from X to FIM(A). For the following it is convenient
to have two more types of variables which are used to represent specific
elements in FIM(A). We let Ω be a set of idempotent variables and Γ be a
set of reduced variables. Both sets are endowed with an involution. We let
Z = Z for idempotent variables and x 6= x for all reduced variables. Thus,
idempotent variables are the only variables which are self-involuting; and
variables in Γ or X are not self-involuting. We also insist that A, X , Ω, and
Γ are pairwise disjoint. A typed equation over FIM(A) is a pair (U, V) of words
over A∪Ω∪Γ. A system of typed equation is a collection S of typed equations;
and a solution σ of S is given by a mapping respecting the involution from
Ω∪Γ to A∗, which is extended to a morphism σ : (A∪Ω∪Γ)∗ → A∗ respecting
the involution and letting the letters of A invariant, such that the following
conditions hold.

1. ψ(σ(Z)) is idempotent for all Z ∈ Ω.

2. σ(x) is a reduced word for all x ∈ Γ.

10

3. We have ψ(σ(U)) = ψ(σ(V)) for all (U, V) ∈ S.

Lemma 4.1 Let (U, V) be an (untyped) equation over FIM(A). For each
X,X ∈ X choose a fresh idempotent variable ZX ∈ Ω and fresh reduced
variables xX , xX ∈ Γ. Let τ be the word-substitution (i.e. monoid homomor-
phism) which replaces each X,X ∈ Ω by ZXxX and xXZX respectively. If σ
is a solution of (U, V) then a solution σ′ for (τ(U), τ(V)) can be defined as
follows. For σ(X) = (P, g), where g is represented by a reduced word, we let
σ′(ZX) = (P, 1) and σ′(xX) = (Pref(g), g).
Conversely, if σ′ solves (τ(U), τ(V)) with σ′(ZX) = (P, 1) and σ′(xX) =
(Pref(g), g) then σ(X) = (P ∪ Pref(g), g) defines a solution for (U, V).

Proof. Trivial. �

By Lemma 4.1 we can reduce the satisfiability of equations in FIM(A) to
satisfiability of typed equations. The framework of typed equations is more
general; and it fits better to our formalism. Let (U, V) be a typed equation,
by the underlying group equation we mean the pair (π(U), π(V)) which is
obtained by erasing all idempotent variables. Clearly, if (U, V) is satisfiable
then (π(U), π(V)) must be solvable in the free group F (A). This leads to
the idea of lifting a solution of a group equation to a solution of (U, V) in
FIM(A). It has been known by [5] that it is decidable whether a lifting is
possible. The following result improves decidability by giving a deterministic
exponential time bound.

Theorem 4.2 The following problem is in DEXPTIME.
Input. A system S of equations over FIM(A) and a solution γ : Γ →

F (A) of the system π(S) of underlying group equations.
Question. Does S have a solution σ : X → FIM(A) such that γ = η ◦σ?
Moreover, the problem becomes DEXPTIME-hard as soon as A contains

four pairwise different letters α, α, β, and β, the system has two equations,
and γ is the trivial mapping γ(x) = 1 for all x ∈ Γ.

Proof. For the upper bound we proceed as follows. Due to Lemma 4.1
we first transform the system into a new system with variables in Ω∪Γ. Next
we replace every reduced variable x ∈ Γ by (Pref(σ′(x)), σ′(x)). Since the
solution is part of the input this increases the size of S at most quadratic.

11

We obtain a system of equations in idempotent variables and we apply The-
orem 5.1 in Section 5 below. Actually, Theorem 5.1 shows also the lower
bound, because fixing γ : Γ → F (A) to be the trivial mapping means that
every lifting σ : X → FIM(A) turns σ(X) into an idempotent. Thus, fixing
γ : Γ → F (A) to be the trivial mapping, leads directly to the framework of
idempotent variables. �

The next result combines Theorem 4.2 and a known complexity result for
systems of equations over free groups [6].

Corollary 4.3 Let S be a system of equations over the free inverse monoid
FIM(A) and π(S) the system of underlying group equations.

1. On input S it can be decided in polynomial space whether the system
π(S) of group equations has at most finitely many solutions. If so, then
every solution has at most doubly exponential length.

2. On input S and the promise that π(S) has at most finitely many solu-
tions it can be decided in deterministic triple exponential time whether
S has a solution.

Proof. The statement 1 follows from [6]. In particular, the size of the
set of all solutions is at most triple exponential. Since the square of a triple
exponential function is triple exponential again, the statement 2 follows from
Theorem 4.2. �

5 Solving equations in idempotent variables

Theorem 5.1 is the main result of the paper. We split its proof into two sec-
tions. Subsection 5.1 shows the containment in DEXPTIME. Subsection 5.2
shows DEXPTIME-hardness for systems with two equations. Theorem 5.1
improves via Theorem 4.2 the result [5, Thm. 8], which was derived from Ra-
bin’s Tree Theorem leading to a super-exponential complexity. It improves
the main result of [7] since it also shows the conjecture that solving equations
in idempotent variables is DEXPTIME-complete.

12

Theorem 5.1 The following problem can be decided in DEXPTIME.
Input. A system S of equations in idempotent variables (i.e., without

any reduced variable).
Question. Does S have a solution in FIM(A)?
Moreover, if A contains four pairwise different letters α, α, β, β, then the

problem is DEXPTIME-hard for systems with two equations.

5.1 Upper-bound: containment in DEXPTIME

This section proves the upper bound mentioned in Theorem 5.1. We begin
with the following lemma.

Lemma 5.2 There is a polynomial time algorithm for the following compu-
tation.

Input. A finite alphabet with involution A and an equation

u0X1u1 · · ·Xgug = v0Y1v1 · · ·Ydvd, (4)

where the Xi’s and Yj’s are idempotent variables and such that the identity
u0 · · ·ug = v0 · · · vd holds in the group F (A).

Output. A language equation which is solvable in nonempty, finite,
prefix-closed subsets of F (A) if and only if Equation (4) is solvable in FIM(A).

Proof. Define for 0 ≤ i ≤ g and 0 ≤ j ≤ d the words

pi = u0 · · ·ui, qj = v0 · · · vj ∈ A∗.

In every inverse monoid we have pZ = pZpp for every idempotent Z and every
element p. Since pi−1ui = pi and qj−1vj = pj, the equation in idempotent
variables (4) can be rewritten as:

p0X1p0 · · · piXi+1pi · · · pg−1Xgpg−1 · pgpgpg =

q0Y1q0 · · · qjYj+1qj · · · qd−1Ydqd−1 · qdqdqd. (5)

By hypotheses we have pg = qd in F (A). Moreover, idempotents commute.
Hence, Equation (5) is equivalent in FIM(A) with the following equation

pgpg ·
g−1∏
i=0

piXi+1 pi = qdqd ·
d−1∏
j=0

qjYj+1 qj. (6)

13

Each value of Xi, resp. Yj, in FIM(A) has the form (Pi, 1), resp. (Qj, 1), for
non-empty, prefix-closed, and finite subsets Pi and Qj of F (A).

Recall that û refers to the reduced word π(u) ∈ F (A) ⊆ A∗. Define
L = {p̂ | p ∈ Pref(pg)} and K = {q̂ | q ∈ Pref(qd)}. Then the output of the
algorithm is the language equation where the solutions Xi’s and Yj’s are
required to be nonempty, finite, prefix-closed subsets of F (A):

L+

g−1∑
i=0

p̂iXi+1 = K +
d−1∑
j=0

q̂jYj+1. (7)

It follows from the construction and Scheiblich’ s presentation of free inverse
monoids that σ(Xi) = (Pi, 1) and σ(Yj) = (Qj, 1) solves Equation (4) in
FIM(A) if and only if σ′(Xi) = Pi and σ′(Yj) = Qj. Hence, the lemma. �

We also make use of the following easy observation.

Lemma 5.3 Let P ⊆ A∗ be prefix-closed and P̂ = {p̂ | p ∈ P} the corre-

sponding set of reduced words. Then P̂ is prefix-closed.

Proof. Let p ∈ P and p̂ ∈ P̂ its reduced form. We have to show that
every prefix of p̂ belongs to P̂ . For p = 1 this is trivial. Hence, let p = qa
with a ∈ A and q̂ the reduced form of q. We have q ∈ P and, by induction,
every prefix of q̂ belongs to P̂ . Now, if p̂ is a prefix of q̂, we are done. In the
other case we have p̂ = q̂a. Since q̂, p̂ ∈ P̂ we are done again. �

Let us finish to prove that solving equations in idempotent variables over
the free inverse monoid belongs to DEXPTIME.

The input in Theorem 5.1 is given by a system S of equations in idempo-
tent variables over a free inverse monoid FIM(A). Every equation (U, V) ∈ S
can be written as in Equation (4). That is:

u0X1u1 · · ·Xgug = v0Y1v1 · · ·Ydvd. (8)

In linear time we check that all equations u0 · · ·ug = v0 · · · vd hold in the
group F (A). If one of these equalities is violated then S is not solvable and
we can stop.

By Lemma 5.2 it suffices to give a DEXPTIME algorithm for solving sys-
tems of language equations over F (A) of the form (7) where the solutions

14

Xi’s and Yj’s are required to be nonempty, finite, prefix-closed subsets of
F (A). Thus we may assume that we start with a system S where every
equation can be written as

L+
∑
i∈I

uiXi = K +
∑
j∈J

ujYj, (9)

where ui ∈ L and uj ∈ K and L ∪K consist of reduced words, only. We say
that a solution σ : Ω→ 2A

∗
is strong if σ(X) consists of reduced words, only.

That is σ(X) = π({u ∈ A∗ | u ∈ σ(X)}). Clearly, S has a solution in F (A)
if and only if it has a strong solution.

Next, we transform in deterministic polynomial time the system S into
a system S0 where the equations have a simple syntactic form. We begin by
introducing a fresh variable X0 and an equation X0 = 1. In a second phase,
we replace each equation of type as in (9) by two equations using a fresh
variable XE and, since each uk ∈ LK = Pref(LK) as well as X0 = 1, we may
define these equations as follows:

XE =
∑
u∈LI

(uX0 + Pref(u)) +
∑
i∈I

(uiXi + Pref(ui)),

XE =
∑
v∈LJ

(vX0 + Pref(v)) +
∑
j∈J

(ujXj + Pref(ui)).

Thus, there is an equation of the form X0 = 1 and a bunch of equations
which have the form

X =
∑
k∈K

(ukXk + Pref(uk)) with K 6= ∅.

With the help of polynomially many additional fresh variables, it is now obvi-
ous that we can transform S (with respect to satisfiability) into an equivalent
system S0 containing only three types of equations:

1. X = 1,

2. X = Y + Z,

3. X = uY + Pref(u), where u is a reduced word.

4. X = 1 +X for all X.

15

The last type of equations X = 1 + X makes sure that every solution is
in nonempty sets containing the empty word. (This allows to ignore the
restriction that σ(X) 6= ∅.) Phrased differently, without restriction S is of
the form S0 at the very beginning. At this point we start a nondeterministic
polynomial time reduction. This means, if S has a solution then at least
one outcome of the nondeterministic procedure yields a solvable system S ′ of
language equations. If none of the possible outcomes is solvable then S is not
solvable. During this procedure we are going to mark some equations and this
forces us to define the notion of solution for systems with marked equations.
A (strong) solution is defined as a mapping σ such that each σ(X) is given
by a prefix-closed set of (reduced) words in A∗ such that all equations hold
as language equations over F (A), but all marked equations hold as language
equations over A∗ as well. (Thus, we have a stronger condition for marked
equations.) We can think of an “evolution” of language equations over F (A)
to language equations over the free monoid A∗, and in the middle during the
evolution we have a mixture of both interpretations.

Initially we mark all equations of type X = 1, X = 1+X, and X = Y +Z.
This is possible because we may start with a strong solution in nonempty,
prefix-closed and finite sets, if S is solvable.

Now we proceed in rounds until all equations are marked. We start a
round, if some of the equations X = uY + Pref(u) is not yet marked. If
u = 1 is the empty word we simply mark that equation, too. Hence we may
assume u 6= 1 and we may write u = va with a ∈ A. Nondeterministically
we guess whether there exists a strong solution σ such that a ∈ σ(Y).

If our guess is “a /∈ σ(Y)”, then we mark the equation X = vaY +
Pref(va). If the guess is true then marking is correct because then vaw
is reduced for all w ∈ σ(Y). Whether or not a /∈ σ(Y) is true, marking
an equation never introduces new solutions. Thus, a wrong guess does not
transform an unsatisfiable system into a satisfiable one. Hence, it is enough
to consider the other case that the guess is “a ∈ σ(Y)” for some strong
solution σ. In this case we introduce two fresh variables Y ′, Y ′′ and a new
marked equation

Y = Y ′ + aY ′′ + Pref(a).

If a ∈ σ(Y) is correct then we can extend the strong solution so that a /∈
σ(Y ′). If a ∈ σ(Y) is false then, again, this step does not introduce any new
solution.

Finally, we replace the equation X = vaY + Pref(va) by the following

16

three equations, the first two of them are marked and the variables X ′, X ′′

are fresh

X = X ′ +X ′′ (marked),

X ′ = vaY ′ + Pref(va) (marked),

X ′′ = vY ′′ + Pref(v).

If the guess “a ∈ σ(Y)” was correct, then the new system has a strong
solution. If the new system has any solution then the old system has a
solution because X ′′ = vY ′′ + Pref(v) is unmarked as long as v 6= 1. After
polynomial many rounds all equations are marked. This defines the new
system S ′. If S ′ has a solution σ′ then the restriction of σ′ to the original
variables is also a solution of the original system S. If all our guesses were
correct with respect to a strong solution σ of S then S ′ has a strong solution
σ′ such that σ is the restriction of σ′ to the original variables. Hence, S has
a solution if and only if S ′ has a solution.

It is therefore enough to consider the system S ′ of language equations
over A∗. All the equations are still of one of the types above. Let σ be
any mapping from variables in S ′ to finite languages of A∗, i.e., σ(X) ⊆ A∗

denotes an arbitrary finite language for all variables. Then we have the
following implications.

• σ(X)) = 1 implies Pref(σ(X)) = 1.

• σ(X) = σ(Y) + σ(Z) implies Pref(σ(X)) = Pref(σ(Y)) + Pref(σ(Z)).

• σ(X) = uσ(Y) + Pref(u) implies Pref(σ(X)) = uPref(σ(Y)) + Pref(u).

• σ(X) = 1 + σ(X)⇔ 1 ∈ σ(X)⇔ 1 ∈ Pref(σ(X)).

Thus, the system S ′ of language equations over A∗ has a solution if and only
if S ′ has a language solution in nonempty, finite, and prefix-closed sets.

In order to finish the proof, let us briefly repeat what we have done so far.
The input has been a system S of equations over FIM(A) in idempotent vari-
ables. If S has a solution then it has a strong solution and making all guesses
correct we end up with a system S ′ of language equations over A∗ which has
a strong solution in finite and prefix-closed sets. Conversely, consider some
system S ′ which is obtained by the nondeterministic choices. (Note that the
number of different systems S ′ is bounded by a singly exponential function
and DEXPTIME is enough time to calculate a list containing all S ′.) Assume

17

that S ′ has a solution σ′ in finite subsets of A∗. Due to the syntactic struc-
ture of S ′ there is also a solution σ in nonempty and prefix-closed subsets of
A∗. This is due to the three implications above. Using Lemma 5.3, σ solves
S as a system of language equations over the group F (A) in nonempty and
prefix-closed subsets of reduced words. Hence, σ solves the original system
over the free inverse monoid FIM(A). Since the square of a singly exponential
function is singly exponential, it is enough to apply Theorem 3.2. �

5.2 Proof of the lower bound in Theorem 5.1

Throughout this section we work over a two letter alphabet B = {α, β} which
is embedded in the alphabet A =

{
α, α, β, β

}
with involution without fixed

points. Thus, |A| = 4.
We show that the problem of solving a system of equations in idempotent

variables over FIM(A) is DEXPTIME-hard, even if we restrict input to sys-
tems with two equations. The first part of this lower bound proof is about
a surgery on language equations. It is the main ingredient, although free
inverse monoids do not appear in that part.

5.2.1 Surgery: from solutions in B∗ to solutions in F (A)

This section contains a sequence of transformations for language equations.
We say that systems S and S ′ of language equations are sat-equivalent, pro-
vided S is solvable if and only if S ′ is solvable.

We consider the equations

L+
∑
i∈I

uiXi = K +
∑
j∈J

ujXj (10)

with coefficients over B and where variables represent finite subsets of B∗.
Clearly, if there is a solution over the free monoid A∗, then there is also
a solution over B∗, because the coefficients are over B. Hence, for sat-
equivalent it is enough to consider solutions in finite subsets of A∗.

With the help of a fresh variable X0 each equation as in (10) can be
replaced by the following system:

X0 = 1,∑
u∈L

uX0 +
∑
i∈I

uiXi =
∑
v∈K

vX0 +
∑
j∈J

ujXj.

18

If a term uX appears in a system with |u| ≥ 2, then we write u = av with
a ∈ B and we introduce a fresh variable [vX]. We replace uX everywhere by
a[vX]; and we add the equation [vX] = vX. We can repeat the process until
all terms uX satisfy |u| ≤ 1. The transformation produces a sat-equivalent
system of quadratic size in the original system. With the help of more fresh
variables we can proceed to have the following form

X0 = 1,

X1k = a2kX2k + a3kX3k for 1 ≤ k ≤ n.

Here, n ∈ N, aik ∈ B∗ have length at most 1, and Xik ∈ Ω.
Next, it is convenient to allow the sign ≤ in addition to = in the notation

of equations. More formally, L ≤ R denotes the short hand of the language
equation L+R = R. Vice versa we can identify L = R with the system

L ≤ R,

R ≤ L.

For example, by letting a = 1 the equation X = bY + cZ is equivalent to the
following system where all equations are written in a uniform way.

aX ≤ bY + cZ,

bY ≤ aX + aX,

cZ ≤ aX + aX.

The transformations above show that on input S we can produce in poly-
nomial time a sat-equivalent system S1 which can be written as:

X0 = 1, (11)

a1kX1k ≤ a2kX2k + a3kX3k for 1 ≤ k ≤ n. (12)

As above, n ∈ N, aik ∈ B∗ have length at most 1, and Xik ∈ Ω.
The next transformation yields a sat-equivalent system which has a solu-

tion if and only if it has a solution in nonempty and prefix-closed sets.
For this we choose some letter d ∈ B and we transform S1 into a system

S2 as follows. We replace the equation X0 = 1 in (11) by:

X0 = 1 + d. (13)

19

Moreover, we replace each equation of type a1kX1k ≤ a2kX2k+a3kX3k in (12)
by:

a1kX1k ≤ a1k + a2kX2k + a3kX3k (14)

Lemma 5.4 The systems S1 and S2 are sat-equivalent. Moreover, if S2 has
any solution, then it has a solution in nonempty prefix-closed sets.

Proof. Let σ : Ω→ 2B
∗

f be any solution of S1. Then

σ′(X) = 1 + Pref(σ(X)d)

defines a solution of S2 in nonempty prefix-closed sets. Thus, it is enough to
show that if S2 is solvable, then S1 is solvable, too.

To this end, let σ′ be any solution of S2. Define

σ(X) = {u ∈ B∗ | ud ∈ σ′(X)} .

(Note that σ(X) might be empty.) Now, σ′(X0) = {1, d} implies σ(X0) =
{1}. It remains to show that aσ′(X) ⊆ {a}∪bσ′(Y)∪cσ′(Z) implies aσ(X) ⊆
bσ(Y) ∪ cσ(Z). This is straightforward. Indeed, let u ∈ σ(X), hence ud ∈
σ′(X). Since aud 6= a we must have aud ∈ bσ′(Y)∪cσ′(Z). By symmetry, we
may assume aud ∈ bσ′(Y). Thus, aud = bvd with vd ∈ σ′(Y). This implies
v ∈ σ(Y). Therefore, au ∈ bσ(Y). Hence, the result. �

The system S2 does not suffice for our purpose. We need a system where
we can control that all solutions σ and all variables X satisfy σ(X) ⊆ {α, β}∗.
The crucial observation is as follows: let L1, . . . , Ln ⊆ B∗ be finite subsets.
Then their union is finite, and so is the factor-closure of their union

K = {v ∈ B∗ | ∃u,w ∈ B∗ : uvw ∈ ∪ni=1Li} .

Factor-closed languages are prefix and suffix-closed; and for suffix-closed lan-
guages we can control its alphabet by the following condition

K ⊆ {1} ∪
⋃
a∈B

aK. (15)

More precisely, for every language K ⊆ C∗ where B ⊆ C we have that K
satisfies (15) if and only if both, K is suffix-closed and K ⊆ B∗.

20

Proposition 5.5 There is a polynomial time algorithm which produces on
an input, which is a system S of language equations over B∗, an output, which
is a system of two language equations S ′ satisfying the following conditions.

• S and S ′ are sat-equivalent.

• If S ′ has any solution, then it has a solution in nonempty prefix-closed
subsets of B∗ and therefore a solution as a language equation over the
group F (A).

• If S ′ has a solution as system of language equations over the group
F (A), then S is solvable.

• The system S ′ can be written in the following syntactic form

L+
∑
i∈I

uiXi = K +
∑
j∈J

vjXj, (16)

1 +
∑
a∈B

aZ +
∑
X∈Ω

X = 1 +
∑
a∈B

aZ (17)

where L,K ∈ 2B
∗

f , ui, vj, Xi, Xj;Z denote nonempty words in B∗ and
variables, respectively. Moreover, Xi 6= Z 6= Xj for all i, j.

Proof. We may start with the system S2 which satisfies Lemma 5.4.
Since it is sat-equivalent to S1, it is also sat-equivalent to S. The system S2

contains equations X0 ≤ 1 + d and 1 + d ≤ X0 for some d ∈ B and all other
equations have the form a1kX1k ≤ a2kX2k + a3kX3k where aik ∈ {1} ∪B and
Xik are variables. By the procedure described in Remark 3.3 we transform S2

into a single equation E ′ which has “almost” the syntactic form as required
in Equation (16), because we have

L+
∑
i∈I

uiXi ≤ K +
∑
j∈J

vjXj,

If RHS denotes the right-hand side, then we can replace

L+
∑
i∈I

uiXi ≤ RHS

by

L+
∑
i∈I

uiXi + RHS = RHS

21

Hence, a syntactic form as it is required by (16). Recall that these transfor-
mations do not change the set of solutions. Without restriction, ui 6= 1 and
vj 6= 1 for all i, j. Moreover, we may assume that there is a variable Z which
does not appear in (16). Adding Equation (17) defines S ′. The system S ′
contains two equations.

If S is solvable, then (16) has a solution σ in nonempty prefix-closed
subsets of B∗. As Z does not appear we may assume σ(Z) = {1}. Redefining

σ(Z) = {v ∈ B∗ | ∃u ∈ B∗ ∃X ∈ Ω : uv ∈ σ(X)}

yields a solution in nonempty prefix-closed subsets of B∗ of the system S ′.
Hence, a solution as a language equation over the group F (A).

Finally, let σ′ : Ω → 2
F (A)
f a solution of S ′ as a language equation over

the group F (A). We claim that σ′ is also a solution in the free monoid A∗.
If so, then S2 has a solution in A∗, and this implies that S is solvable.

By contradiction, assume that σ′ does not solve S ′ over A∗. Then there
are some b ∈ B, u ∈ A∗, and X ∈ Ω with bu ∈ σ′(X) ⊆ F (A). We may
choose b and X such that |u| is maximal. Equation (17) implies bu = π(av)
for some a ∈ B and some reduced word v ∈ σ(Z). Since b 6= a, this implies
v = aw and π(av) = w. Hence abu ∈ Z, which contradicts that u was of
maximal length. �

5.2.2 Finishing the proof of Theorem 5.1

Due to Theorem 3.2 and Proposition 5.5 we know that the problem to decide
systems S ′ with two language equations in the form of Proposition 5.5 is
DEXPTIME-complete. Thus, all we need to finish the proof of Theorem 5.1
is the following lemma.

Lemma 5.6 There is polynomial time algorithm which produces on an input
equation S ′ as in Proposition 5.5 a system S ′′ of two equations U1 = V1 and
U1 = V2 over FIM(A) in idempotent variables such that S ′ is solvable as a
language equation if and only if S ′′ is solvable over FIM(A).

Proof. Consider the system S ′ in Proposition 5.5 and let LHSi resp.
RHSi be the left- resp. right-hand sides of the corresponding equations,

22

i = 1, 2. Each of these terms has the form T = L +
∑

i∈I uiXi which is
defines a word W (T) by

W (T) =
∏
u∈L

uu ·
∏
i∈I

uiXiui.

The ordering in the products can be chosen arbitrarily. We define S ′′ by a
system of two equations:

W (LHS1) = W (RHS1),

W (LHS2) = W (RHS2).

If S ′ is solvable in nonempty prefix-closed subsets of B∗, then S ′′ is solvable
in FIM(A). Conversely, if S ′′ is solvable in FIM(A), then S ′ has a solution
as system of language equations over the group F (A). �

Proposition 5.5 and Lemma 5.6 conclude the proof of Theorem 5.1.

6 One-variable equations

Throughout this section we assume that the involution on A is without fixed
points, i.e., F (A) is equal to the free group FG(A+) in the standard termi-
nology. It is open whether we can remove this restriction.

The following notation is defined for any alphabet Σ and any nonempty
word p ∈ Σ+. For u ∈ Σ∗ we let |u|p be the number of occurrences of p as a
factor in u. Formally:

|u|p = |{u′ | u′p ≤ u}| .
The following equation is trivial since p may occur across the border between
u and v at most |p| − 1 times.

0 ≤ |uv|p − |u|p − |v|p ≤ |p| − 1. (18)

Next, assuming that Σ is equipped with an involution, we define a “differ-
ence” function δp : Σ∗ → Z by

δp(u) = |u|p − |u|p.

Since δp(u) = δp(u) we have δp(u) = −δp(u), and the mapping δp respects
the involution.

23

By definition, we have

δp(uv)− δp(u)− δp(v) = (|uv|p − |u|p − |v|p)− (|uv|p − |u|p − |v|p)

Hence, we may use Equation (18) to conclude:

|δp(uv)− δp(u)− δp(v)| ≤ |p| − 1. (19)

As we identify F (Σ) with the subset of reduced words in Σ∗, the mapping
δp is defined from F (Σ) to Z, too. The next lemma shows that its deviation
from being a homomorphism can be upper bounded. The next lemma will
be applied to a primitive word p, only. Let us remind that a word is defined
to be primitive if it cannot be written in the form vi for some word v with
i > 1 and it is not empty . Every nonempty word u has a primitive root: it
is the uniquely defined primitive word p such that u ∈ p+.

Lemma 6.1 Let u1, . . . , un, p be reduced words with p 6= 1. Let w be the
uniquely defined reduced word such that w is equal to u1 · · ·un in the group
F (Σ). Then we have:

|δp(w)− δp(u1)− · · · − δp(un)| ≤ 3(|p| − 1)(n− 1). (20)

Proof. Clearly, Equation (20) holds for n = 1. Hence, let n ≥ 2. Let
u be the reduced word such that u1 · · ·un−1 reduces to u. By induction, we
have |δp(u)− δp(u1)− · · · − δp(un−1)| ≤ 3(|p| − 1)(n − 2). Let v = un. By
triangle inequality it is enough to show

|δp(w)− δp(u)− δp(v)| ≤ 3(|p| − 1). (21)

To see this write u = u′r and v = rv′ such that w = u′v′.

δp(w)− δp(u)− δp(v) = δp(w)− δp(u′)− δp(v′)
+ δp(u

′) + δp(r)− δp(u)

+ δp(r) + δp(v
′)− δp(v)

The result follows by Equation (19) and triangle inequality. �

We will apply Lemma 6.1 in the following equivalent form.

δp(u1) + · · ·+ δp(un)− 3(|p| − 1)(n− 1) ≤ δp(w)

≤ δp(u1) + · · ·+ δp(un) + 3(|p| − 1)(n− 1). (22)

24

The following lemma is easy to prove. It is however here where we use a 6= a
for all a ∈ A. Let us recall that a word q is cyclically reduced if qq is reduced.
In other words if a is the first letter of q, the last letter of q is different from
a.

Lemma 6.2 Let n ∈ Z and q ∈ F (A) be a primitive and cyclically reduced
word. Then we have δq(q

n) = n.

Proof.We may assume without loss of generality that n > 0. Clearly,
|qn|q ≥ n. Suppose that |qn|q > n. Then q is a proper factor of qq, hence
we may write q = q1q2 = q2q1 in reduced products with q1, q2 6= 1. It is
well known (see e.g. [11]) that this contradicts the primitivity of q. Thus,
|qn|q = n.

Suppose now that q is a proper factor of qq. Then we may write q = q1q2

as a reduced product with q = q2q1 since q is cyclically reduced. Moreover,
since q = q2q1 we get q2 = q2 and q1 = q1. Hence q1 = q2 = 1 because q1,
q2 are reduced and a 6= a for all a ∈ A. Thus, |qn|q = 0 and so δq(q

n) =
|qn|q − |qn|q = |qn|q = n. �

An (untyped) equation (U, V) is called a one-variable equation, if we can
write UV ∈ (A∪

{
X,X

}
)∗. More generally, we also consider systems of typed

equations with at most one reduced variable x (and x), i.e., every equation
(U, V) in the system satisfies UV ∈ (A ∪ Ω ∪ {x, x})∗. Let us fix some more
notation, we let Σ = A ∪ Ω ∪ Γ with Γ = {x, x}. In particular, we have
X = X for all X ∈ Ω and α 6= α for all α ∈ A ∪ Γ.

Definition 6.3 Let u, v ∈ Γ∗. We say that (u, v) is unbalanced if u 6= v in
the free inverse monoid FIM(Γ).

Otherwise we say that (u, v) is balanced.

Remark 6.4 Using the well-known structure of FIM(Γ), a pair (u, v) as in
Definition 6.3 is balanced if and only if the following three conditions are
satisfied.

• δx(u) = δx(v).

• max{δx(u′) | u′ ≤ u} = max{δx(v′) | v′ ≤ v}.

• min{δx(u′) | u′ ≤ u} = min{δx(v′) | v′ ≤ v}.

25

We extend the notion defined in Definition 6.3 to an untyped one-variable
equation. In the following we let πA,Γ be the morphism from (A∪Ω∪Γ)∗ to
F (A ∪ Γ) which is induced by cancelling the symbols in Ω.

Definition 6.5 Let (U, V) be an untyped one-variable equation with X ={
X,X

}
. We say that (U, V) is unbalanced if it fulfills both conditions:

1- (u, v) is unbalanced as a word over Γ where u (resp. v) is obtained from U
(resp. V) by replacing X by x (and X by x) and erasing all other symbols.
2- πA,Γ(U) 6= πA,Γ(V) in the free group F (A ∪ Γ).

The following definition is a bit more technical, but it will lead to better
results.

Definition 6.6 Let U, V be words over A ∪ Ω ∪ Γ. We say that (U, V) is
strongly unbalanced if πA,Γ(U) 6= πA,Γ(V) in the free group F (A∪Γ) and at
least one of the following conditions is satisfied.

(SU1) δx(U) 6= δx(V).

(SU2) For all z ∈ Ω ∪ {1} and all prefixes V ′z of V there exists some prefix
U ′z of U such that δx(U

′) > δx(V
′).

(SU3) For all z ∈ Ω ∪ {1} and all prefixes V ′z of V there exists some prefix
U ′z of U such that δx(U

′) > δx(V
′).

The following result improves the complexity in the corresponding state-
ment of [5]. (Note that the condition πA,Γ(U) 6= πA,Γ(V) was missing in [5],
but the proof is not valid without this additional requirement.)

Theorem 6.7 The following problem can be decided in DEXPTIME.
Input: A system S of one-variable equations over X =

{
X,X

}
where at

least one equation (U, V) is unbalanced according to Definition 6.5.
Question: Does S have a solution in FIM(A)?

Proof. Suppose that (U, V) is unbalanced. The pair (U, V) must then
contradict one of the three conditions of Remark 6.4. Let us distinguish
cases and, in each case, reduce the given unbalanced equation into a strongly
unbalanced typed equation.
In all cases, we introduce a fresh idempotent variable Z, a fresh reduced
variable x, and use the word-substitutions τ ′ (or τ) defined in Lemma 4.1:
τ ′(X) = xZ, τ ′(X) = Zx, τ(X) = Zx, τ(X) = xZ or the trivial substitution

26

θ(X) = x, θ(X) = x.
Case 1: δX(U) 6= δX(V).
In this case (θ(U), θ(V)) fulfills condition (SU1).
Case 2: max{δX(U ′) | U ′ ≤ U} > max{δX(V ′) | V ′ ≤ V }.
There is some prefix U ′ ≤ U such that for all prefixes V ′ ≤ V we have
δX(U ′) > δX(V ′) and, in particular, δX(U ′) > δX(1) = 0. We choose δX(U ′)
to be maximal and, since δX(U ′) is positive, we may choose U ′ such that
X = last(U ′), so that last(τ ′(U ′)) = Z. Now, for every z ∈ {Z, 1},

δx(τ
′(U ′)) = δX(U ′) > max {δX(V ′) | V ′ ≤ V }

= max {δx(W) | W ≤ τ ′(V)}
≥ max {δx(W ′z) | W ′z ≤ τ ′(V)} .

This prefix τ ′(U ′) shows that (τ ′(U), τ ′(V)) fulfills condition (SU2) (this is
actually a stronger requirement than asked by Definition 6.6, because this
single prefix τ ′(U ′) serves for all W ′z).
Case 2’: max{δX(U ′) | U ′ ≤ U} < max{δX(V ′) | V ′ ≤ V }.
By Case 2 the typed equation (τ ′(V), τ ′(U)) fulfills condition (SU2).
Case 3: min{δX(U ′) | U ′ ≤ U} > min{δX(V ′) | V ′ ≤ V }.
We may assume that δX(U) = δX(V) = k. If U = U ′U ′′ and V = V ′V ′′, we
have δX(U ′′) = δX(U ′′) = k − δX(U ′) and δX(V ′′) = δX(V ′′) = k − δX(V ′),
thus (U, V) fulfills that max

{
δX(U ′)

∣∣ U ′ ≤ U
}
< max

{
δX(V ′)

∣∣ V ′ ≤ V
}

.

By a reasoning similar to that of case 2, one can show that (τ(V), τ(U))
fulfills condition (SU3).
Case 3’: min{δX(U ′) | U ′ ≤ U} < min{δX(V ′) | V ′ ≤ V }.
By Case 3 the typed equation (τ(U), τ(V)) fulfills condition (SU3).
We have thus reduced Theorem 6.7 above to Theorem 6.8 below. �

Theorem 6.8 The following problem can be decided in DEXPTIME.
Input: A system S of typed equations with at most one reduced variable

(i.e., Γ = {x, x}) where at least one equation (U, V) ∈ S is strongly unbal-
anced.

Question: Does S have a solution in FIM(A)?

The proof of Theorem 6.8 relies on the following combinatorial observa-
tion.

27

Lemma 6.9 Let (U, V) be a strongly unbalanced equation with U, V ∈ (A ∪
Ω∪ {x, x})∗ and n = max {|U | , |V |}. Let k ∈ Z be an integer and σ be a so-
lution to (U, V) such that σ(x) = (Pref(pk), pk) for some nonempty cyclically
reduced word p ∈ A∗. Then we have |k| ≤ 6n |p|.

Proof. Without restriction, p is primitive and k > 1. (Replace p by its
primitive root and interchange the role of p and p, if necessary.) For a word
W ∈ (A∪Ω∪{x, x})∗ we write σ(W) = (σ1(W), σ2(W)) where σ1(W) ⊆ A∗ is
a prefix-closed set of reduced words and σ2(W) ∈ F (A). Choose m maximal
such that δp(w) = m for some w ∈ σ1(V). We fix w ∈ A∗ and we observe
that we have m ≥ 0 and for every word u ∈ σ1(U) = σ1(V), we have

δp(u) ≤ m (23)

Case (SU2): (U, V) fulfills condition (SU2).
We choose a prefix V ′ of V of minimal length with respect to the property
w ∈ σ1(V ′). We consider two subcases.

Subcase Ω: last(V ′) ∈ Ω.

Let z := last(V ′). The word V ′ thus decomposes as V ′ = V ′′z. Since
σ1(V ′′z) = σ1(V ′′) ∪ σ2(V ′′)σ1(z), it follows from the minimality of V ′′z that
w ∈ σ2(V ′′)σ1(z). Since σ2(Z) = 1 for every Z ∈ Ω and |V ′| ≤ n − 1, it
follows that w is the product of at most n − 1 reduced words v1 . . . vt in
A ∪ {σ2(x), σ2(x)} by some z′ ∈ σ1(z).

For each letter a of A, δp(a) ≤ 1 and, since p is primitive, by Lemma 6.2,
δp(σ2(x)) = k, δp(σ2(x)) = −k. We thus get

t∑
i=1

δp(vi) ≤ kδx(V
′) + n− 1. (24)

Since w = v1 . . . vtz
′, we obtain the following upper bound:

m = δp(w)

≤
∑t

i=1 δp(vi) + δp(z
′) + 3(|p| − 1)(n− 1) by (22)

≤ kδx(V
′) + δp(z

′) + n− 1 + 3(|p| − 1)(n− 1) by (24) (25)

By (SU2) there exists a prefix U ′ of U such that δx(U
′) > δx(V

′) and
last(U ′) = z. The word U ′ thus decomposes as U ′ = U ′′z. Let us define

28

u := σ2(U ′′)z′. We remark that u ∈ σ1(U), hence it fulfills Equation (23).
Using similar arguments based on Equation (22) and Lemma 6.2 we obtain:

kδx(U
′) + δp(z

′)− (n− 1)− 3(|p| − 1)(n− 1) ≤ δp(u). (26)

Combining the above inequalities we obtain:

k ≤ k(δx(U
′)− δx(V ′)) since δx(U

′) > δx(V
′)

≤ −δp(z′) + (n− 1) + 3(|p| − 1)(n− 1) + δp(u)− kδx(V ′) by (26)

≤ −δp(z′) + (n− 1) + 3(|p| − 1)(n− 1) +m− kδx(V ′) by (23)

≤ 2(n− 1) + 6(|p| − 1)(n− 1) by (25)

≤ 6n(|p|) (27)

Subcase 1: last(V ′) /∈ Ω.

We just need to perform some adaptations to the preceding case. The word
w is the product of at most n reduced words v1 . . . vt in A ∪ {σ2(x), σ2(x)},
and by similar methods we obtain

m = δp(w) ≤ kδx(V
′) + n+ 3(|p| − 1)(n− 1). (28)

By (SU2) (where we choose z := 1) there exists a prefix U ′ of U such that
δx(U

′) > δx(V
′). Let us define u := σ2(U ′). We get

kδx(U
′)− n− 3(|p| − 1)(n− 1) ≤ δp(u). (29)

Since u = σ2(U ′) ∈ σ1(U), here also u fulfills (23). Hence, putting (29) (23)
and (28) together we obtain the desired result:

k ≤ k(δx(U
′)− δx(V ′)) ≤ 6(|p| − 1)(n− 1) + 2n ≤ 6n |p| . (30)

Case (SU3): (U, V) fulfills condition (SU3).
This case is dealt with in a similar manner.
Case (SU1): (U, V) fulfills condition (SU1).
By symmetry in U and V , we may assume without restriction δx(U) > δx(V).
Let us choose V ′ := V,w := σ2(V),m := δp(w), U ′ := U, u := σ2(U). The ar-
guments of Case (SU2), Subcase 1, apply on these choices for V ′, w,m, U ′, u.
(In fact, an argument provided by James Howie in [21] shows that in this

29

case the solution σ(x) is unique). �

Proof of Theorem 6.8. Let n be the size of the system S, it is defined as

‖S‖ =
∑

(U,V)∈S

|UV | .

Since πA,Γ(U) 6= πA,Γ(V) for at least one equation in the system, the set
of solutions for the underlying group equations is never equal to F (A). By
[1, 10], the set of solutions of a one-variable free group equation is therefore
a finite union of sets of the form{

rqks
∣∣ k ∈ Z

}
, (31)

where q is cyclically reduced and both products rqs and rqs are reduced. A
self-contained proof of this fact has been given in [3].

In the description above q = 1 is possible. Moreover, [3] shows |rqs| ∈
O(n). Hence, as we aim for DEXPTIME there is time enough to consider all
possible candidates for r and s. This means we can fix r and s; and it is
enough to consider a single set S =

{
rqks

∣∣ k ∈ Z
}

, only. Next we replace in
S all occurrences of x by rxs (and x by s x r). This leads to a new system
which we still denote by S and without restriction we have S =

{
qk
∣∣ k ∈ Z

}
.

The new size m of S is at most quadratic in n.
Now, we check if k = 0 leads to a solution of S. This means that we simply

cancel x and x everywhere. We obtain a system over idempotent variables;
and we can check satisfiability by Theorem 5.1. Note that this includes the
case q = 1. Thus, henceforth we may assume that q is a primitive cyclically
reduced word. By Lemma 6.9 we see that it is enough to replace S by
S ′ =

{
qk
∣∣ |k| ≤ 6m |q|

}
. Since |q| ∈ O(m) we obtain a cubic bound for the

maximal length of words in S ′, this means the length of each word in S ′ is
bounded by O(n6). This is small enough to check satisfiability of the original
system S in DEXPTIME by Theorem 5.1. �

Conclusion and directions for future research

The notion of “idempotent variable” unifies the approach for studying equa-
tions in free inverse monoids. As the general situation is undecidable, progress
is possible only by improving complexities in classes where decidability is

30

known and/or to enlarge the class of equations where decidability is possible.
We achieved progress in both fields. For equations in idempotent variables
we lowered the complexity down to DEXPTIME and proved that this bound
is tight. Using a recent result in [6] that it is decidable in PSPACE whether
an equation in free groups has only finitely many solutions, we derived a
“promise result” in Corollary 4.3 with triple exponential time complexity.
We don’t think that this is optimal, because we believe that solving equa-
tions in free groups is in NP. But this fundamental conjecture is wide open
and resisted all known techniques.

More concretely, let us resume some interesting and specific problems on
equations in free inverse monoids which are open:

• Is the decision problem in Theorem 5.1 restricted to single equation in
idempotent variables DEXPTIME-hard? We conjecture: yes!

• Is the (other) special kind of equations solved by Theorem 23 of [5] also
solvable in DEXPTIME?

• Is it possible to remove Assumption 2 in Definition 6.5, and still main-
tain decidability of the system of equations? (The assumption asserts
that the image of the left-hand side and right-hand side are different
in the free group.)

• What happens if the underlying equation in the free group is true for
all elements in the free group? This means the statement is a tautology
the free group.

• What more general kinds of one-variable equations in the free inverse
monoid are algorithmically solvable (possibly all of them)?

• Does Jeż’ recompression technique apply to language equations? If
yes, then this would open a new approach to tackle equations over free
inverse monoids.

Acknowledgements

Volker Diekert thanks the hospitality of Universidade Federal da Bahia, Sal-
vador Brazil, where part of this work started in Spring 2014.

Florent Martin acknowledges support from Labex CEMPI (ANR-11-LABX-
0007-01) and SFB 1085 Higher invariants.

31

Pedro Silva acknowledges support from: CNPq (Brazil) through a BJT-
A grant (process 313768/2013-7); and the European Regional Development
Fund through the programme COMPETE and the Portuguese Government
through FCT (Fundação para a Ciência e a Tecnologia) under the project
PEst-C/MAT/UI0144/2013.

The authors are thankful to the PC of CSR 2015 for awarding our paper
with the Yandex-best-paper award – and one of the authors is even more
thankful that Computer Science in Russia 2015 was held at the natural won-
der of Lake Baikal.

References

[1] K. I. Appel. One-variable equations in free groups. Proc. Amer. Math.
Soc., 19:912–918, 1968.

[2] F. Baader and P. Narendran. Unification of concept terms in description
logics. J. Symb. Comput., 31:277–305, 2001.

[3] D. Bormotov, R. Gilman, and A. Myasnikov. Solving one-variable equa-
tions in free groups. J. Group Theory, 12:317–330, 2009.

[4] L. Ciobanu, V. Diekert, and M. Elder. Solution sets for equations
over free groups are EDT0L languages. In M. Halldórsson, K. Iwama,
N. Kobayashi, and B. Speckmann, editors, Proc. 42nd International
Colloquium Automata, Languages and Programming (ICALP 2015),
Part II, Kyoto, Japan, July 6-10, 2015, volume 9135 of Lecture Notes
in Computer Science, pages 134–145. Springer, 2015.

[5] T. Deis, J. C. Meakin, and G. Sénizergues. Equations in free inverse
monoids. IJAC, 17:761–795, 2007.

[6] V. Diekert, A. Jeż, and W. Plandowski. Finding all solutions of equations
in free groups and monoids with involution. In E. A. Hirsch, S. O.
Kuznetsov, J. Pin, and N. K. Vereshchagin, editors, Computer Science
Symposium in Russia 2014, CSR 2014, Moscow, Russia, June 7-11,
2014. Proceedings, volume 8476 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2014.

32

[7] V. Diekert, F. Martin, G. Sénizergues, and P. V. Silva. Equations over
free inverse monoids with idempotent variables. In L. D. Beklemishev
and D. V. Musatov, editors, Proc. 10th International Computer Sci-
ence Symposium in Russia, CSR 2015, Listvyanka, Russia, July 13-17,
2015, volume 9139 of Lecture Notes in Computer Science, pages 173–
188. Springer, 2015.

[8] C. Gutiérrez. Satisfiability of equations in free groups is in PSPACE.
In Proceedings 32nd Annual ACM Symposium on Theory of Computing,
STOC’2000, pages 21–27. ACM Press, 2000.

[9] A. Jeż. Recompression: a simple and powerful technique for word
equations. J. ACM, 2015. To appear. The conference version is in
the Proc. STACS 2013 :LIPIcs 20, 233–244 (2013). Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

[10] A. A. Lorents. Representations of sets of solutions of systems of equa-
tions with one unknown in a free group. Dokl. Akad. Nauk., 178:290–292,
1968. (in Russian).

[11] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of
Mathematics and its Applications. Addison-Wesley, Reading, MA, 1983.
Reprinted by Cambridge University Press, 1997.

[12] G. S. Makanin. The problem of solvability of equations in a free semi-
group. Math. Sbornik, 103:147–236, 1977. English transl. in Math. USSR
Sbornik 32 (1977).

[13] G. S. Makanin. Equations in a free group. Izv. Akad. Nauk SSR, Ser.
Math. 46:1199–1273, 1983. English transl. in Math. USSR Izv. 21 (1983).

[14] W. D. Munn. Free inverse semigroups. Proc. London Math. Soc., 29:385–
404, 1974.

[15] Ch. H. Papadimitriou. Computational Complexity. Addison Wesley,
1994.

[16] M. Petrich. Inverse semigroups. Wiley, 1984.

[17] W. Plandowski. Satisfiability of word equations with constants is in
PSPACE. In Proc. 40th Ann. Symp. on Foundations of Computer Sci-
ence, FOCS’99, pages 495–500. IEEE Computer Society Press, 1999.

33

[18] W. Plandowski. Satisfiability of word equations with constants is in
PSPACE. J. ACM, 51:483–496, 2004.

[19] B. V. Rozenblat. Diophantine theories of free inverse semigroups.
Siberian Math. J., 26:860–865, 1985. Translation from Sibirskii Mat.
Zhurnal, volume 26: 101–107, 1985.

[20] H. E. Scheiblich. Free inverse semigroups. Proc. Amer. Math. Soc.,
38:1–7, 1973.

[21] P. V. Silva. Word equations and inverse monoid presentations. In
S. Kublanovsky, A. Mikhalev, P. Higgins, and J. Ponizovskii, edi-
tors, Semigroups and Applications, Including Semigroup Rings. Severny
Ochag, St. Petersburg, 1999.

34

