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ABSTRACT

A new notion of vertex independence and rank for a finite graph G is introduced.
The independence of vertices is based on the boolean independence of columns of a
natural boolean matrix associated to G. Rank is the cardinality of the largest set of
independent columns. Some basic properties and some more advanced theorems are
proved. Geometric properties of the graph are related to its rank and independent
sets.
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1 Introduction

The background and prehistory for this paper goes something like the following. In 2006
Zur Izakhian [10] defined the notion of independence for columns (rows) of as matrix with
coefficients in a supertropical semiring. Restricting this concept to the superboolean semir-
ing SB (see Subsection 2.4), and then to the subset of boolean matrices (equals matrices
with coefficients 0 and 1), we obtain the notion of independence of columns (rows) of a
boolean matrix. This notion has several equivalent formulations (see Subsection 2.4 of this
paper and references there), one involving permanent, another being the following: if M is
an m × n boolean matrix, then a subset J of columns of M is independent if and only if
there exists a subset I of rows of M with |I| = |J | = k and the k × k submatrix M [I, J ]
can be put into upper triangular form (1’s on the diagonal, 0’s strictly above it, and 0’s or
1’s below it) by independently permuting the rows and columns of M [I, J ].

This is the notion of independence for columns of a boolean matrix we will use in this
paper. In 2008 the first author suggested that this idea would have application in many
branches of Mathematics and especially in Combinatorial Mathematics. In this paper we
apply it to the vertices of a finite graph. For other applications of this notion to lattices,
posets and matroids by Izhakian and the first author, see [11, 12, 13].

If M is an m× n boolean matrix with column space C, then the set H of independent
subsets of C satisfies the following axioms (see [11, 12]):

(H) H is nonempty and closed under taking subsets (making it a hereditary collection);

(PR) for all nonempty J, {p} ∈ H, there exists some x ∈ J such that (J \ {x}) ∪ {p} ∈ H
(the point replacement property).

Hereditary collections arising from some boolean matrix M as above are said to be boolean
representable. A very interesting question is which hereditary collections have boolean
representations, a question which the authors will address in a near future paper [18].
The elementary properties of such boolean representable collections were considered in
[11, 12, 13] and it was shown in [12] that all matroids have boolean representations.

In this paper we restrict our atention to finite graphs (with no loops and no multiple
edges), see Subsection 2.2. However, there are several ways to define such a graph by a
boolean matrix. The one chosen in matroid theory by Whitney [20] and related to the
Levi graph is to attach the boolean matrix M(G) to the graph G = (V,E), where V is the
set of vertices and E the set of edges considered as 2-sets of V , with M(G) the |V | × |E|
boolean matrix defined by M(G)(v, e) = 1 if v lies in e, and 0 otherwise. Now whether we
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consider the columns of M(G) as independent in our boolean sense or in the usual vector
space sense (over the field Z2), we obtain the same independent sets which form a matroid
called a graphical matroid, see [11, 16, 17].

So this viewpoint has been extensively worked out [16, 17], and mainly following Tutte’s
suggestions, ideas from graphs like connectedness (n-connected) can be extended to ma-
troids, etc.

A perhaps more obvious way to associate a boolean matrix to a graph G = (V,E) is via
the |V | × |V | boolean adjacency matrix (see Subsection 2.2) AG = (aij), where aij = 1 if
{i, j} is an edge of G, and 0 otherwise. So AG can be an arbitrary symmetric square boolean
matrix with 0’s in the main diagonal (see also [2]). However, in this paper we choose AcG
which is AG with 0 and 1 interchanged. This approach is indicated from the lattice/poset
case [13], and that finite boolean modules (equals semilattices) have dual spaces which
separate points and the dual space is reversing the order, see [19, Chapter 9.1 and 9.2].

Also if AG were used, then Kn (the complete graph on n vertices) and its complement
Kn would have sets of 2 or less vertices being the independent sets or only the empty set
being independent respectively, clearly not a good choice.

Thus our new notion of independence of a subset of verticesX ⊆ V of a graphG = (V,E)
is that the columns corresponding to X in AcG are boolean independent. Note that, by using
AcG, all subsets of vertices of Kn are independent. This is termed c-independence for vertices
of G, and the cardinality of the largest independent set of vertices ia termed c-rank, denoted
c-rk . Note that we work with the superboolean semiring SB, for representation by matrices
over GF (2) the reader can be referred to a recent paper by Brijder and Traldi [2].

As we mentioned before, Whitney associated to each finite graph G = (V,E) a (graph-
ical) matroid [20]. In this paper we more or less reverse this procedure and treat each
graph G as given “like a matroid” in the following manner. The graph G has the boolean
representation AcG = M . Each boolean representation M , see [12, 13, 18], gives rise to the
lattice of flats (see Subsection 2.2) of M . This corresponds to the idea in matroid theory
of the geometric lattice of flats of a matroid (see [16]). Given the boolean matrix M with
column space C, the lattice of flats of M consists of the subsets of C corresponding to where
the rows of M are zero, closed under all intersections (see Subsection 2.2). Then Theorem
3.1 yields that the independent subsets of C with respect to M are the partial transversals
of the partition of successive differences for some maximal chain of the lattice of flats. This
relates to earlier ideas of Bjorner and Ziegler [1].

If L is the geometric lattice of flats of a matroid P = (C,H), then taking the boolean
representation ML corresponding to L and restricted to the atom generators (ML is AcL
– where AL is the L incidence matrix – restricted to the atom rows C, then transposed
so considered as columns), then the lattice of flats of the boolean matrix ML as described
before is the same as the geometric lattice of usual flats of the matroid (see [12]). Thus this
approach truly generalizes the matroid approach.

When applying this “boolean combinatorics” approach to some standard field of Math-
ematics (e.g. finite graph theory), usually the notion of rank is well known, the notion of
independence is new, and the approach tends quickly to some well developed subfield of the
subject under study. Somehow geometry is also supposed to show up in this approach: see
below!

Enough of the general background. In this paper the boolean representation for a graph
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is AcG and the notions of c-independence and c-rank are taken with respect to AcG. The
lattice of flats for the graph G = (V,E) can be realised by closing {St(v) | v ∈ V } under
all intersections, where St(v) = {v′ ∈ V | {v, v′} ∈ E}. This and other preliminaries are
done in Section 2. The c-rank and how to calculate the c-independent subsets of vertices
are discussed in Section 3. It is proved that the c-rank is the height of the lattice of flats
and c-independent subsets can be calculated by Theorem 3.1(iv)-(v).

In Section 4 we characterize graphs of low c-rank. Section 5 is devoted to the interest-
ing case of sober connected graphs of c-rank 3 (we call a graph sober if the mapping St is
injective). In Section 6, our new notions acquire a distinctive geometric flavor in connec-
tion with Levi graphs and partial euclidean geometries. Geo is defined in the appropriate
context and Geo of the Petersen graph is computed to be the Desargues configuration, see
Example 6.3. Section 7 collects results concerning cubic graphs, including characterizations
of the graphs whose lattice of flats satisfies the most famous lattice-theoretic properties. A
variation of the concept of c-rank appropriate to deal with minors is discussed in Section
8. Finally, Section 9 relates a graph and its complement graph in the context of our new
notions.

2 Preliminaries

2.1 Posets and lattices

Our lattice and poset terminology is more or less standard (see [7, 8, 15, 19]). For ease
of exposition we assume all posets, lattices and graphs to be finite, although many of the
results admit generalizations to the infinite case.

Given a finite poset (P,≤) and p, q ∈ P , we say that p covers q if p > q but there is
no r ∈ P such that p > r > q. It is standard to represent finite posets by means of their
Hasse diagram: in this directed graph, the vertices are the elements of P and (p, q) is an
edge when p covers q. Note that a chain in (P,≤) is maximal if and only if it corresponds
to some path in the Hasse diagram connecting a maximal element to a minimal element.

The height of (P,≤) is defined by

htP = max{k ∈ IN | p0 < p1 < . . . < pk is a chain in P}.

Equivalently, htP is the maximum length of a path in the Hasse diagram of P .
We say that (P,≤) is a lattice if, for all p, q ∈ P , there exist

p ∨ q = min{x ∈ P | x ≥ p, q},
p ∧ q = max{x ∈ P | x ≤ p, q}.

If only the first (respectively the second) of these conditions is satisfied, we talk of a ∨-
semilattice (respectively ∧-semilattice). We say that P ′ ⊆ P constitutes a sublattice of
(P,≤) if p ∨ q, p ∧ q ∈ P ′ for all p, q ∈ P ′. Note there need be no relation between the top
(bottom) of P ′ and of P . Every point is a sublattice.

A lattice (L,≤) is said to be distributive if

p ∧ (q ∨ r) = (p ∧ r) ∨ (p ∧ r)
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holds for all p, q, r ∈ L, a condition which is equivalent to its dual. We shall say that (L,≤)
is modular if there is no sublattice of the form

a

��

��

b

��
c

��

d

��
e

If we only exclude such sublattices when d covers e, the lattice is semimodular. It is well
known that every distributive lattice is modular, and modular implies of course semimod-
ular.

An atom of L is an element covering the minimum element 0. A semimodular latice
is called geometric if every element is a join of atoms (0 being the join of the empty set).
Finally, L satisfies the Jordan-Dedekind condition if all the maximal chains in L have the
same length.

2.2 Graphs

Throughout this paper, graphs are finite, undirected, and have neither loops nor multiple
edges. Formally, a (finite) graph is an ordered pair G = (V,E), where V is a (finite) set
(the set of vertices) and E ⊆ {X ∈ 2V : |X| = 2} (the set of edges). In other words, the
edges are 2-subsets of V (an n-subset is a subset with n elements). We assume the reader
to be familiar with the basic concepts of graph theory (see e.g. [6]).

Clearly, (2V ,⊆) is a distributive lattice with X ∧ Y = X ∩ Y and X ∨ Y = X ∪ Y . If
X ⊆ V has k elements, we say it is a k-subset of V .

Given S ⊆ 2V , it is easy to see that

Ŝ = {∩S | S ⊆ S}

is the ∧-subsemilattice of (2V ,⊆) generated by S. Note that ∩S = minŜ, and also V =
∩∅ = maxŜ. In fact, (Ŝ,⊆) is itself a lattice with

P ∨Q = ∩{X ∈ S | P ∪Q ⊆ X}.

However, (Ŝ,⊆) is not in general a sublattice of (2V ,⊆) since P ∨Q (in (Ŝ,⊆)) needs not
be P ∪Q (see [7, 19]).

Note that
ht Ŝ ≤ |S| (1)

since any chain in Ŝ is necessarily of the form

V ⊇ X1 ⊃ X1 ∩X2 ⊃ . . . ⊃ X1 ∩ . . . ∩Xk

for distinct X1, . . . , Xk ∈ S.
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Finally, we say that {y1, . . . , yk} is a transversal of the partition of the successive dif-
ferences for the chain X0 ⊃ . . . ⊃ Xk in Ŝ if yi ∈ Xi−1 \Xi for i = 1, . . . , k. A subset of a
transversal is a partial transversal.

Given v ∈ V , the star of v is defined by

St(v) = {w ∈ V | w is adjacent to v in G}.

More generally, given W ⊆ V , we write

St(W ) = ∩w∈WSt(w).

Note that St(∅) = V . Let SW = {St(w) | w ∈W}. It is immediate that

ŜW = {St(W ′) |W ′ ⊆W}. (2)

We call a subset of the form St(W ) (W ∈ V ) a flat and say that ŜV is the lattice of flats of
G, also denoted by FlG. We believe this to be a new concept for graphs.

Note that, for a connected graph G = (V,E), we can define a metric d on V by

d(v, w) = length of the shortest path connecting v and w (counting edges).

The diameter of G, denoted by diamG, is the maximum value in the image of d.
Given a finite graph G, the girth of G, denoted by gthG, is the length of the shortest

cycle in G (assumed to be ∞ is G is acyclic). Note that gthG ≥ 3 for any finite graph.
We shall use the notation

n̂ = {1, . . . , n}

throughout the paper. Assume now that V = n̂. The adjacency matrix of G = (V,E) is the
n× n boolean matrix AG = (aij) defined by

aij =

{
1 if {i, j} ∈ E
0 otherwise

The matrix AcG is obtained by interchanging 0 and 1 all over AG. If the graph is clear from
the context, we shall write just A and Ac.

2.3 Matroids

Let V be a set and let X ⊆ 2V . We say that X is a hereditary collection if X is closed under
taking subsets. The hereditary collection is said to be a matroid if the following condition
(the exchange property) holds:

(EP) For all I, J ∈ X with |I| = |J |+ 1, there exists some i ∈ I \ J such that J ∪ {i} ∈ X.

There are many other equivalent definitions of matroid. For details, the reader is referred
to [16].
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2.4 Superboolean matrices

Following [11], we shall view boolean matrices as matrices over the superboolean semiring
SB = {0, 1, 1ν}, where addition and multiplication are described respectively by

+ 0 1 1ν

0 0 1 1ν

1 1 1ν 1ν

1ν 1ν 1ν 1ν

· 0 1 1ν

0 0 0 0
1 0 1 1ν

1ν 0 1ν 1ν

We denote by Mn(SB) the set of all n × n matrices with entries in SB. Note that n × n
boolean matrices are not a subsemiring of Mn(SB) since 1 + 1 = 1ν .

Next we present definitions of independency and rank appropriate to the context of
superboolean matrices, introduced in [10] (see also [11]).

We say that vectors C1, . . . , Cm ∈ SBn are dependent if λ1C1 + . . . λmCm ∈ {0, 1ν} for
some λ1, . . . , λm ∈ {0, 1} not all zero. Otherwise, they are said to be independent.

Let Sn denote the symmetric group on n̂. The permanent of a matrix M ∈Mn(SB) (a
positive version of the determinant) is defined by

PerM =
∑
σ∈Sn

n∏
i=1

mi,iσ.

Recall that addition and multiplication take place in the semiring SB defined above.
Given I, J ⊆ n̂, we denote by M [I, J ] the submatrix of M with entries mij (i ∈ I, j ∈ J).

In particular, M [n̂, j] denotes the jth column vector of M for each j ∈ n̂.

Proposition 2.1 [10, Th. 2.10], [11, Lemma 3.2] The following conditions are equivalent
for every M ∈Mn(SB):

(i) the column vectors M [n̂, 1], . . . ,M [n̂, n] are independent;

(ii) PerM = 1;

(iii) M can be transformed into some lower triangular matrix of the form
1 0 0 . . . 0
? 1 0 . . . 0
? ? 1 . . . 0
...

...
...

. . .
...

? ? ? . . . 1

 (3)

by permuting rows and permuting columns independently.

A square matrix satisfying the above (equivalent) conditions is said to be nonsingular.
Given (equipotent) I, J ⊆ n̂, we say that I is a witness for J in M if M [I, J ] is nonsin-

gular.

Proposition 2.2 [10, Th. 3.11] The following conditions are equivalent for all M ∈
Mn(SB) and J ⊆ {1, . . . , n}:
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(i) the column vectors M [n̂, j] (j ∈ J) are independent;

(ii) J has a witness in M .

The subsets of independent column vectors of a given superboolean matrix, which in-
clude the empty subset and are closed for subsets, constitute an important example of a
hereditary collection. Hereditary collections which have boolean representations, which in-
clude matroids as a very important particular case, were discussed in [11, 12, 13] and will
be also the object of a future paper by the present authors, seeking necessary and sufficient
conditions.

Proposition 2.3 [10, Th. 3.11] The following are equal for a given M ∈Mn(SB):

(i) the maximum number of independent column vectors in M ;

(ii) the maximum number of independent row vectors in M ;

(iii) the maximum size of a subset J ⊆ n̂ having a witness in M ;

(iv) the maximum size of a nonsingular submatrix of M .

The rank of a matrix M ∈ Mn(SB), denoted by rkM , is the number described above.
A row of M is called an n-marker if it has one entry 1 and all the remaining entries are 0.
The following remark follows from Proposition 2.1:

Corollary 2.4 [11, Cor. 3.4] If M ∈Mn(SB) is nonsingular, then it has an n-marker.

3 The c-rank of a graph

In this section, we assume that G = (V,E) denotes a finite graph with V = n̂.
The following result prepares the ground for an important connection between matrix

rank and the height of the lattice of flats as defined in Subsection 2.2, and will acquire great
relevance in the study of independence. This relates to earlier work by Bjorner and Ziegler
[1].

Theorem 3.1 Given a finite graph G, the following conditions are equivalent for every
J ⊆ n̂:

(i) the column vectors Ac[n̂, j] (j ∈ J) are independent;

(ii) J has a witness in Ac;

(iii) ht ŜJ = |J |;

(iv) J is a transversal of the partition of successive differences for some chain of FlG;

(v) J is a partial transversal of the partition of successive differences for some maximal
chain of FlG.
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Proof. We may assume that J is nonempty.
(i) ⇔ (ii). By Proposition 2.2.
(ii)⇒ (iii). Let I be a witness for J in Ac. Permuting rows and columns if necessary, we

may assume that Ac[I, J ] is of the form (3). Write k = |J | and let i1, . . . , ik and j1, . . . , jk
indicate the new ordering of rows and columns in the reordered matrix. Then the reordered
A[I, J ] is of the form 

0 1 1 . . . 1
? 0 1 . . . 1
? ? 0 . . . 1
...

...
...

. . .
...

? ? ? . . . 0

 (4)

and so
St(jr, . . . , jk) ∩ I = {i1, . . . , ir−1}

for r = 1, . . . , k. Since jk /∈ Stjk, we get

V = St(∅) ⊃ Stjk ⊃ St(jk−1, jk) ⊃ . . . ⊃ St(j1, . . . , jk) (5)

and so ht ŜJ ≥ k. Hence ht ŜJ = k by (1).
(iii) ⇒ (ii). In view of (1), it is easy to see that we must have necessarily a chain of

the form (5), where J = {j1, . . . , jk} and the jr are all distinct. For r = 1, . . . , k − 1, take
ir ∈ St(jr+1, . . . , jk)\St(jr), and also ik = jk. With the rows (respectively columns) ordered
by i1, . . . , ik (respectively j1, . . . , jk), the matrix Ac[I, J ] is now of the form (3) and so I is
a witness for J in Ac.

(ii) ⇒ (iv). Let I = {i1, . . . , ik} be a witness for J = {i1, . . . , jk} in Ac. Similarly to the
proof of (ii) ⇒ (iii), we may assume that A[I, J ] is of the form (4) and so

St(i1, . . . , ir) ∩ J = {jr+1, . . . , jk}

for r = 1, . . . , k. Hence

V = St(∅) ⊃ St(i1) ⊃ St(i1, i2) ⊃ . . . ⊃ St(i1, . . . , ik) (6)

is a chain in FlG. Since jr ∈ St(i1, . . . , ir−1) \ St(ir), then J is a transversal for (6).
(iv) ⇒ (ii). Assume that J = {i1, . . . , jk} is a transversal for a chain

St(X0) ⊃ St(X1) ⊃ . . . ⊃ St(Xk)

in FlG. We may assume that jr ∈ St(Xr−1) \ St(Xr) for r = 1, . . . , k. Then, for each
r, there exists ir ∈ Xr such that jr /∈ St(ir). However, if s < r, then jr ∈ St(Xr−1) ⊆
St(Xs) ⊆ St(is) and it follows easily that, with the rows (respectively columns) ordered by
i1, . . . , ik (respectively j1, . . . , jk), the matrix Ac[I, J ] is now of the form (3) and so I is a
witness for J in Ac.

(iv) ⇒ (v). Since a partial transversal of a maximal chain is a transversal for some
subchain of the original chain.

(v) ⇒ (iv). Since every chain can be refined to get a maximal chain. �
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To simplify terminology, we say that the vertices j1, . . . , jk ∈ n̂ are c-independent if the
column vectors Ac[n̂, j1], . . . , A

c[n̂, jk] are independent.

Remark 3.2 Let G be a finite graph and let j1, j2 ∈ n̂. Then:

(i) j1 is c-independent;

(ii) j1, j2 are c-independent if and only if St(j1) 6= St(j2).

In particular, j1, j2 are c-independent if they are adjacent.

Proof. (i) This follows from every column vector in Ac being nonzero due to the absence
of loops in G.

(ii) Since every column vector in Ac is nonzero, it follows from Theorem 3.1 that j1, j2
are c-independent if and only if Ac[n̂, j1] and Ac[n̂, j2] are distinct, i.e. St(j1) 6= St(j2). �

Theorem 3.3 Let G = (V,E) be a finite graph. Then rkAc = ht FlG.

Proof. Let k = rkAc. Then there exists some J ⊆ n̂ such that |J | = k and the column

vectors Ac[n̂, j] (j ∈ J) are independent. Hence ht ŜJ = k by Theorem 3.1. Since ht ŜJ ≤
ht ŜV by (2), it follows that rkAc ≤ ht FlG.

Assume now that ht FlG = `. Then there exists a (maximal) chain

V = St(∅) ⊃ St(V`) ⊃ . . . ⊃ St(V1) (7)

for some V1, . . . , V` ⊆ V . We claim that there exist j1, . . . , j` ∈ V such that

St(jr, . . . , j`) = St(Vr) (8)

for r = 1, . . . , `. Indeed, since St(Vr+1) ⊃ St(Vr), we can take jr ∈ Vr such that St(Vr+1) 6⊆
St(jr). Writing V`+1 = ∅, we proceed by induction on r = `, . . . , 1: assume that (8) holds
for r + 1. Hence

St(Vr+1) = St(jr+1, . . . , j`) ⊃ St(jr, . . . , j`) = St(jr) ∩ St(jr+1, . . . , j`) ⊇ St(Vr)

and so St(Vr) = St(jr, . . . , j`) by the maximality of the length of the chain (7). Thus (8)
holds.

Take J = {j1, . . . , j`}. Since ht ŜJ ≤ ht ŜV = `, it follows from (7) and (8) that

ht ŜJ = ` = |J | and so the column vectors Ac[n̂, j] (j ∈ J) are independent by Theorem 3.1.
Thus ht FlG = ` ≤ rkAc and so rkAc = ht FlG. �

We say that the above number is the c-rank of the graph G and we denote it by c-rkG.
Note that, in view of Theorem 3.1, c-rkG is also the maximum size of a (partial) transversal
of the partition of successive differences of a (maximal) chain of FlG.

We present now some straightforward properties of the c-rank of a graph. Let maxdegG
(respectively mindegG) denote the maximum (respectively minimum) degree of a vertex in
G.

Proposition 3.4 Let G be a finite graph. Then c-rkG ≤ maxdegG+ 1.

Proof. Since in a chain of the form (7), we have necessarily |St(V`)| ≤ maxdegG. �
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Proposition 3.5 Let G be a finite graph with connected components G1, . . . , Gm. Then
c-rkG = max{ c-rkG1, . . . , c-rkGm }.

Proof. Since in any chain of the form (7), the Vr and the St(Vr) must necessarily be taken
in one same connected component. �

In view of this result, we may focus our attention, from now on, on connected graphs.
We say that G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E (up to

isomorphism!). If V ′ ⊆ V and E′ = E ∩ 2V
′
, we say that G′ is a restriction of G.

Given graphs G = (V,E) and G′ = (V ′, E′), a morphism ϕ : G → G′ is a mapping
ϕ : V → V ′ such that vϕ −− wϕ is an edge of G′ whenever v −− w is an edge of G. We
say that ϕ is a retraction if G′ is a restriction of G and ϕ|V ′ is the identity mapping.

Proposition 3.6 Let G = (V,E), G′ = (V ′, E′) be finite graphs.

(i) If G′ is a restriction of G, then c-rkG′ ≤ c-rkG.

(ii) If G′ is a complete subgraph of G, then c-rkG ≥ c-rkG′ = |V ′|.

Proof. (i) If G′ is a restriction of G, then any (nonsingular) submatrix of AcG′ is also a
(nonsingular) submatrix of AcG.

(ii) A complete subgraph of G is necessarily a restriction, hence c-rkG ≥ c-rkG′ by part
(i). The equality c-rkG′ = |V ′| follows from the following fact: if Kn denotes the complete
graph on n vertices, then AcKn

is the identity matrix. �

Note that c-rkG′ ≤ c-rkG may not hold if G′ is a mere subgraph of G. For instance, it
is easy to check that the square

• •

• •

has c-rank 2, but after removing an edge the c-rank increases (cf. Proposition 4.2).
We introduce now a concept that will ease the discussion of c-rank in many circum-

stances. We call a finite graph G = (V,E) sober if the star mapping St : V → 2v is
injective. The following remark is immediate from Remark 3.2:

Remark 3.7 The following conditions are equivalent for a finite connected graph G:

(i) G is sober;

(ii) all 2-subsets of vertices of G are independent.

Proposition 3.8 Let G = (V,E) be a finite connected graph. Then G admits a retraction
onto a sober connected restriction G′ = (V ′, E′) such that FlG ∼= FlG′.

Proof. Let V ′ be a cross-section for the star mapping St : V → 2V of G and let G′ be
the restriction of G induced by V ′. It is straightforward that G′ is isomorphic to the graph
having as vertices the equivalence classes of V induced by St and edges X −− Y whenever
x −− y is an edge of G for some x ∈ X and y ∈ Y .
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For every v ∈ V , let v′ ∈ V ′ be the unique vertex in V ′ such that St(v′) = St(v). We
claim that, for all v, w ∈ V ,

{v, w} ∈ E ⇔ {v′, w′} ∈ E′. (9)

Indeed, if v −− w is an edge in G, then so is v −− w′ and therefore v′ −− w′.
Conversely, assume that {v′, w′} ∈ E′ ⊆ E. Then we successively get {v, w′} ∈ E and

{v, w} ∈ E, hence (9) holds. Thus ϕ : V → V ′ defined by vϕ = v′ is a graph morphism
from G to the restriction G′, indeed a retraction.

Moreover, any path v1 −− . . . −− vn in G induces a path v′1 −− . . . −− v′n in G′ and so
G′ is connected.

Let St′ : V ′ → 2V
′

denote the star mapping of G. Suppose that v, w ∈ V are such that
St′(v′) = St′(w′). It follows from (9) that

St(v) = {z ∈ V | z′ ∈ St′(v′)} = {z ∈ V | z′ ∈ St′(w′)} = St(w),

hence v′ = w′ and so G′ is sober.
We claim that

θ : (FlG,⊆)→ (FlG′,⊆)
St(W ) 7→ St′(W ′)

is an isomorphism of posets (and therefore of lattices).
It is immediate that θ is surjective and preserves order. It remains to show that θ is

well defined and injective.
For every W ⊆ V , it follows from (9) that

St(W ) = ∩w∈WSt(w) = ∩w∈W {x ∈ V | x′ ∈ St′(w′)} = {x ∈ V | x′ ∈ St′(W ′)},

St′(W ′) = {x ∈ V | x′ ∈ ∩w∈WSt′(w′)}′ = {x ∈ V | x ∈ ∩w∈WSt(w)}′ = (St(W ))′.

Therefore St(W ) = St(Z) ⇔ St′(W ′) = St′(Z ′) holds for all W,Z ⊆ V and so θ is an
isomorphism. �

However, the restriction in Proposition 3.8 does not need to be unique (up to isomor-
phism). For instance, the graph

1 2

3 4

5 6

is itself sober and connected (and has mindeg 2), and so it is the restriction obtained by
removing vertex 1. It is easy to check that the star lattices of both graphs are isomorphic
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and of the form:
•

�� �� ��
•

�� ��

•

�� ��

•

�� ��
•

�� ''

•

��

•

��

•

�� ��
•

��

•

��

•

��
•

It is easy to characterize sober trees. Recall that a vertex of degree 1 is called a leaf.

Proposition 3.9 A tree T = (V,E) is sober if and only if no two leafs are at distance 2
from each other.

Proof. Indeed, assume that v, w ∈ V are distinct. If St(v) = St(w) and has more than one
element, then T would admit a square and would not be a tree, hence St(v) = St(w) can
only occur if both v and w are leafs, in which case St(v) = St(w) is equivalent to d(v, w) = 2.
�

We establish next an inductive relation that may prove useful in the computation of
the c-rank. Given a graph G = (V,E), and J ⊆ V , write c-rkGJ = rkAc[V, J ]. Note that
c-rkG = c-rkGV .

We recall also that, for X ⊆ V , the graph G − X is obtained from G by removing all
the vertices in X and all the edges adjacent to them.

Theorem 3.10 Let G = (V,E) be a finite graph and m ≥ 2. Then the following conditions
are equivalent:

(i) c-rkG ≥ m.

(ii) There exist v, w ∈ V such that:

– St(v) 6= St(w);

– c-rkG−{v,w}(St(v)∩ St(w)) ≥ m− 2.

Proof. (i) ⇒ (ii). If c-rkG ≥ m, then by Proposition 2.2 there exist I, J ⊆ V such that
Ac[I, J ] is nonsingular and |J | = m. In view of Proposition 2.1, we may reorder the rows
(respectively columns) of Ac[I, J ] by i1, . . . , im (respectively j1, . . . , jm) to get a matrix
of the form (3). Since j2 ∈ St(i1) \ St(i2), we have St(i1) 6= St(i2). On the other hand,
i1, i2 /∈ {i3, . . . , im}∪{j3, . . . , jm} since i1, i2 ∈ St(j3, . . . , jm), hence {i3, . . . , im} is a witness
for {j3, . . . , jm} in G \ {i1, i2}. Therefore j3, . . . , jm ∈ St(i1) ∩ St(i2) are c-independent in
G \ {i1, i2} and so condition (ii) holds.

(ii) ⇒ (i). Since c-rkG−{v,w}(St(v) ∩ St(w)) ≥ m − 2, there exist distinct j3, . . . , jm ∈
St(v) ∩ St(w) and i3, . . . , im ∈ V \ {v, w} such that Ac[i3, . . . , im; j3, . . . , jm] is nonsingular.
Reordering rows and columns if necessary, we may assume that Ac[i3, . . . , im; j3, . . . , jm] is of
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the form (3). Since St(v) 6= St(w), we may assume that there exists some j2 ∈ St(v)\St(w)
and take i1 = j1 = v and i2 = w. It is straightforward to check that Ac[i1, . . . , im; j1, . . . , jm]
is of the form (3), hence condition (i) holds for J = {j1, . . . , jm}. �

4 Low c-rank

We start analyzing the sober cases and go as far as characterizing c-rank 4. In view of
Propositions 3.5 and 3.8, in the discussion of c-rank ≥ 3 we pay special attention to the
case of sober connected graphs.

Proposition 4.1 Let G = (V,E) be a finite graph. Then:

(i) c-rkG = 0 if and only if V = ∅.

(ii) c-rkG = 1 if and only if V 6= ∅ and E = ∅.

Proof. Clearly, c-rkG ≥ 0 under all circumstances and the empty graph has c-rank 0. On
the other hand, if V 6= ∅, then Ac has at least one 1 in the diagonal, yielding c-rkG ≥ 1.
This proves (i). Moreover, if E 6= ∅, it follows from Remark 3.2(ii) that c-rkG ≥ 2, thus
(ii) holds as well. �

We recall that a graph G = (V,E) is called bipartite if V admits a nontrivial partition
V = V1 ∪ V2 such that

E ⊆ {{v1, v2} | v1 ∈ V1, v2 ∈ V2}.

If this inclusion can be made to be an equality, the graph is said to be complete bipartite.

Proposition 4.2 Let G = (V,E) be a finite graph with E 6= ∅. Then the following condi-
tions are equivalent:

(i) c-rkG = 2;

(ii) G has no subgraph v1 −− v2 −− v3 with St(v1) 6= St(v3);

(iii) G is a disjoint union of complete bipartite graphs;

(iv) G has no restrictions of the following forms:

• • • • • •

•

Proof. (i) ⇒ (ii). Suppose that G has a subgraph v1 −− v2 −− v3 with St(v1) 6= St(v3).
We may assume that there exists some w ∈ St(v1) \ St(v3). Consider the chain

V = St(∅) ⊃ St(v1) ⊃ St(v1, v3) ⊃ St(v1, v2, v3)

(taking respectively v1, w, v2 to show that the inclusions are strict). Thus c-rkG ≥ 3.
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(ii) ⇒ (iii). Since (ii) holds, any path

v1 −− v2 −− . . . −− vk

must satisfy St(v1) = St(v3) = . . . and St(v2) = St(v4) = . . . Since we may also assume G
to be connected, it follows that we can take a pair of adjacent edges (w1, w2) and partition
V = V1 ∪ V2 by

V1 = {v ∈ V | St(v) = St(w1)}, V2 = {v ∈ V | St(v) = St(w2)}.

Since w2 ∈ St(w1), we have w2 ∈ St(v) for every v ∈ V1. Hence V1 ⊆ St(w2) and
so V1 ⊆ St(v) for every v ∈ V2. On the other hand, if v, v′ ∈ V1 are adjacent, then
v ∈ St(v′) = St(v), a contradiction. Similarly, no two vertices in V2 can be adjacent. Thus
G is complete bipartite.

(iii) ⇒ (iv). It is well-known that no bipartite graph admits cycles of odd length.
Suppose that G = (V,E) is bipartite complete (with respect to the partition V = V1 ∪ V2)
and has a restriction of the form

v1 −− v2 −− v3 −− v4. (10)

Then {v1, v3} and {v2, v4} belong to the different sides of the partition and so there exists
an edge v1 −− v4 in G, contradicting (10) being a restriction. Therefore G can have no
restriction of the form (10) either.

(iv) ⇒ (i). Suppose that c-rkG ≥ 3. After reordering, Ac has a submatrix of the form

i1 1 0 0
i2 ? 1 0
i3 ? ? 1

j1 j2 j3

and so A has a submatrix of the form

i1 0 1 1
i2 ? 0 1
i3 ? ? 0

j1 j2 j3

Then j2 −− i1 −− j3 is a subgraph with 3 distinct vertices. We may assume that the
triangle K3 is not a restriction of G. Since i2 −− j3 is an edge, it follows that i2 6= j2.
Hence

j2 −− i1 −− j3 −− i2 (11)

is a subgraph of G with 4 distinct vertices. Since there is no edge i2 −− j2 and K3 is not a
restriction of G, then (11) is a restriction of G and so (iv) fails as required. �

Proposition 4.3 Let G be a finite graph. Then the following conditions are equivalent:

(i) c-rkG ≥ 4;
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(ii) G has a subgraph
v1 v2

v4 v3

with St(v1) 6= St(v3) and St(v2) 6= St(v4).

Proof. Write G = (V,E).
(i) ⇒ (ii). Suppose that c-rkG ≥ 4. After reordering, A has a submatrix of the form

i1 0 1 1 1
i2 ? 0 1 1
i3 ? ? 0 1
i4 ? ? ? 0

j1 j2 j3 j4

Then we have edges
i1 j3

j4 i2

in G. Since i3 ∈ St(j4)\St(j3) and j2 ∈ St(i1)\St(i2), the vertices i1, i2, j3, j4 are all distinct
and (ii) holds.

(ii) ⇒ (i). If (ii) holds, then we may assume out of symmetry that there exist some
w ∈ St(v1) \ St(v3) and z ∈ St(v2) \ St(v4). Consider the chain

V ⊃ St(v1) ⊃ St(v1, v3) ⊃ St(v1, v3, z) ⊃ ∅

(taking respectively v1, w, v4, v2 to show that the inclusions are strict). Thus c-rkG ≥ 4. �

Now Propositions 4.2 and 4.3 combined provide a characterization of c-rank 3.

Proposition 4.4 Let G be a finite graph. Then the following conditions are equivalent:

(i) c-rkG ≥ 5;

(ii) G has a subgraph
v1

v2 v3 v4

v5

with St(v1) 6= St(v5), St(v2) 6= St(v3) and St(v2) ∩ St(v3) 6⊆ St(v4).
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Proof. Write G = (V,E).
(i) ⇒ (ii). Suppose that c-rkG ≥ 5. After reordering, A has a submatrix of the form

i1 0 1 1 1 1
i2 ? 0 1 1 1
i3 ? ? 0 1 1
i4 ? ? ? 0 1
i5 ? ? ? ? 0

j1 j2 j3 j4 j5

Then
i1

j3 j4 j5

i2

is a subgraph of G with 5 distinct vertices. Now j2 ∈ St(i1) \ St(i2), i4 ∈ St(j5) \ St(j4) and
i3 ∈ (St(j4) ∩ St(j5)) \ St(j3) and so (ii) holds.

(ii) ⇒ (i). If (ii) holds, then we may assume out of symmetry that there exist some
w1 ∈ St(v1) \ St(v5), w2 ∈ St(v2) \ St(v3) and w3 ∈ (St(v2) ∩ St(v3)) \ St(v4). Consider the
chain

V ⊃ St(v1) ⊃ St(v1, v5) ⊃ St(v1, v5, w3) ⊃ St(v1, v5, w3, w2) ⊃ ∅

(taking respectively v1, w1, v4, v3, v2 to show that the inclusions are strict). Thus c-rkG ≥ 5.
�

Now Propositions 4.3 and 4.4 combined provide a characterization of c-rank 4.
We can now use the previous results to give a complete characterization of sober con-

nected graphs with low c-rank (in view of (iv), see [4]):

Corollary 4.5 Let G = (V,E) be a finite sober connected graph. Then:

(i) c-rkG = 0 if and only if G is the empty graph;

(ii) c-rkG = 1 if and only if G ∼= K1;

(iii) c-rkG = 2 if and only if G ∼= K2;

(iv) c-rkG = 3 if and only if |E| ≥ 2 and G has no squares;

(v) c-rkG = 4 if and only if G has a square but no subgraph

v1

v2 v3 v4

v5
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with St(v2) ∩ St(v3) 6⊆ St(v4).

(vi) c-rkG ≥ 5 if and only if G has a subgraph of the above form.

Proof. (i) and (ii) follow immediately from Proposition 4.1. Since Since sober connected
nontrivial complete bipartite graphs can have only one edge, (iii) follows from Proposition
4.2.

Now part (iii) implies that c-rkG ≥ 3 if and only if |E| ≥ 2, and so (iv) follows from
Proposition 4.3.

Finally, Propositions 4.3 and 4.4 yield (v) and (vi). �

5 The c-independent subsets in c-rank 3

We shall denote by SCn the class of all finite sober connected graphs of c-rank n. Through-
out this section, all graphs are in SC3. In view of Corollary 4.5(iv), these graphs have no
squares (for such graphs with few vertices, see [4]).

The following lemma collects some elementary facts involving this class of graphs. We
recall that a graph is called cubic if all vertices have degree 3.

Lemma 5.1 Let G be a finite connected graph.

(i) If G is cubic and gthG ≥ 5, then G ∈ SC 3.

(ii) If G = (V,E) ∈ SC 3, then |St(v) ∩ St(w)| ≤ 1 holds for all distinct vertices v, w of
G.

Proof. (i) If G is non sober, then G would contain a square, contradicting gthG ≥ 5.
Hence G is sober. The claim now follows from Corollary 4.5.

(ii) Suppose that |St(v, w)| > 1 for distinct vertices v, w of G = (V,E). Since G is sober,
we may assume that St(v, w) ⊂ St(v). Let a, b ∈ St(v, w) be distinct. Since G is sober, we
may assume that there exists some c ∈ St(b) \ St(a). Hence

St(v) ⊃ St(v, w) ⊃ St(v, w, c) ⊃ St(v, w, c, a)

is a chain in FlG, contradicting c-rkG = 3. �

By c-rank, the c-independent subsets of a graph G = (V,E) in SC3 can have at most
3 elements. However, as it will become clear soon enough, the c-independent subsets of V
do not constitute a matroid. Our first result associates a matroid to G: we define MatG to
contain:

• all the i-subsets of V for i ≤ 2;

• all the 3-subsets W of V such that

∀v ∈ V W 6⊆ St(v).

Note that the latter condition is equivalent to St(W ) = ∅.
Proposition 5.2 Let G ∈ SC 3. Then MatG is a matroid.
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Proof. Let I, J ∈ MatG. Without loss of generality, we may assume that |I| = 3 and
|J | = 2. Write I = {i1, i2, i3} and J = {j1, j2}. Suppose that {j1, j2, ik} /∈ MatG for
k = 1, 2, 3. Then there exists some vk ∈ St(j1, j2, ik) ⊆ St(j1, j2). By Lemma 5.1(ii), we get
v1 = v2 = v3 and so I ⊆ St(v1), contradicting I ∈ MatG. Therefore {j1, j2, ik} ∈ MatG for
some k ∈ 3̂ and so MatG is a matroid. �

We identify next the c-independent subsets of vertices for graphs in SC3. We say that
a 3-subset P ⊆ V is a potential line if |P ∩ St(v)| ≤ 1 for every v ∈ V .

Theorem 5.3 Let G = (V,E) be a graph in SC 3 and let W ⊆ V . Then the following
conditions are equivalent:

(i) W is c-independent;

(ii) |W | ≤ 2 or
|W | = 3, St(W ) = ∅ and W is not a potential line.

Proof. Since G is sober, and by Remark 3.2, W is c-independent if |W | ≤ 2. On the other
hand, since c-rkG = 3, then V has no c-independent 4-subsets. Therefore we may assume
that |W | = 3. Write W = {w1, w2, w3}.

Assume that W is independent. By Theorem 3.1, we may assume that

V ⊃ St(w1) ⊃ St(w1, w2) ⊃ St(w1, w2, w3) (12)

is a chain in FlG. Since St(w1, w2, w3) 6= ∅ would allow us to adjoin the empty set to the
chain and contradict c-rank 3, then St(W ) = ∅. On the other hand, for v ∈ St(w1, w2), we
get |W ∩ St(v)| ≥ 2 and so W is not a potential line either.

Conversely, assume that St(W ) = ∅ and W is not a potential line. Then |W ∩St(v)| ≥ 2
for some in v ∈ V . We may assume that w1, w2 ∈ St(v). Furthermore, since G is sober, we
may also assume that St(w1) ⊃ St(w1, w2). (12) is a chain in FlG and so W is independent
by Theorem 3.1. �

Now Proposition 5.2 and Theorem 5.3 yield:

Corollary 5.4 Let G = (V,E) be a graph in SC 3. If G has no potential lines, then the set
of all c-independent subsets of V constitutes a matroid.

In view of this result, it is only natural to enquire which graphs in the above class have
no potential lines. It turns out that diameter makes the difference:

Proposition 5.5 Let G be a graph in SC 3.

(i) If diamG < 3, then G has no potential lines.

(ii) If diamG > 5, then G has potential lines.

(iii) If diamG ∈ {3, 4, 5}, then both cases may occur.

Proof. (i) First, we note that if P ⊆ V is a potential line and p, q ∈ P are distinct, then
d(p, q) 6= 2 (if p −− v −− q is a path in G, then |P ∩St(v)| ≥ 2), and if d(p, q) = 1, then the
edge p −− q can lie in no triangle. Hence, if diamG < 3 and P = {p1, p2, p3} is a potential
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line, then d(p1, p2) = d(p1, p3) = d(p2, p3) = 1 immediately gets us into a contradiction.
Thus (i) holds.

(ii) Assume that diamG > 5. Then G has a geodesic (path of minimum length connect-
ing the extreme vertices) of length 6, say

v0 −− v1 −− v2 −− v3 −− v4 −− v5 −− v6

Since d(v0, v3) = d(v3, v6) = 3, it follows that {v0, v3, v6} is a potential line of G.
(iii) It is enough to show that there exist in SC3 a graph G3 with diameter 3 and

potential lines, and a graph G5 with diameter 5 and no potential lines.
We can take G3 to be the cubic graph

◦ •

• • ◦

• • • •

• •

◦ •

• •

Since gthG = 5, it follows from Lemma 5.1(ii) that G ∈ SC3. Straightforward checking
shows that diamG = 3 and G has potential lines such as the one defined by the hollow
circles.

On the other hand, we can take G5 to be the graph

• • • •

• • • • • •

It follows easily from Corollary 4.5(iv) that G ∈ SC3, and it is immediate that diamG = 5.
Suppose that G has a potential line P . Then at least two points of P would have to fit into
a subgraph of the form

• •

• • •
leading at once to a contradiction. Therefore G has no potential lines as claimed. �
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Example 5.6 Let G = (V,E) be the graph

1 4

3 5 7

2 6

(see [4]). By Corollary 4.5(iv), we have G ∈ SC3. The lattice of flats of G can be depicted
as
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2
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3

}}

1

vv

7

tt∅

It is straightforward to check that G has no potential lines and MatG contains all the
i-subsets of V for i ≤ 3 except the flats 125, 136, 234 and 456. In view of Theorem 5.3,
these are precisely the c-independent subsets of V . See further remarks after Corollary 6.6
relating to the Fano plane.

If we restrict our attention to cubic graphs, the range is a bit reduced. A list of all cubic
graphs up to 12 vertices can be found in [27], where the handy LCF notation is explained
and used.

Corollary 5.7 Let G be a cubic graph in SC 3.

(i) If diam< 3, then G has no potential lines.

(ii) If diamG > 3, then G has potential lines.

(iii) If diamG = 3, then both cases may occur.

Proof. (i) By Proposition 5.5(i).
(ii) Suppose now that diamG > 3. Let a, b ∈ V be such that d(a, b) = 4, and write

St(a) = {x, y, z}. Clearly, b is at distance ≥ 3 from x, y or z. To prevent {a, b, x} from
being a potential line, a −− x must lie in some triangle. If we try to avoid other potential
lines, also a −− y and a −− z must lie in triangles. Now it is easy to see that at least two
of the vertices x, y, z must be connected through edges. Without loss of generality, we may
assume that

a

x y z
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is a subgraph of G. But then we have a square in a sober graph, contradicting c-rank 3 in
view of Corollary 4.5(iv). Thus (ii) holds.

(iii) The example G3 in the proof of Proposition 5.5(iii) is cubic, belongs to SC3, has
diameter 3 and has potential lines.

However, the Heawood graph [24] is cubic, bipartite, has diameter 3 and girth 6 (and so
is in SC3, see Proposition 7.1(iii) in next section). Suppose that P = {a, b, c} is a potential
line of the Heawood graph. Then the distance between any two distinct vertices in P cannot
be 2, and so must be 1 or 3 in view of the diameter being 3. Thus we obtain a cycle of
odd length in the graph, contradicting the fact of being bipartite. Therefore the Heawood
graph has no potential lines. �

6 The Levi graph and partial euclidean geometries

Given a finite graph G = (V,E) we can consider V as “points” and E as “lines”, where v
is on e (v ∈ e) if and only if e is incident to v, and so (V,E) gives some sort of geometry
(see [3, 5]). So the Levi viewpoint for “lines” in a graph is different from our view of taking
St(v) as lines. I this section, we benefit from this other approach and introduce right away
the concept of partial euclidean geometry.

Let P be a finite nonempty set and let L be a nonempty subset of 2P . We shall always
assume that P ∩ 2P = ∅. We say that (P,L) is a partial euclidean geometry (abbreviated
to PEG) if the following axioms are satisfied:

(G1) P ⊆ ∪L;

(G2) if L,L′ ∈ L are distinct, then |L ∩ L′| ≤ 1;

(G3) |L| ≥ 2 for every L ∈ L.

The elements of P are called points and the elements of L are called lines. Given p ∈ P , we
denote by L(p) the set of all lines containing p.

The concept of PEG is an abstract combinatorial generalization of the following geo-
metric situation:

Consider a finite set of lines L in the euclidean space Rn. Consider also a finite subset
P of ∪L ⊂ Rn such that:

• if L,L′ ∈ L are distinct, then |L ∩ L′| ≤ 1;

• if L,L′ ∈ L and L ∩ L′ = {p}, then p ∈ P ;

• |L ∩ P | ≥ 2 for every L ∈ L.

Representing each L ∈ L by L ∩ P , it follows that (L, P ) constitutes a PEG. It is well
known that not all PEG’s can be represented over an euclidean space (nor any field) (see
[9, Section 2.6]).

Using Coxeter’s notation (see [5]), we say that the PEG (P,L) is an (mc, nd) configura-
tion if:

• there are m points and n lines;
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• each point belongs to c lines;

• each line contains d points.

Hence cm = dn, which equals the number of 1’s in the (boolean) incidence matrix of (P,L),
where rows are labelled by points and columns by lines.

An important example is provided by the famous Desargues configuration. A simple way
of defining it is by taking points as 2-subsets of 5̂ and lines as 3-subsets of 5̂ (identifying
{a, b, c} with {{a, b}, {a, c}, {b, c}}). For a geometric representation, see e.g. [22]. It is
clear that the Desargues configuration is a (103, 103) configuration. It has many interesting
properties, such as being self-dual (by exchanging points and lines, we get an isomorphic
configuration), and the automorphism group acts transitively on both vertices and edges.
And it is of course related to the famous Desargues’ Theorem [22]. Notice that, for every
point p, there are exactly 3 points noncolinear with p (i.e., not belonging to some line
simultaneously with p), and that these 3 points constitute a line!

Now, for every G = (V,E) ∈ SC3, let

LG = {W ∈ FlG \ {V } : |W | ≥ 2}

and let GeoG = (V,LG).

Proposition 6.1 If G ∈ SC3, then GeoG is a PEG.

Proof. Let v ∈ V . Since c-rkG = 3, then St(v) 6= ∅. If all the elements of St(v) have degree
1, then G sober implies that v has also degree 1 and so G ∼= K2, contradicting Corollary
4.5(iv). Hence there exists some w ∈ St(v) with degree ≥ 2 and so v ∈ St(w) ∈ LG. Thus
GeoG satisfies axiom (G1) (and also LG 6= ∅).

Finally, (G2) follows from Lemma 5.1(ii) and (G3) holds trivially. Therefore GeoG is a
PEG. �

Note that MatG consists of all subsets of V with at most 2 elements plus all 3-subsets
which are contained in no line of GeoG.

Corollary 6.2 If G ∈ SC3 is cubic with n vertices, then GeoG is an (n3, n3) configuration.

Proof. Indeed, in this case the lines are of the form St(v), for any v ∈ V . �

Example 6.3 If G is the Petersen graph, then GeoG is the Desargues configuration.

Indeed, let G = (V,E) denote the Petersen graph, where the vertices are described as the
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2-subsets (written in the form ij) of 5̂ and ij −− kl is an edge if and only if {i, j}∩{k, l} = ∅:

45

23 12 13

14 25

34 35

15 24

Since the graph has girth 5, it follows easily that GeoG = (V,L) for L = {St(v) | v ∈ V },
which coincides precisely with our previous description of the Desargues configuration.

We say that a PEG G = (P,L) is connected if there is no nontrivial partition L = L1∪L2
such that (∪L1) ∩ (∪L2) = ∅. Note that this is equivalent to the usual geometric concept
of connectedness if our PEG has an euclidean geometric realization through real lines and
real points.

Proposition 6.4 Let G be a graph in SC3 with mindegG ≥ 2. Then the following condi-
tions are equivalent:

(i) GeoG is connected;

(ii) G is not bipartite.

Proof. By definition, GeoG is disconnected if and only if there exists a nontrivial partition
LG = L1 ∪ L2 such that (∪L1) ∩ (∪L2) = ∅. In view of Proposition 6.1 and (G1), this
supposes a nontrivial partition V = V1 ∪ V2 with ∪L1 = V1 and ∪L2 = V2.

If G is bipartite with respect to a partition V = V1 ∪ V2, then we take

L1 = {St(v) | v ∈ V2}, L2 = {St(v) | v ∈ V1}.

Since mindegG ≥ 2, and by Proposition 6.1, this shows that GeoG is disconnected.
Conversely, assume that GeoG is disconnected. Hence there exists a nontrivial partition

V = V1 ∪ V2 with ∪L1 = V1 and ∪L2 = V2. Suppose that St(v) ⊆ V1 for some v ∈ V1.
Since G is connected, it follows easily from an induction argument that St(w) ⊆ V1 for any
w ∈ V1, contradicting V2 6= ∅. Hence St(v) ⊆ V2 for every v ∈ V1. By symmetry, we also
have St(v) ⊆ V1 for every v ∈ V2. Therefore G is bipartite. �

As we mentioned in the beginning of the section, we can view graphs as a particular
case of PEG’s, when we assume lines to have exactly two points. Note that the concept
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of connectedness for PEG’s coincides with the usual concept of connectedness for graphs
when we view graphs as PEG’s.

Given a PEG G = (P,L), we define the Levi graph of G [5] by LeviG = (P ∪L, E), where
E consists of the edges of the form p −− L, for all L ∈ L and p ∈ L.

Viewing K3 as a PEG, we have

1 {1, 2} {1, 3} {2, 3}

2 3 1 2 3

K3 LeviK3

If G is a graph, its Levi graph is in fact a subdivision of G. A simple way of picturing
it is by introducing a new vertex at the midpoint of every edge (breaking thus the original
edge into two). Obviously, the new vertices represent the edges where they originated.

Among configurations, famous examples include the Desargues graph [21] as the Levi
graph of the Desargues configuration and the Heawood graph [24] as the Levi graph of the
Fano plane [23].

The following results collects some elementary properties of the Levi graph of a PEG
(configuration) (see [3, 5]). Proofs are immediate.

Proposition 6.5 Let G = (P,L) be a PEG. Then:

(i) LeviG is bipartite with respect to the partition P ∪ L;

(ii) the degree of p ∈ P in LeviG is the number of lines containing p;

(iii) the degree of L ∈ L in LeviG is |L|;

(iv) LeviG has |P |+ |L| vertices and

∑
p∈P |L(p)| +

∑
L∈L |L|

2
edges.

We define mindegG to be mindeg LeviG.

Corollary 6.6 Let G = (P,L) be an (mc, nd) configuration. Then LeviG has m+n vertices
and cm = dn edges.

In particular, the Levi graph of the Desargues configuration, which is a (103, 103) con-
figuration, has 20 vertices and 30 edges.

Going back to the graph in Example 5.6, it is easy to check that GeoG has V = 7̂ as
set of points and lines St(v) for v ∈ V . The following picture shows that GeoG is somehow
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part of the Fano plane [23]:

1

7

3 2 4

5

6

Moreover, Levi GeoG can be obtained as follows: we make the Hasse diagram of FlG into
a graph (the Hasse graph of FlG) by taking as vertices all flats, and letting x → y be
an edge whenever x covers y in FlG or vice-versa; removing the vertices V and ∅, we get
the restricted Hasse graph of FlG, which is then isomorphic to Levi GeoG. This is just a
particular case of Proposition 6.12.

We discuss next girth and connectedness.

Proposition 6.7 Let G = (P,L) be a PEG. Then

(i) gth LeviG ≥ 6 and is not odd;

(ii) LeviG is connected if and only if G is connected.

Proof. (i) Since LeviG is bipartite by Proposition 6.5(i), it has no cycles of odd length.
Therefore it is enough to exclude existence of squares in LeviG. Suppose that

p L

L′ p′

is a square in LeviG. Then |L ∩ L′| ≥ 2, contradicting (G2). Therefore gth LeviG ≥ 6.
(ii) Suppose that G is not connected. Then there is a nontrivial partition L = L1 ∪ L2

such that (∪L1) ∩ (∪L2) = ∅. Suppose that L −− p −− L′ is a path in LeviG. Since
p ∈ L ∩ L′ and (∪L1) ∩ (∪L2) = ∅, then L and L′ must belong to the same side of the
partition. Hence the connected component of a line in LeviG does not contain the lines in
the other side of the partition, and so LeviG is not connected.

Conversely, suppose that LeviG is not connected. Let L1 be the set of all lines in a
fixed connected component of LeviG and let L2 = L\L1. Suppose that p ∈ (∪L1)∩ (∪L2).
Then there exist L1 ∈ L1 and L2 ∈ L2 such that p ∈ L1 ∩ L2. Hence we have a path
L1 −− p −− L2 in LeviG and so L1 and L2 belong to the same connected component, a
contradiction. Thus (∪L1) ∩ (∪L2) = ∅ and so G is not connected. �
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Note that, if G is a graph, the cycles of LeviG are of the form

v0 −− {v0, v1} −− v1 −− {v1, v2} −− . . . −− {vn, v0} −− v0,

whenever
v0 −− v1 −− . . . −− vn −− v0

is a cycle in G. Thus
gth LeviG = 2gthG.

Proposition 6.8 The following conditions are equivalent for a PEG G = (P,L):

(i) LeviG is sober;

(ii) the mapping P → 2L : p 7→ L(p) is one-to-one;

(iii) for all distinct points p, p′ ∈ P , there exists some line L ∈ L containing just one of
them.

Proof. We start by computing the stars of LeviG. For p ∈ P and L ∈ L, we have St(p) =
L(p) and St(L) = L (recall that L is a set of points!). By axioms (G1) and (G3), we have
repectively St(p) 6= ∅ and St(L) 6= ∅. Since P ∩ L = ∅, we must have always St(p) 6= St(L).
On the other hand, the restriction St|L is always one-to-one, hence LeviG is sober if and
only if St|P is one-to-one, which is equivalent to (ii). The equivalence of (ii) and (iii) is
trivial. �

If G is a graph, the above conditions are equivalent to saying that no union of connected
components of G has exactly two vertices.

We call a PEG satisfying the conditions of Proposition 6.8 sober. In view of axiom (G2),
we immediately obtain:

Corollary 6.9 If G is a PEG and mindegG ≥ 2, then G is sober. In particular, if G is an
(mc, nd) configuration with c ≥ 2, then G is sober.

This provides us with infinitely many examples of graphs in SC3 with girth ≥ 6:

Corollary 6.10 Let G be a PEG.

(i) If G is sober and connected, then LeviG ∈ SC3.

(ii) If mindegG ≥ 2, then mindeg LeviG ≥ 2.

Proof. (i) Since G is sober, so is LeviG. By Proposition 6.7, LeviG is connected and has
girth ≥ 6. Thus LeviG has c-rank 3 by Corollary 4.5(iv).

(ii) By Proposition 6.5, in view of mindegG ≥ 2 and (G3). �

Note that, given a non bipartite cubic graph C in SC3 with n vertices (so n ≥ 10), it
follows from Proposition 6.4 and Corollaries 6.2 and 6.9 that GeoC is a sober connected
(n3, n3) configuration. Hence, by Proposition 6.5 and Corollary 6.10, Levi GeoC is now a
bipartite cubic graph in SC3, so one can generate cubics this way. This does not iterate
because Geo Levi GeoC does not stay connected.
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Given a graph G = (V,E), we say that the vertex v ∈ V is closed if {v} = St(W ) for some
W ⊆ V , i.e. {v} ∈ FlG. Note that this is also equivalent to the equality {v} = St(St(v)),
since St(v) is clearly the greatest subset W of V such that v ∈ St(W ). We say that G is
closed if all its vertices are closed.

By taking G to be the graph 1 −− 2 −− 3 −− 4, and omitting brackets/commas in the
representation of the flats, we can see that FlG = {1234, 13, 24, 2, 3, ∅} and so 2 and 3 are
closed while 1 and 4 are not.

We can now prove the following (see [4] in view of (ii)):

Lemma 6.11 Let G = (V,E) be a finite graph satisfying one of the following two condi-
tions:

(i) G is sober and cubic;

(ii) mindegG ≥ 2 and G has no squares.

Then G is closed.

Proof. Let v ∈ V . Clearly, v ∈ St(St(v)). Suppose that v 6= w ∈ St(St(v)). Then
St(v) ⊆ St(w).

If G is cubic, this implies St(v) = St(w) and G would not be sober. Therefore (i) implies
{v} = St(St(v)).

On the other hand, if (ii) holds, then by taking distinct a, b ∈ St(v) we would get a
square

v a

b w

a contradiction. Therefore we also get {v} = St(St(v)) in this case. �

We can now prove the following result:

Proposition 6.12 Let G ∈ SC3 have mindegG ≥ 2. Then Levi GeoG is isomorphic to
the restricted Hasse graph of FlG.

Proof. Write G = (V,E). By Proposition 6.1, we have GeoG = (V, {St(v) | v ∈ V }) and
so the vertex set of Levi GeoG is V ∪ {St(v) | v ∈ V }. On the other hand, by Lemmas
5.1(ii) and 6.11(ii), the restricted Hasse graph G′ of FlG has

{{v} | v ∈ V } ∪ {St(v) | v ∈ V }

as vertex set, yielding an obvious bijection to the vertex set of Levi GeoG.
Now the edges of Levi GeoG are of the form w −− St(v) whenever w ∈ St(v) (v ∈ V ),

and this is equivalent to say that St(v) covers {w} in FlG. Therefore the two graphs are
isomorphic. �

We proceed now to analyse the lattice of flats of the Levi graph of a connected PEG
with mindeg ≥ 2.

Theorem 6.13 Let G = (P,L) be a PEG and let LeviG = (P ∪ L, E). If G is connected
and mindegG ≥ 2, then:
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(i) LeviG is closed;

(ii) Flats LeviG = {P ∪ L, ∅} ∪ {{x} | x ∈ P ∪ L} ∪ {L | L ∈ L} ∪ {Lp | p ∈ P};

(iii) Flats LeviG satisfies the Jordan-Dedekind condition.

Proof. (i) By Lemma 6.11 and Proposition 6.7(i).
(ii) Given p ∈ P and L ∈ L, we have St(p) = L(p) and St(L) = L. Moreover, St(p, L) =

∅. Now, given p′ ∈ P \ {p}, we have St(p, p′) = {L} if p, p′ ∈ L ∈ L (note that L is
then unique by (G3)), otherwise empty. Finally, if L′ ∈ L \ {L}, we have in view of (G2)
St(L,L′) = {p} if L ∩ L′ = {p}, otherwise empty. Note that we get all {L} by (G3) and
(G2), and we get all {p} by (G1) and (G2). This proves (ii).

(iii) Since mindegG ≥ 2, it follows easily from parts (i) and (ii) that the maximal chains
of Fl LeviG are all of the form

∅ ⊂ {p} ⊂ L ⊂ P ∪ L

or
∅ ⊂ {L} ⊂ L(p) ⊂ P ∪ L

for some p ∈ L ∈ L. Therefore all maximal chains have length 3. �

We can now compute the c-independent subsets of LeviG for this same class of PEG’s:

Corollary 6.14 Let G = (P,L) be a PEG and let LeviG = (P ∪ L, E). If G is sober
connected and mindegG ≥ 2, then W ⊆ P ∪ L is c-independent if and only if it satisfies
one of the following conditions:

(i) |W | ≤ 2;

(ii) |W | = 3 and |W ∩ L| = 2 for some L ∈ L;

(iii) |W | = 3 and |W ∩ L(p)| = 2 for some p ∈ P .

Proof. By Theorems 5.3 and 6.13, W is c-independent if and only if |W | ≤ 2 or

|W | = 3, St(W ) = ∅ and W is not a potential line. (13)

Thus we only need to show that the join of conditions (ii) and (iii) is equivalent to (13).
Assume |W | = 3. It is easy to see that St(W ) 6= ∅ can only occur if W ⊆ L for some

L ∈ L or W ⊆ L(p) for some p ∈ P . On the other hand, if W is not a potential line, then
|W ∩ St(x)| ≥ 2 for some x ∈ P ∪L, that is, either |W ∩L| ≥ 2 or |W ∩L(p)| ≥ 2 for some
p ∈ P , L ∈ L. Since |W | = 3, the result follows. �

Going back to the K3 example at the beginning of this section, it is now easy to check
that every 3-subset W of V ∪ E is c-independent in LeviK3

∼= C6. Indeed, since |Ev| = 2
for every v ∈ V , we only need to show that there exist necessarily some w1, w2 ∈ W at
distance 2 (in LeviK3). This is certainly true for C6, hence the c-independent subsets of
vertices of LeviK3 (and therefore of C6!) are all the subsets with at most 3 vertices.

Another example is given by the Fano plane [23]. We have remarked before that the
Heawood graph H is isomorphic to the Levi graph of the Fano plane and has no potential
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lines. It follows from Theorem 5.3 that the c-independent subsets of H = (V,E) are all
subsets with at most 3 vertices except the flats St(v) (v ∈ V ). The reader can now check
that these 463 subsets correspond to the ones given by Corollary 6.14.

Given a PEG G = (P,L), and since L ⊆ 2P , we can consider the lattice L̂ defined in
Subsection 2.2. We denote it by LatG.

Lemma 6.15 Given PEG’s G and G′ with mindeg ≥ 2, the following conditions are equiv-
alent:

(i) G ∼= G′;

(ii) LatG ∼= LatG′.

Proof. It is immediate that the structure of G determines the structure of LatG, up to
isomorphism. Conversely, we can recover the structure of G from LatG:

Indeed, in view of (G2) and mindegG ≥ 2, we have

LatG = {P, ∅} ∪ L ∪ P (14)

and so we can identify the points in P with the atoms of LatG and the lines in L with the
maximal elements of LatG \ {P}. Moreover p ∈ L if and only if the corresponding atom of
LatG is below the element representing in L, hence LatG determines the structure of G up
to isomorphism and the lemma follows. �

If mindegG ≥ 2, we can also introduce the dual PEG Gd (see [5]):

Lemma 6.16 Let G = (P,L) be a PEG with mindegG ≥ 2. Then Gd = (L, {L(p) | p ∈ P})
is also a PEG with mindegGd ≥ 2. Moreover, LeviG ∼= LeviGd.

Proof. We have L ⊆ ∪p∈PL(p) since G satisfies (G3). Hence Gd satisfies (G1). Given
distinct p, p′ ∈ P , we have |L(p) ∩ L(p′)| ≤ 1 since G satisfies (G2). Hence also Gd satisfies
(G2). Since mindegG ≥ 2 implies that |L(p)| ≥ 2 for every p ∈ P , then Gd satisfies (G3)
and is thus a PEG.

Next, since G satisfies (G3), every L ∈ L belongs at least to two L(p) and so mindegGd ≥
2.

Finally, let θ : P ∪L → L∪{L(p) | p ∈ P} be the bijection defined by pθ = L(p) (p ∈ P )
and Lθ = L (L ∈ L). It is immediate that θ preserves the edges, thus LeviG ∼= LeviGd. �

Let (X1,≤1) and (X2,≤2) be lattices. We denote the maximum (respectively the min-
imum) of both lattices by 1 (respectively 0) and assume the remaining elements to be
disjoint. The coproduct of (X1,≤1) and (X2,≤2), denoted by (X1,≤1) t (X2,≤2), has el-
ements X1 ∪ X2 (identifying the two 0’s and the two 1’s) and partial order ≤1 ∪ ≤2. In
particular, x1 ∧ x2 = 0, x1 ∨ x2 = 1 for all x1 ∈ X1 and x2 ∈ X2.

Theorem 6.17 Let G be a PEG with mindegG ≥ 2. Then Fl LeviG ∼= LatG t LatGd.
Moreover, this is the unique coproduct decomposition of Fl LeviG.

Proof. Write G = (P,L). The isomorphism Fl LeviG ∼= LatG t LatGd follows easily from
Theorem 6.13 and (14).

Suppose now that ϕ : Fl LeviG → X1 tX2 is a lattice isomorphism for some nontrivial
lattices X1, X2. Let Yi denote the atoms of Fl LeviG belonging to Xiϕ

−1 (i = 1, 2). Suppose
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that {p} ∈ Y1 with p ∈ P . If p −− L −− p′ is a path in LeviG, then it follows from (G2)
that {p}∨{p′} = L < P ∪L and so {p′} ∈ Y1. Since G is connected, it follows that {q} ∈ Y1
for every q ∈ P . Since X2 is nontrivial, then {L} ∈ Y2 for some L ∈ L. If L −− q −− L′ is a
path in LeviG, then it follows from (G2) that {L}∨ {L′} ⊆ L(q) < P ∪L and so {L′} ∈ Y2.
Since G is connected, it follows that {M} ∈ Y2 for every M ∈ L. Since the atoms determine
the coproduct decomposition, it follows that X1

∼= LatG and X2
∼= LatGd. �

Now we can prove the following:

Theorem 6.18 Let G and G′ be PEG’s with mindegG, mindegG′ ≥ 2. Then the following
conditions are equivalent:

(i) G ∼= G′ or Gd ∼= G′;

(ii) LeviG ∼= LeviG′;

(iii) Fl LeviG ∼= Fl LeviG′.

Proof. (i) ⇒ (ii). In view of Lemma 6.16.
(ii) ⇒ (iii). Immediate.
(iii) ⇒ (i). Write G = (P,L) and G′ = (P ′,L′). Assume that Fl LeviG ∼= Fl LeviG′.

By Theorem 6.17, we have Lat (G′) ∼= Lat (G) or Lat (G′) ∼= Lat (Gd). Now (i) follows from
Lemma 6.15. �

The graph version is slightly simpler:

Corollary 6.19 Let G and G′ be finite connected graphs with mindegG, mindegG′ ≥ 2.
Then the following conditions are equivalent:

(i) G ∼= G′;

(ii) LeviG ∼= LeviG′;

(iii) Fl LeviG ∼= Fl LeviG′.

Proof. Viewing a graph G as a PEG, its dual Gd is a graph if and only if each vertex of
G has degree 2, implying G to be a cycle and therefore self-dual. Now we apply Theorem
6.18. �

However, we recall that FlG ∼= FlG′ does not implyG ∼= G′, even when mindegG,mindegG′ ≥
2 (see the example following the proof of Proposition 3.8).

7 Cubic graphs

We present in this section some specific results concerning cubic graphs.
We start by some easy remarks concerning girth and c-rank of cubic graphs. For instance,

note that gthG < ∞ for every finite cubic graph: any acyclic graph contains necessarily
vertices of degree 1.

In view of Propositions 3.4 and 4.1, we have 2 ≤ c-rkG ≤ 4 for every cubic graph G.
However, the following result shows that c-rank and girth are not independent for cubic
graphs:
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Proposition 7.1 Let G = (V,E) be a cubic graph.

(i) If gthG = 3, then c-rkG = 3 or 4.

(ii) If gthG = 4, then c-rkG = 2 or 3 or 4.

(iii) If gthG ≥ 5, then G is sober, c-rkG = 3 and |St(v, w)| ≤ 1 for distinct v, w ∈ V .

Moreover, all these combinations with girth ≤ 8 can occur. If G is sober and connected,
only the cases with gthG = 4 and c-rkG < 4 are excluded.

Proof. (i) By Proposition 4.2, since G has a triangle.
(ii) By the comment preceding the proposition.
(iii) On the other hand, Since gthG ≥ 5, G has a restriction of the form

• −− • −− • −− •

and so c-rkG > 2 by Proposition 4.2. On the other hand, if c-rkG = 4, then G would have
a square by Proposition 4.3, a contradiction. Therefore c-rkG = 3. Since G has no squares,
the remaining conditions follow as well.

We present next examples to show that all these combinations with girth ≤ 8 occur:

• c-rank 2, girth 4: the complete bipartite graph K3,3;

• c-rank 3, girth 3:

• • •

•

• • • •

• •

• c-rank 3, girth 4:

• • •

• • • • • • • • •

• • • • • •

• c-rank 3, girth 5: the Petersen graph

• c-rank 3, girth 6: the Heawood graph [24];
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• c-rank 3, girth 7: the McGee graph [25];

• c-rank 3, girth 8: the Tutte-Coxeter graph [28];

• c-rank 4, girth 3: the complete graph K4;

• c-rank 4, girth 4:
• •

• •

• •

• •

Note that all these examples are sober and connected except those with gthG = 4 and
c-rkG < 4. The reason for the exclusion of these combinations lies within Corollary 4.5: if
G is sober and c-rkG < 4, then G has no squares. �

Note that some of the arguments used in this proof are valid also for graphs which are
not cubic. For instance, if gthG ≥ 5 and all vertices of G have degree > 1, then G is
necessarily sober.

It is an interesting problem to determine under which conditions the lattice of flats of a
graph has certain properties.

In the following theorems, we present results for the case of connected cubic graphs. We
start with a couple of useful lemmas.

Lemma 7.2 Let G = (V,E) be a finite nonempty graph. Then:

(i) every atom of FlG is of the form St(St(v)) for some v ∈ V ;

(ii) the converse is true if G is cubic.

Proof. (i) Let W be an atom of FlG. We may write W = St(X) for some X ⊆ V . Let
v ∈ W = St(X). Then X ⊆ St(v) and so St(St(v)) ⊆ St(X) = W . Since v ∈ St(St(v)) and
W is an atom, we get St(St(v)) = W .

(ii) Assume that G is cubic and W = St(St(v)) for some v ∈ V . Let u ∈ V be such that
W ∩ St(u) 6= ∅. We must prove that W ⊆ St(u).

Indeed, if x ∈W ∩ St(u) = St(St(v)) ∩ St(u), then St(v) ∪ {u} ⊆ St(x). Since |St(v)| =
|St(x)| = 3, it follows that u ∈ St(v) and so W = St(St(v)) ⊆ St(u) as required. �

Lemma 7.3 Let G = (V,E) be a finite connected cubic graph. Then the following condi-
tions are equivalent:

(i) St(v) is an atom of FlG for some v ∈ V ;

(ii) G ∼= K3,3.
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Proof. (i) ⇒ (ii). If St(v) is an atom of FlG, then, for every u ∈ V , either St(v) ⊆ St(u)
or St(v)∩St(u) = ∅. Since G is cubic, St(v) ⊆ St(u) is actually equivalent to St(v) = St(u).
Writing St(v) = {a, b, c} and St(a) = {v, x, y}, we can take u above equal to x and y to
obtain St(x) = St(y) = St(v) = {a, b, c}. It follows that G has a subgraph of the form

x y z

a b c

(note that {x, y, z} ∩ {a, b, c} = ∅ due to the absence of loops). Since G is cubic and
connected, this must be the whole of G, which is then isomorphic to K3,3.

(ii) ⇒ (i). Since the lattice of flats of K3,3 is isomorphic to (22̂,⊆). �

Theorem 7.4 Let G = (V,E) be a finite connected cubic graph. Then the following condi-
tions are equivalent:

(i) FlG is distributive;

(ii) FlG is modular;

(iii) FlG is semimodular;

(iv) FlG is geometric;

(v) G ∼= K4 or G ∼= K3,3.

Proof. The implications (i) ⇒ (ii), (ii) ⇒ (iii) and (iv) ⇒ (iii) are immediate. Since the

lattices of flats of K4 and K3,3 are isomorphic respectively to (24̂,⊆) and (22̂,⊆), we get
(v) ⇒ (i) and (v) ⇒ (iv). It remains to be proved that (iii) ⇒ (v).

Assume that FlG is semimodular. Suppose that diamG > 2. Let v, w ∈ V be such that
d(v, w) > 2. Write St(w) = {w1, w2, w3}. By Lemma 7.2, St(St(wj)) is an atom of FlG for
j = 1, 2, 3. Since diamK3,3 = 2, it follows from Lemma 7.3 that St(v) is not an atom of
FlG. Write St(v) = {v1, v2, v3}. By Lemma 7.2, St(St(vi)) is an atom of FlG for i = 1, 2, 3.

Suppose that
∀i, j ∈ 3̂ ∃zij ∈ V : vi, wj ∈ St(zij). (15)

Since d(v, w) > 2, we must have zij 6= v, w. Hence {zi1, zi2, zi3} ⊆ St(vi) \ {v} and so

|{zi1, zi2, zi3}| ≤ 2 for i = 1, 2, 3. (16)

Similarly,
|{z1j , z2j , z3j}| ≤ 2 for j = 1, 2, 3. (17)

Let G′ = (V ′, E′) be the graph such that V ′ = 3̂ × 3̂ and (i, j) −− (i′, j′) is an edge
if and only if (i, j) 6= (i′, j′) and zij = zi′j′ . By (16) and (17), G′ has at least 6 edges.
Since G′ has 9 vertices, there must be a pair of incident edges. Hence there exist distinct
(i, j), (i′, j′), (i′′, j′′) ∈ V ′ such that zij = zi′j′ = zi′′j′′ . Thus vi, vi′ , vi′′ , wj , wj′ , wj′′ ∈ St(zij)
and so

|{vi, vi′ , vi′′ , wj , wj′ , wj′′}| ≤ 3.
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Since {vi, vi′ , vi′′}∩{wj , wj′ , wj′′} = ∅ due to d(v, w) > 2, this contradicts (i, j), (i′, j′), (i′′, j′′)
being all distinct. Therefore (15) fails and so there exist i, j ∈ 3̂ such that St(vi)∩St(wj) = ∅.

Now it is easy to check that

V

zz

��

St(v)

��
St(St(vi))

$$

St(St(wj))

zz∅

is a sublattice of FlG. On the one hand, we have St(v) ∩ St(St(wj)) ⊆ St(v) ∩ St(w) = ∅
since d(v, w) > 2. On the other hand, suppose that St(St(vi))∪St(St(wj)) ⊆ St(z) for some
z ∈ V . Then vi, wj ∈ St(z), contradicting St(vi) ∩ St(wj) = ∅. This proves that G cannot
be semimodular if diamG > 2. Hence diamG ≤ 2.

Suppose first that G is not sober. Then we have St(a) = {x, y, z} = St(b) for some
distinct a, b ∈ V , and so G has a subgraph of the form

a b

x y z

(18)

Supose that there exists an edge connecting two of the vertices x, y, z, say x −− y. Then G
has a subgraph of then form

a b

x y z t

and it is now clear that d(t, y) > 2, contradicting diamG ≤ 2. Hence (18) is a restriction of
G. If there exists some X ∈ FlG satisfying {x, y, z} ⊃ X ⊃ ∅, it is easy to check that

V

{{

��

{x, y, z}

��
X

##

{a, b}

||
∅
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would be a sublattice of FlG, contradicting semimodularity. Thus {x, y, z} is an atom and
so G ∼= K3,3 by Lemma 7.3.

Therefore we may assume that G is sober. Suppose first that there exists some edge
a −− b which does not lie in any triangle of G. Since G is sober, if follows from Lemma
6.11(i) that {a} = St(St(a)) and {b} = St(St(b)). Moreover, a ∈ St(v) for some v ∈ V . We
claim that

V

||

��

St(v)

��
{a}

!!

{b}

~~
∅

is a sublattice of FlG, a contradiction. Indeed, if b ∈ St(v), then a, b, v would be the vertices
of a triangle, contradicting our assumption, and no flat can contain a, b simultaneously by
the same reason. Hence every edge of G must lie in some triangle.

Now G must have a subgraph of the form

a

b c

d

Since the edge a −− c must lie in some triangle, we have an edge c −− d or an edge b −− c.
Without loss of generality, we may assume that c −− d is an edge. If we have an edge
c −− e with e 6= b, then we have

a

b c e

d

and so d(b, e) = 3, a contradiction. Hence there is an edge b −− c as well and so G ∼= K4.
Therefore (v) holds. �

For every n ≥ 3, we define the cylindrical strip Hn by

v1 v2 · · · vn v1

w1 w2 · · · wn w1
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and the Möbius strip H̃n by

v1 v2 · · · vn w1

w1 w2 · · · wn v1

Theorem 7.5 Let G = (V,E) be a finite connected cubic graph. Then the following condi-
tions are equivalent:

(i) FlG satisfies the Jordan-Dedekind condition;

(ii) c-rkG ≤ 3 or (G is sober and every edge of G lies in some square);

(iii) c-rkG ≤ 3 or G ∼= K4 or G ∼= Hn for some n ≥ 3 or G ∼= H̃n for some n ≥ 4.

Proof. (i) ⇒ (ii). We may assume that c-rkG ≥ 4. Suppose that G is not sober. Then
there exist v, w ∈ V such that St(v) = St(w). By Lemma 7.2, St(St(v)) is an atom of
FlG. Since v, w ∈ St(St(v)), it follows that FlG has an atom with 2 elements. Since any
X ∈ FlG \ {V } has at most 3 elements, then FlG has a maximal chain with length ≤ 3.
Since c-rkG ≥ 4 implies the existence of some maximal chain with length 4, G fails the
Jordan-Dedekind condition.

Hence we may assume also that G is sober. Suppose now that a −− b is an edge of G.
Write St(a) = {b, c, d}. If St(b, c) contains some other element x 6= a, then a −− b belongs
to the square

a b

c x

hence we may assume that St(b, c) = {a} and so {a} is an atom of FlG. Write St(b) =
{a, y, z}. If (i) holds, and since c-rkG ≥ 4, the chain ∅ ⊂ {a} ⊂ {a, y, z} ⊂ V must admit a
refinement. We may therefore assume that {a, y} ∈ FlG. It follows that {a, y} = St(p, q) for
some distinct p, q ∈ V . Hence p, q ∈ St(a) = {b, c, d} and so {p, q} ∩ {c, d} 6= ∅. Assuming
that p ∈ {c, d}, we obtain a 4-cycle

a b

p y

and so (ii) holds.
(ii) ⇒ (iii). We may assume that c-rkG ≥ 4, G is sober and every edge of G lies in

some square. We consider two cases:

Case I: gthG = 3.

Suppose first that G has a subgraph G0 the form

a b

c d
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Then the edge a −− d must be part of a square

a d

x y

Since St(a) and St(d) are fully determined, we must have {x, y} = {b, c} and so G has a
subgraph isomorphic to K4. Since G is connected and cubic, then G ∼= K4.

Hence we may assume that G has no subgraph isomorphic to G0 above. Take a triangle
in G. Since every edge must belong to a square and we are excuding subgraphs isomorphic
to G0, then G must have a subgraph of the form

a b c

d e

The existence of an edge c −− a or c −− d would imply the presence of a subgraph
isomorphic to G0, hence we have an edge c −− f for some new vertex f . Considering a
square

c f

x y

it follows easily that either x = b and y = a, or x = e and y = d. These cases yield in fact
isomorphic subgraphs, hence we assume the first to get

c e

b

f a d

It is straightforward to check that the only square that can contain the edge c −− e is

c e

f d

hence G contains a subgraph isomorphic to H3 and is therefore isomorphic to H3.

Case II: gthG = 4.

Let G′ be a subgraph of G of the form

v1 v2 · · · vn

w1 w2 · · · wn
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with n maximum. We claim that n ≥ 4.
Indeed, suppose first that n = 2. Since G has no triangles, then we have a subgraph

v1 v2 a

w1 w2 b

Let
v2 a

x y

be a square containing v2 −− a. Then either x = v1 or x = w2. Suppose first that x = v1.
If y = w1, then St(v2) = St(w1), contradicting G being sober. On the other hand, if y is
a new vertex c, we get two adjacent squares and contradict the maximality of n. The case
x = w2 is similar, hence n > 2 in this case.

Suppose now that n = 3. Since there are no triangles and G is sober, we have a subgraph

v1 v2 v3 a

w1 w2 w3 b

To avoid contradicting the maximality of n, we cannot accept an edge a −− b. Considering
squares containing the edges v3 −− a and w3 −− b, we obtain edges v1 −− a and w1 −−
b. Taking an edge a −− c, where c is necessarily a new vertex, we immediately get a
contradiction by trying to fit the new edge into a square. Thus n ≥ 4.

Now if vn −− a is an edge, where a is a new vertex, we cannot fit this edge into a
square without compromising the maximality of n, hence we have either edges v1 −− vn
and w1 −− wn (yielding Hn) or edges v1 −− wn and w1 −− vn (yielding H̃n). Therefore
(iii) holds.

(iii) ⇒ (ii). Immediate.
(ii) ⇒ (i). The case c-rkG = 2 being trivial, suppose first that c-rkG = 3. Since the

flats St(v) are the maximal elements of FlG \ {V } and no such flat is an atom of FlG in
view of Lemma 7.3, it follows that every maximal chain of FlG must have length 3 and so
G satisfies the Jordan-Dedekind condition.

Finally, assume that c-rkG > 3. Let v ∈ V . By Lemma 6.11(i), {v} is an atom for every
v ∈ V . Now, if {a} ⊂ {a, b, c} = St(x) is a chain in FlG, then we may assume that there
exists some square

a x

y b

Since G is sober, it follows that St(x, y) = {a, b} and so all maximal chains in FlG must
have length 4. Thus (i) holds. �
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It is easy to check that all graphs Hn and H̃n are vertex-transitive: for all vertices v and
w, there exists an automorphism ϕ of the graph such that vϕ = w (i.e. all vertices lie in a
single automorphic orbit).

By Proposition 3.4 and Corollary 4.5, a finite sober connected cubic graph has c-rank
4 if and only if it has a square. If it is also vertex-transitive, then every vertex must lie in
some square. The next example shows that one cannot replace edge by vertex in condition
(ii) of Theorem 7.5, even if we require vertex-transitivity:

1 2

3 4 5 6

7 8

9 10

11 12 13 14

15 16

Indeed, this finite sober connected cubic graph has c-rank 4 and is vertex-transitive (hence
every vertex lies in some square), and yet it fails the conditions of Theorem 7.5. Note that
in this case

V ⊃ St(1) ⊃ St(1, 4) ⊃ St(1, 4, 11) ⊃ ∅

and
V ⊃ St(3) ⊃ St(3, 12) ⊃ ∅

are two maximal chains of different length.

8 Minors and cm-rank

Recall that a finite graph G′ is said to be a minor of a finite graph G if G′ can be obtained
(up to isomorphism) from G by successive application of the following three operations:

(D1) vertex-deletion: we delete a vertex;

(D2) edge-deletion: we delete an edge;

(C) contraction: we delete an edge v −− w and identify the vertices v and w.

If G′ is a minor of G, we write G′ ≤m G.
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It is easy to check that these operators commute with each other in the sense that

D1D2(G) ⊆ (D2D1 ∪D1)(G), D2D1(G) ⊆ D1D2(G),
CD1(G) ⊆ D1C(G), D1C(G) ⊆ (CD1 ∪D2

1)(G),
CD2(G) ⊆ (D2C ∪ C)(G), D2C(G) ⊆ (CD2 ∪ CD2

2)(G),

hence a minor of G can in particular be obtained by applying to G sequences of contractions
followed by edge-deletions followed by vertex-deletions. Clearly, c-rank cannot increase by
means of vertex-deletions since we are bound to get a submatrix of he original one. However,
the example following Proposition 3.6 shows that c-rank can increase by means of edge-
deletions. The same happens for contractions: taking the very same square as an example,
which has c-rank 2, and performing a contraction, we get K3 which has higher c-rank.

Thus we introduce a second rank function for finite graphs: given a finite connected
graph G, let

cm-rkG = max{c-rkG′ | G′ ≤m G}.

Since a minor has at most as many vertices as the original graph, cm-rank is well defined.
For every m ∈ IN, we denote by Gm the class of all finite graphs with cm-rank ≤ m. Since
the minor relation is transitive, Gm is closed for minors. In view of the Robertson-Seymour
Theorem (see [6]), there exists a finite set of graphs F such that

G ∈ Gm ⇔ ∀F ∈ F F 6≤m G.

We can easily construct the set F of forbidden graphs in our case. For m ≥ 1, let Fm
consist of representatives of all isomorphism classes of graphs with at most 2m vertices and
c-rank m+ 1. Let F0 contain a one-vertex graph.

Proposition 8.1 The following conditions are equivalent for every finite graph G and every
m ∈ IN:

(i) G ∈ Gm;

(ii) ∀F ∈ Fm F 6≤m G.

Proof. The case m = 0 holding trivially, we assume that m ≥ 1.
(i) ⇒ (ii). If G has a minor G′ ∼= F ∈ Fm, then cm-rkG ≥ c-rkG′ = c-rkF = m + 1

and so G /∈ Gm.
(ii)⇒ (i). If G /∈ Gm, then G has a minor G′ = (V ′, E′) of c-rank > m. Since a subgraph

of a minor is itself a minor, we may assume that c-rkG′ = m+1. Hence there exist I, J ⊆ V ′
such that |I| = |J | = m + 1 and AcG′ [I, J ] is nonsingular. Write I = {i1, . . . , im+1} and
J = {j1, . . . , jm+1}. Reordering rows and columns if necessary, we may assume that Ac[I, J ]
is of the form (3), for the ordering i1 < . . . < im+1 and j1 < . . . < jm+1. Replacing j1 by i1
and im+1 by jm+1, the resulting matrix is still of the form (3). Let F be the restriction of
G′ induced by the vertices {i1, . . . , im, j2, . . . , jm+1}. Up to isomorphism, we have F ∈ Gm.
Since F ≤m G′ ≤m G, (ii) fails as required. �

Next we initiate a discussion on how the computation of cm-rank relates to the matrix
representation of graphs. A sequence of contractions on a graph G = (V,E) determines a
partition P : V = V1 ∪ . . .∪ Vm corresponding to the subsets of vertices that are eventually
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identified into a single one. It is immediate that the restriction of G induced by each Vi
must be connected (we call such a partition connected). How do we identify a connected
restriction within Ac? Through the following straightforward observation:

Proposition 8.2 The following conditions are equivalent for a finite graph G = (V,E):

(i) G is connected;

(ii) there exists no nontrivial partition V = I ∪ J such that A[I, J ] is the null matrix;

(iii) there exists no nontrivial partition V = I ∪ J such that all the entries in Ac[I, J ] are
equal to 1.

What happens to the adjacency matrix when we perform a sequence of contractions
inducing the partition P : V = V1 ∪ . . . ∪ Vm? Let the new graph be G/P = (V/P,E/P ),
with V/P = m̂, where each vertex i corresponds to the identification of the vertices in Vi.
It is straightforward to check that

AcG/P [i, j] =

{
0 if i 6= j and 0 occurs in AcG[Vi, Vj ]
1 otherwise

If we follow a sequence of contractions by a sequence of edge-deletions, we are entitled to
replace 0s by 1s in the matrix AcG/P . Finally, vertex-deletions correspond to deleting rows
and columns in this modified matrix, which does not increase c-rank, and can therefore be
ignored in the computation of the cm-rank. We therefore obtain:

Proposition 8.3 Let G = (V,E) be a finite graph. Then cm-rkG is the maximum value

of rk ÃcG/P when P : V = V1 ∪ . . . ∪ Vm is a connected partition of V and

ÃcG/P [i, j] =

{
0 or 1 if i 6= j and 0 occurs in AcG[Vi, Vj ]

1 otherwise

9 The complement graph

Given a graph G = (V,E), its complement graph G = (V,G) is the graph defined by the
condition

{v, w} ∈ E ⇔ {v, w} /∈ E},

for all distinct v, w ∈ V .
The classical idea of independence for a subset W of vertices of G (no edges between

them) is related to our notion of c-independence by W being necessarily c-independent in
G, but not conversely.

We can get a lower bound for c-rkG through the chromatic number. An edge coloring
of a graph G = (V,E) with c colors is a partition V = V1 ∪ . . . ∪ Vc such that no edge of G
connects two vertices in the same Vj . The chromatic number c(G) is the minimum number
c of colors to edge color G.

Proposition 9.1 Let G be a finite graph. Then c-rkG ≥ |V |
c(G) .

Proof. Since |Vj | ≥ |V |
c(G) for some j, then G has a complete subgraph with at least |V |

c(G)

vertices and the claim follows from Proposition 3.6(ii). �
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An important issue consists of the study of the sum S = c-rkG + c-rkG for a graph
with n vertices. The examples we analyzed so far show that S can be as small as n

2 + 2
(taking G = Kn

2
,n
2

for n even, then G is a disjoint union of two copies of Kn
2
) and as large

as n+ 2 (taking G to be a graph of the form

v1 −− v2 −− . . . −− vn

for n ≥ 4). The next result offers an upper bound for S:

Proposition 9.2 Let G = (V,E) be a finite graph with |V | = n. Then S = c-rkG +
c-rkG <

√
2n+ 1.

Proof. Assume that |E| = k and c-rkG = m. Then m = rkAcG and the witness character-
ization in Proposition 2.3 yields

(m− 1) + . . .+ 2 + 1 =
m(m− 1)

2
≤ k.

Thus 2k ≥ m2 −m, yielding m ≤ 1+
√
1+8k
2 .

Similarly, since G has n(n−1)
2 − k edges, we get

c-rkG ≤ 1 +
√

1 + 4n2 − 4n− 8k

2
.

Hence

S ≤ 1 +

√
1 + 8k +

√
1 + 4n2 − 4n− 8k

2
.

A simple calculus exercise shows that a real-valued function of the form

√
1 + 8x+

√
1 + 8(a− x) (a > 0)

reaches its maximum when x = a
2 . Hence

S ≤ 1 +
√

1 + 2n2 − 2n ≤ 1 +
√

2n.

�

We can also note the following:

Proposition 9.3 Let (Gn)n be a sequence of nonisomorphic finite graphs and let Mn =
max{ c-rkGn, c-rkGn}. Then

lim
n→+∞

Mn = +∞.

Proof. Let R(k, k) denote the Ramsey number that ensures every complete graph with at
least R(k, k) vertices, with edges colored by two colors, to have a monocromatic complete
subgraph with k vertices. Let k ∈ N. Since the graphs Gn are nonisomorphic, there exists
some p ∈ IN such that all graphs Gn have at least R(k, k) vertices for n > p. In particular,
either Gn or Gn must contain a complete subgraph with k vertices, and so Mn ≥ k by
Proposition 3.6(ii). Therefore limn→+∞Mn = +∞. �
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We can give another perpective of the complement graph through the dual lattice of
closed stars. Given a graph G = (V,E), the closed star of a vertex v ∈ V is defined by

St(v) = St(v) ∪ {v}.

Given S ⊆ 2V , it is easy to see that

S̃ = {∪S | S ⊆ S}

is the ∨-subsemilattice of (2V ,⊆) generated by S. Note that ∪S = maxS̃, and also ∅ =
∪∅ = minS̃. Similarly to the dual case, (S̃,⊆) is itself a lattice with

P ∧Q = ∪{X ∈ S | P ∩Q ⊆ X}.

In particular, we can take SV = {St(v) | v ∈ V } and consider the lattice S̃V , which we call
the dual lattice of closed stars of G.

Theorem 9.4 Let G = (V,E) be a finite graph. Then c-rkG = ht S̃V .

Proof. We know that c-rkG is the maximum length n of a chain of the form

V ⊃ StG(v1) ⊃ StG(v1, v2) ⊃ . . . ⊃ StG(v1, . . . , vn) = ∅. (19)

Now

StG(v1, . . . , vi) = StG(v1) ∩ . . . ∩ StG(vi) = (V \ StG(v1)) ∩ . . . ∩ (V \ StG(vi))

and so
V \ StG(v1, . . . , vi) = StG(v1) ∪ . . . ∪ StG(v1).

Passing (19) to complement, it follows that c-rkG is the maximum length n of a chain of
the form

∅ ⊂ StG(v1) ⊂ StG(v1) ∪ StG(v2) ⊂ . . . ⊂ StG(v1) ∪ . . . ∪ StG(vn) = V,

which is precisely ht S̃V . �

As an example, we can now apply this result to the computation of the c-rank of the
complement of the Petersen graph P :

Example 9.5 c-rkP = 5.

Write P = (V,E), St(v) = StP (v) and St(v) = StP (v). Assume that

∅ ⊂ St(v1) ⊂ St(v1) ∪ St(v2) ⊂ . . . ⊂ St(v1) ∪ . . . ∪ St(vn) = V,

is a chain of maximum length in S̃V . We claim that

|St(v1) ∪ St(v2) ∪ St(v3)| ≥ 8. (20)

Since P is cubic, it follows from Proposition 7.1(iii) that |St(v1)∪St(v2)| ≥ 5. If v1 −− v2
is not an edge of P , then |St(v1)∪ St(v2)| ≥ 7 and so (20) must hold in this case. Hence we
may assume that v1 and v2 are adjacent in P . Since P has no triangles, then St(v1, v2) = ∅
and so |St(v1)∪ St(v2)| = |St(v1)∪ St(v2)| = 6. Suppose that |St(v1)∪ St(v2)∪ St(v3)| < 8.
Then |St(v3)∩St(vi)| ≥ 2 for some i ∈ {1, 2}. If vi −− v3 is an edge, we get a triangle in P ;
if vi −− v3 is not an edge, we get a square in P , a contradiction in any case since gthP = 5.
Therefore (20) holds and so n ≤ 5.

It is a simple exercise to produce a chain of length 5 in S̃V , hence c-rkP = 5.
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10 Open questions

Here is a list of open questions, some mentioned in the preceding text:

1. Characterize those finite graphs G whose lattice of flats are distributive, modular,
semimodular, satisfy the Jordan-Dedekind chain condition, or are extremal lattices.

For extremal lattices see [14]. The most important questions are for the Jordan-
Dedekind chain condition and for the extremal lattices which need not satisfy the
Jordan-Dedekind chain condition. See Theorems 7.4 and 7.5 for some results.

2. Which hereditary collections have Boolean representations?

See Subsection 2.3 and [11] for definitions. All matroids have boolean representations
(see [12]), but what else? This will be the topic of the future paper [18], which will
also carry out a similar analysis like Section 5 but for higher c-rank.

3. When do two graphs have isomorphic lattices of flats?

4. Which matroids arise as the c-independent sets of a graph? Prove not all matroids
arise this way.

5. When is GeoG, for (cubic) G ∈ SC3 realizable as lines in Euclidean space (i.e. real-
izable affinely)? Analyse further the map which associates to a non bipartite cubic
C ∈ SC3 the bipartite cubic Levi GeoC.

6. Compare the results of this paper with those of Brijder and Traldi in [2].

7. Extend the analysis of graphs in this paper to Moore graphs, generalized Petersen
graphs, etc. What is MatM when M is the Moore mystery graph of girth 5 (which
may or may not exist) on 57 vertices? See [26].

8. What is the smallest number of edges we can have in a graph with n vertices to
maximize (minimize) c-rkG+ c-rkG?
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