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Abstract: Although Likert scale is numeric, it is intrinsically ordinal (1 — Strongly disagree to 5 -
Strongly agree). Even ordinal, due to convenience it is usual to use a t-test to evaluate whether
two groups are significantly different (testing population mean with unknown variance). In this
paper | will investigate if when we have a survey that uses a Likert Scale, it is adequate to use a
t-test. | will use bootstrapping by first “imposing” that the population verifies the null
hypothesis. | conclude that, the use of the t-test it is valid to compare groups even when the
variable is measured a Likert scale and the populations does not have a normal distribution.

JEL Codes: C12; C15; C83

1 - Introduction

When we ask people using a Likert scale (1- Strongly disagree to 5 — Strongly agree), for
example, “Question 1 - The sensation when drinking Coca-Coke is good” and “Question 2 - The
sensation when drinking Pepsi-Cola is good” and we intend to test whether there a significant
difference between the two groups (the two questions, i.e., whether people prefer Coca-Cola
to Pepsi Cola, Hy: Coca-Cola = Pepsi-Cola, Hy: Coca-Cola > Pepsi-Cola,), the most simple to do it
is to do a t- test on the averages (paired), e. g., by using the R’s function t.test().

t.test(Question.1, Question.2, alternative = "greater", paired = TRUE)

But we must remember that the Likert scale is ordinal and that the t-test is developed to use
with quantitative variables that have normal distribution (Gosset, 1908).
In this paper | will investigate the pertinence of using t-test when the variable is ordinal

variables (Likert Scale) and that do not have Normal distribution by using bootstrapping,
random re-sampling from the sample with replacement, (Efron, 1979).

| will use a synthetic population with Q1 slightly preferable to Q2, obtained by using the next
commands (R language):

N = 1000 #Dimension of the sample

Q.1 <- sample(c(1,2,3,4,5),N, prob=c(0.05,0.3,0.10,0.4,0.15),rep=TRUE)

Q.2 <- Q.1 + sample(c(-2,-1,0,1,2),N, prob=c(0.10,0.43,0.0,0.37,0.10),rep=TRUE)
Q.2[Question.2<1] <-1

Q.2[Question.2>5] <-5

It results a population having the following statistic characteristics (see, Table 1 and Table 2).

Scale 1 2 3 4 5 Mean-3 | (>3 -<3)/N
Q1 5,0% 30,0% 10,0% 40,0% 15,0% 0,300 0,200
Q2 19,6% 10,2% 30,3% 13,2% 26,8% 0,176 0,103
Scale -2 -1 0 +1 +2 Mean (>0 - <0)/N
Q1-Q2 4,5% 35,4% 9,7% 43,9% 6,5% 0,124 0,104
Correlelation Q1; Q2 0,6605

Table 1 — Distribution of the Question 1, Q1, Question 2, Q2, and the dinference Q1-Q2



Ql
1 2 3 4 5| Total

2,7%| 18%| 05%| 0,0%| 0,0%| 5,0%
15,9%| 0,0%| 11,1%| 3,0%| 0,0%| 30,0%
1,0%| 4,3%| 0,0%| 3,7%| 1,0%| 10,0%
0,0%| 4,0%| 17,2%| 0,0%| 18,8%| 40,0%
0,0%| 0,0%| 15%| 6,4%| 7,0%| 15,0%
Total | 19,6%| 10,2%| 30,3%| 13,2%| 26,8%
Table 2 —Joint distribution of Question 1, Q1, and Question 2, Q2
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2 - The algorithm.

Step 1: Ensuring that the sample verifies the null hypothesis.

We must ensure that the re-sampling is from a “population” where the null hypothesis is
observed which is done by duplicating the sample with the symmetric responses. For example,
if a person responds Coca-Cola = 4 and Pepsi-Cola = 3, under the null hypothesis (the person is
indifferent to the two brands), that must result from a “trembling hands” that | will correct by
adding the symmetric answer, Coca-Cola = 3 and Pepsi-Cola = 4.

So if there are 1000 responses, | must add to the sample that will be re-sampled the 1000
symmetric responses.

Step 2: Re-sampling and computing the statistics.

Having the two groups (Question 1 and Question 2) | will test HO: Group 1 is identical to
Question 2 using the i) Average and the ii) Number of people that respond Q1 > Q2 minus the
number of people that respond Q2 > Q1 as statistics. | will re-sample my “corrected” sample
with replacement creating a 10000 “new” sample with the same size as the original sample.

Step 3: Testing.
| will use the t-test implemented in the R- Language with the command t.test(), and compare it
with “true values” obtained by re-sampling (10000 samples).

Step 4: Repeating.

Although Q1>Q2, when | have a sample, by change it may result no-significant differences.
Then, | will repeat the sample 1000 times, re-sampling each sample 10000 times (I will repeat
steps 1 to 3).

#R Program used to compare the applicability of the t-test using bootstrapping

N <- 1000 #Number of samples

iterations <- 10000 #Number of re-samples for each sample

p.am<-0; p.am.dif<-0; p.mean<-0; p.dif<-0

for (j in 1:1000) # Repeating 1000 samples from the same population
{

#Creating the synthetic data
Q.1 <- sample(c(1,2,3,4,5),N, prob=c(0.05,0.3,0.10,0.4,0.15),rep=TRUE)
Q.2 <- Q.1 + sample(c(-2,-1,0,1,2),N, prob=c(0.10,0.43,0.0,0.37,0.10),rep=TRUE)
Q.2[Q.2<1]<-1
Q.2[Q.2>5]<-5



#p value using the values (t.test)
p.am[jl<-t.test(Q.1,Q.2,alternative = "greater",paired = TRUE)Sp.value
#p value using “better” - “worst” (t.test)
d<-Q.1-Q.2
d[d<0]<- -1
d[d>0]<- 1
p.am.dif[j]<-t.test(d,(1:N)*0, alternative = "greater",paired = TRUE)Sp.value
#p value using bootstrapping
# 1 - Ensuring Ho
data<-data.frame(Ql1=c(Q.1,Q.2),Q2=c(Q.2,Q.1))
d<-data[1:N,1] - data[1:N,2]
# 2 - Computing the "empirical" distribution
result.mean<-0; result.dif<-0
value.to.test.mean<-mean(d)
value.to.test.dif<-(length(d[d>0])-length(d[d<0]))/N
for (i in 1:iterations)
{x<-sample(1:(2*N),N,rep=TRUE)
case<-data[x,]
result.mean[i] <-mean(case[,1]-case[,2])
d<-case[,1]-casel,2]
result.dif[i] <-(length(d[d>0])-length(d[d<0]))/N
!
#”empirical” p value
p.mean[jl<- length(result.mean[result.mean > value.to.test. mean])/iterations
p.dif[j] <- length(result.dif[result.dif > value.to.test.dif])/iterations
} #Close j
#Outputting results to a csv file
data.out<-data.frame(pam=p.am,pamdif=p.am.dif, pmean=p.mean,pdif=p.dif)
data.out<-data.out[data.out Spam<0.1,] #just cases that “are” significant

nn |I_|I)

write.table(data.out,file = "e:/data.out.csv", dec=",",sep=";

3 - Results

My intention was to investigate two things. First, whether it is acceptable to use the t-test
when the population is not normal. To evaluate this | compare the p-value that results from
the t-test with the “empirical” data using as statistics the mean of the responses (See, Fig. 1)
and, then, using the difference between Responses >3 — Responses <3 (See, Fig. 2).
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Fig. 1 — Mean - Comparing the use of the t-test with the “empirical” results (1000 points)
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Fig. 2 — Difference - Comparing the use of the t-test with the “empirical” results (1000 points)

Due to the fact that the p-values using t-test are similar to the “empirical” p-values, | conclude
that it is not a critical error to assume the results of the t-test even when the population does
not have normal distribution.

The second question | intend to investigate is whether it is acceptable to use the mean of
responses (Likert scale) with just the difference between those that say “Better” (>3) and
those that say “Worst” (<3).

To evaluate this question | compare the p-values using the mean and using the difference

I”

using the t-teste (See, Fig. 3) and, using the “empirical” results (See, Fig. 4).
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Fig. 3 —Comparing the mean with the difference (t-test, 1000 samples)

10% -
9% -
8%
7%
6%
5%
4%
3% -
2%
1%

-value, diference, "empirical"
° °

y=0,9968x+0,0006

0%

0%

p-value, mean, "empirical"

1%

2%

3%

4%

T

5%

6% 7% 8% 9%  10%

Fig. 4 —Comparing the mean with the difference (“empirical”, 1000 samples)




Although the results are not identical, using the mean we conclude from 898 out of 1000
samples that the difference is significant at 1% level and using the “>3"-“<3"” we conclude from
892 out of 1000 samples that the difference is significant at 1% level whether in 872 samples
out of 1000 the difference significant using any of the statistics. At a 5% level, we have 982 out
of 1000; 978 out of 1000 and 971 out of 1000, respectively. Then, | conclude that it is
statistically acceptable to test the difference of means using a t-test when the variable is a
Liker scale and the populations does not have a normal distribution.
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