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Abstract: Although Likert scale is numeric, it is intrinsically ordinal (1 – Strongly disagree to 5 - 

Strongly agree). Even ordinal, due to convenience it is usual to use a t-test to evaluate whether 

two groups are significantly different (testing population mean with unknown variance). In this 

paper I will investigate if when we have a survey that uses a Likert Scale, it is adequate to use a 

t-test. I will use bootstrapping by first “imposing” that the population verifies the null 

hypothesis. I conclude that, the use of the t-test it is valid to compare groups even when the 

variable is measured a Likert scale and the populations does not have a normal distribution. 

 

JEL Codes: C12; C15; C83 

 

1 - Introduction 

When we ask people using a Likert scale (1- Strongly disagree to 5 – Strongly agree), for 

example, “Question 1 - The sensation when drinking Coca-Coke is good” and “Question 2 - The 

sensation when drinking Pepsi-Cola is good” and we intend to test whether there a significant 

difference between the two groups (the two questions, i.e., whether people prefer Coca-Cola 

to Pepsi Cola, H0: Coca-Cola = Pepsi-Cola, H1: Coca-Cola > Pepsi-Cola,), the most simple to do it 

is to do a t- test on the averages (paired), e. g., by using the R’s function t.test().  

 

t.test(Question.1, Question.2, alternative = "greater", paired = TRUE) 

 
But we must remember that the Likert scale is ordinal and that the t-test is developed to use 
with quantitative variables that have normal distribution (Gosset, 1908). 
In this paper I will investigate the pertinence of using t-test when the variable is ordinal 

variables (Likert Scale) and that do not have Normal distribution by using bootstrapping, 

random re-sampling from the sample with replacement, (Efron, 1979). 

I will use a synthetic population with Q1 slightly preferable to Q2, obtained by using the next 

commands (R language): 

 N = 1000 #Dimension of the sample 
Q.1 <- sample(c(1,2,3,4,5),N, prob=c(0.05,0.3,0.10,0.4,0.15),rep=TRUE) 
Q.2 <- Q.1 + sample(c(-2,-1,0,1,2),N, prob=c(0.10,0.43,0.0,0.37,0.10),rep=TRUE) 
Q.2[Question.2<1] <- 1 
Q.2[Question.2>5] <- 5 

 

It results a population having the following statistic characteristics (see, Table 1 and Table 2).  

 

Scale 1 2 3 4 5 Mean-3 (>3 - <3)/N 

Q1 5,0% 30,0% 10,0% 40,0% 15,0% 0,300 0,200  

Q2 19,6% 10,2% 30,3% 13,2% 26,8% 0,176 0,103  

Scale -2 -1 0 +1 +2 Mean  (>0 - <0)/N 

Q1-Q2 4,5% 35,4% 9,7% 43,9% 6,5% 0,124 0,104  

Correlelation Q1; Q2 0,6605 
     Table 1 – Distribution of the Question 1, Q1, Question 2, Q2, and the dinference Q1-Q2 
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Q1 
 

  
1 2 3 4 5 Total 

Q2 

1 2,7% 1,8% 0,5% 0,0% 0,0% 5,0% 

2 15,9% 0,0% 11,1% 3,0% 0,0% 30,0% 

3 1,0% 4,3% 0,0% 3,7% 1,0% 10,0% 

4 0,0% 4,0% 17,2% 0,0% 18,8% 40,0% 

5 0,0% 0,0% 1,5% 6,4% 7,0% 15,0% 

 
Total 19,6% 10,2% 30,3% 13,2% 26,8% 

 Table 2 – Joint distribution of Question 1, Q1, and Question 2, Q2 

 

2 - The algorithm. 

Step 1: Ensuring that the sample verifies the null hypothesis. 

We must ensure that the re-sampling is from a “population” where the null hypothesis is 

observed which is done by duplicating the sample with the symmetric responses. For example, 

if a person responds Coca-Cola = 4 and Pepsi-Cola = 3, under the null hypothesis (the person is 

indifferent to the two brands), that must result from a “trembling hands” that I will correct by 

adding the symmetric answer, Coca-Cola = 3 and Pepsi-Cola = 4. 

So if there are 1000 responses, I must add to the sample that will be re-sampled the 1000 

symmetric responses. 

 

Step 2: Re-sampling and computing the statistics. 

Having the two groups (Question 1 and Question 2) I will test H0: Group 1 is identical to 

Question 2 using the i) Average and the ii) Number of people that respond Q1 > Q2 minus the 

number of people that respond Q2 > Q1 as statistics. I will re-sample my “corrected” sample 

with replacement creating a 10000 “new” sample with the same size as the original sample.  

 

Step 3: Testing. 

I will use the t-test implemented in the R- Language with the command t.test(), and compare it 

with “true values” obtained by re-sampling (10000 samples). 

 

Step 4: Repeating. 

Although Q1>Q2, when I have a sample, by change it may result no-significant differences. 

Then, I will repeat the sample 1000 times, re-sampling each sample 10000 times (I will repeat 

steps 1 to 3). 

 
#R Program used to compare the applicability of the t-test using bootstrapping 

N <- 1000 #Number of samples 
iterations <- 10000 #Number of re-samples for each sample 
p.am<-0; p.am.dif<-0; p.mean<-0; p.dif<-0 
for (j in 1:1000) # Repeating 1000 samples from the same population 
    { 
#Creating the synthetic data 
    Q.1 <- sample(c(1,2,3,4,5),N, prob=c(0.05,0.3,0.10,0.4,0.15),rep=TRUE) 
    Q.2 <- Q.1 + sample(c(-2,-1,0,1,2),N, prob=c(0.10,0.43,0.0,0.37,0.10),rep=TRUE) 
    Q.2[Q.2<1]<-1 
    Q.2[Q.2>5]<-5 



#p value using the values (t.test ) 
    p.am[j]<-t.test(Q.1,Q.2,alternative = "greater",paired = TRUE)$p.value 
#p value using “better” - “worst” (t.test) 
    d <- Q.1-Q.2 
    d[d<0]<- -1 
    d[d>0]<- 1 
    p.am.dif[j]<-t.test(d,(1:N)*0, alternative = "greater",paired = TRUE)$p.value 
#p value using bootstrapping 
# 1 – Ensuring Ho 
    data<-data.frame(Q1=c(Q.1,Q.2),Q2=c(Q.2,Q.1)) 
    d<-data[1:N,1] - data[1:N,2] 
# 2 - Computing the "empirical" distribution 
    result.mean<-0; result.dif<-0 
    value.to.test.mean<-mean(d) 
    value.to.test.dif<-(length(d[d>0])-length(d[d<0]))/N 
    for (i in 1:iterations) 
        {x<-sample(1:(2*N),N,rep=TRUE) 
        case<-data[x,] 
        result.mean[i] <-mean(case[,1]-case[,2]) 
        d<-case[,1]-case[,2] 
        result.dif[i] <-(length(d[d>0])-length(d[d<0]))/N 
        } 
#”empirical” p value 
    p.mean[j]<- length(result.mean[result.mean > value.to.test.mean])/iterations 
    p.dif[j] <- length(result.dif[result.dif > value.to.test.dif])/iterations 
} #Close j 

#Outputting results to a csv file 
data.out<-data.frame(pam=p.am,pamdif=p.am.dif, pmean=p.mean,pdif=p.dif) 
data.out<-data.out[data.out $pam<0.1,] #just cases that “are” significant  
write.table(data.out,file = "e:/data.out.csv", dec=",",sep=";") 
 
3 - Results  
My intention was to investigate two things. First, whether it is acceptable to use the t-test 
when the population is not normal. To evaluate this I compare the p-value that results from 
the t-test with the “empirical” data using as statistics the mean of the responses (See, Fig. 1) 
and, then, using the difference between Responses >3 – Responses <3 (See, Fig. 2). 
 

 
Fig. 1 – Mean - Comparing the use of the t-test with the “empirical” results (1000 points) 
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Fig. 2 – Difference - Comparing the use of the t-test with the “empirical” results (1000 points) 

 

Due to the fact that the p-values using t-test are similar to the “empirical” p-values, I conclude 

that it is not a critical error to assume the results of the t-test even when the population does 

not have normal distribution.  

The second question I intend to investigate is whether it is acceptable to use the mean of 

responses (Likert scale) with just the difference between those that say “Better” (>3) and 

those that say “Worst” (<3).  

To evaluate this question I compare the p-values using the mean and using the difference 

using the t-teste (See, Fig. 3) and, using the “empirical” results (See, Fig. 4). 

 

 
Fig. 3 –Comparing the mean with the difference (t-test, 1000 samples) 

 

 
Fig. 4 –Comparing the mean with the difference (“empirical”, 1000 samples) 
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y = 0,9945x + 0,0006
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y = 0,9968x + 0,0006
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Although the results are not identical, using the mean we conclude from 898 out of 1000 

samples that the difference is significant at 1% level and using the “>3”-“<3” we conclude from 

892 out of 1000 samples that the difference is significant at 1% level whether in 872 samples 

out of 1000 the difference significant using any of the statistics. At a 5% level, we have 982 out 

of 1000; 978 out of 1000 and 971 out of 1000, respectively. Then, I conclude that it is 

statistically acceptable to test the difference of means using a t-test when the variable is a 

Liker scale and the populations does not have a normal distribution. 
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