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Abstract

We study phase portraits of a first order implicit differential equation in a neighborhood of its pleated
singular point that is a non-degenerate singular point of the lifted field. Although there is no a visible
local classification of implicit differential equations at pleated singular points (even in the topological
category), we show that there exist only six essentially different phase portraits, which are presented.

1 Introduction

A well-known geometrical approach to study implicit differential equations

F (x, y, p) = 0, p =
dy

dx
, (1)

consists of the lift the multivalued direction field defined by equation (1) on the (x, y)-plane
to a single-valued direction field X (which is called the lifted field) on the surface F given
by the equation F (x, y, p) = 0 in the (x, y, p)-space.1 In this paper, the function F is always
supposed to be C∞-smooth. The lifted field X is an intersection of the contact planes
dy = pdx with the tangent planes to the surface F , that is, X is defined by the vector field

ẋ = Fp, ẏ = pFp, ṗ = −(Fx + pFy), (2)

whose integral curves are 1-graphs of integral curves (briefly, solutions) of equation (1).
Conversely, solutions of (1) are π-projections of integral curves ofX , where π is the projection
from the surface F to the (x, y)-plane along the p-direction (called vertical).

This approach can be used for studying the local behavior of solutions of (1) near so-
called singular points – points of the surface F where Fp = 0, that is, equation (1) cannot
be locally resolved with respect to p by the implicit function theorem and the germ of π is
not a diffeomorphism; see Fig. 1.

The first results of this sort were obtained by H.Poincaré, and later on, by various authors.
Moreover, this method allows to get a list of local normal forms of equation (1). Recall that
two implicit differential equations are called smoothly (topologically) equivalent if there
exists a diffeomorphism (homeomorphism, respectively) of the (x, y)-plane that sends integral
curves of the first equation to integral curves of the second one.
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Figure 1: The projection π has a fold (left) and pleat (right); the lifted field X is defined on the surface F .
The dashed lines are the criminant and the discriminant curve on F and the (x, y)-plane, respectively.

To describe the main results of this sort, we need to give several definitions following
[1, 3, 2, 14, 15].

The locus of singular points of equation (1) is called the criminant K ; that is, K is a
set given by the equalities F = Fp = 0. The projection π(K ) on the (x, y)-plane is called
the discriminant curve. The set L given by the equalities F = 0 = Fx + pFy = 0 is called
the inflection curve.2

We call a singular point O proper if Fx + pFy 6= 0, that is, the third component of the
vector field (2) does not vanish at O. Otherwise, we call it improper singular point.

Improper singular points belong to the intersection K ∩L ; they are characterized by the
condition that the surface F is not regular or it is tangent to the contact plane. Without
loss of generality further we always assume O to be the origin in the (x, y, p)-space (this can
be obtained by appropriate affine map of the (x, y)-plane).

A generic germ of equation (1) has singular points of the following three types.
1. A folded proper point3: the conditions Fpp 6= 0 and Fx 6= 0 hold true at O. Then

the lifted field X is defined, the criminant K is regular and not vertical at O, and the
projection π has a fold at all points of K . In a neighborhood of O each integral curve of
X transversally intersects K , and the corresponding solution of equation (1) has a cusp on
the discriminant curve; see Fig. 1 (left). Moreover, the whole family of solutions of (1) can
be brought to the normal form (y − c)2 = x3, c ∈ R, by a C∞-smooth diffeomorphism of
the (x, y)-plane preserving the point O. The corresponding normal form p2 = x of equation
(1) is named after Italian mathematician Maria Cibrario (who established it in the analytic
category) [1, 2, 10, 11].

2. A pleated proper point : the conditions Fpp = 0, Fppp 6= 0, Fxp 6= 0 and Fx 6= 0 hold
true at O. Then the lifted field X is defined, K is regular and it has the vertical tangential
direction at O, the projection π has a pleat at O; see Fig. 1 (right). The solutions of equation
(1) in a neighborhood of O can be described by appropriate sections of the swallow tail [5].
There are two essentially different phase portraits in this case, which are called elliptic pleat
and hyperbolic pleat, see Fig. 2. However, there is no a visible classification for equation (1)
in this case, since functional invariants occur even in the topological category [2, 11].

2 The meaning of this name is clear from what follows. Let γ be an integral curve of X, that is, an integral curve of the
vector field (2). Suppose that the corresponding solution π(γ) of equation (1) has an inflection at some point on the (x, y)-plane.
Then the last component, −(Fx + pFy), of the vector field (2) vanishes at the corresponding point of the surface F .

3In [1, 2, 3] such points are called regular although being singular points of implicit differential equation. However, we prefer
to use another terminology.
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3. A folded improper point : the conditions Fpp 6= 0, Fy 6= 0 and Fx = 0 hold true at O.
The criminant K is regular and not vertical at O, the projection π has a fold at all points
of K , but the lifted field X is not defined (the surface F is tangent to the contact plane)
at the point O.
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Figure 2: Elliptic pleated point (left) and hyperbolic pleated point (right). The dashed lines are the
criminant and the discriminant curve on the (x, p)-plane and the (x, y)-plane, respectively.

Consider the third case in more detail. Due to Fy(O) 6= 0 equation (1) can be locally
presented in the form

1

2

(

ap2 + 2bxp + cx2
)

+ f(x, p) = y, p =
dy

dx
, (3)

where a 6= 0, b, c are real constants, and the germ f(x, p) at O is 2-flat.4 Then formula (2)
for the lifted field on the surface F reads

ẋ = ap+ bx+ fp(x, p), ṗ = (1− b)p− cx− fx(x, p). (4)

By Λ denote the matrix of the linear part of (4) at the point O. By λ1,2 denote the eigen-
values of Λ and by eλ1,2

denote the corresponding eigendirections (if λ1,2 are real and do not
coincide). A straightforward computation shows that O is non-degenerate singular point
(saddle, node or focus) of the vector field (4) if and only if the curves K and L are regular
and transversal at O.

For a generic germ (3) the following set of conditions holds: both λ1,2 are non-zero,
|λ1| : |λ2| 6= 1, and eλ1,2

are not tangent neither to K nor to the vertical direction at O.
(The condition that eλ1,2

are not tangent to the vertical direction, automatically follows from
a 6= 0.) Folded improper points satisfying these conditions are called well-folded.

In the paper [11], A. Davydov obtained a list of C∞-smooth normal forms of equation
(3) in a neighborhood of well-folded singular points that satisfy the linearizability condition

4 The germ of a smooth function is called k-flat at O if its Taylor series at O starts with monomials of degree greater than
k.
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consisting in that the germ of the vector field (4) is C∞-smoothly equivalent to its linear
part. In particular, the linearizability condition holds if between the eigenvalues λ1,2 there
are no resonance relations

λi = k1λ1 + k2λ2, k1,2 ∈ Z+, k1 + k2 ≥ 2. (5)

In a neighborhood of a non-resonant well-folded singular point satisfying the linearizability
condition, equation (3) can be brought to the normal form (p + αx)2 = y, where α < 0,
0 < α < 1/8, α > 1/8 if the point O is respectively the saddle, the node, the focus of the
vector field (4), by a C∞-smooth diffeomorphism of the (x, y)-plane preserving O. Moreover,
if we use homeomorphisms of the (x, y)-plane, then the parameter α can be made to be an
arbitrary constant from the corresponding interval.

Normal forms for the resonant singular points (saddles or nodes) were obtained in [13].

However, if we deal with families of implicit differential equations depending on parame-
ters, some others types of singular points occur generically.

For instance, the case when one of the eigendirections eλ1,2
is tangent to the criminant

(consequently, one of the eigenvalues λ1,2 is equal to zero) is considered in [12].
Singularities of binary differential equations (which describe the net of principal curvature

lines on a surface in Euclidean space) near umbilic points are investigated in [6, 7, 8].
The case when the surface F is not regular at O (singularity of Morse type) is considered

in [9], see also the paper [4].
A brief survey of these results can be found in [15], see also [14].

In this paper, we investigate the omitted case when the projection π has a pleat at a
singular point O of the lifted field. In accordance with our terminology, we call such singular
points pleated improper. The surface F and the criminant K are supposed to be regular,
hence the equation is locally equivalent to (3) with a = 0, b 6= 0. In this case the eigenvalues
λ1,2 = 1− b, b, and the eigendirection e1−b is vertical and tangent to the criminant at O.

From the aforesaid, it follows that even topological normal forms of implicit differential
equations at pleated improper singular points contain functional invariants, and there is no
a visible smooth or topological classification. However, we prove that there are only six
essentially different phase portraits, which are presented in the next section (Fig. 3 and 4).

2 Main results

Consider implicit differential equation (3) satisfying the conditions

a = 0; b 6= −2, 0,
1

2
,
2

3
, 1; fppp(0, 0, 0) 6= 0,

in a small neighborhood ofO. The condition b 6= 0, fppp(0, 0, 0) 6= 0 means that the projection
π has a pleat at O. The condition b 6= 0, 1

2
, 1 means that the point O is saddle (b < 0 or

b > 1) or non-degenerate node (0 < b < 1) of the lifted field X . Finally, b 6= −2, b 6= 2
3

concerns the projection of integral curves of X on the (x, y)-plane, this condition will become
clear later on (see Lemma 3).

The five values b = −2, 0, 1
2
, 2
3
, 1, which we are excluding from consideration, split the

range of the parameter b into six intervals corresponding to six different phase portraits of
equation (3) in a neighborhood of the pleated improper singular point O.

In what follows we use well-known facts from qualitative theory of differential equations,
which can be found in [2].
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Without loss of generality we can assume fppp(0, 0, 0) = −2 (this can be obtained by a
scaling of x, which does not change neither a = 0 nor b) and c = 0 (this can be obtained by
the change of variables y → y − c

2(2b−1)
x2, which kills the monomial x2). Then the equation

reads

bxp−
1

3
p3 + ϕ(p) + xψ(x, p) = y, p =

dy

dx
, (6)

where ϕ(p) and ψ(x, p) are 3-flat and 1-flat C∞-germs at O, respectively.
The criminant of equation (6) is defined by the equality bx− p2 + ϕ′(p) + xψp(x, p) = 0,

which is locally equivalent to x = p2u(p) with a C∞-germ u(p) such that u(0) = b−1.
Substituting this expression in (6), we get the asymptotical representation for the criminant
and the discriminant curve:

x =
1

b
p2 + o(p2), y =

2

3
p3 + o(p3), as p→ 0. (7)

The lifted field X is defined by the vector field

ẋ = bx− p2 + ϕ′(p) + xψp(x, p), ṗ = (1− b)p− ψ(x, p)− xψx(x, p), (8)

which has a saddle or node at O with the eigenvalues λ1,2 = b, 1 − b. The matrix Λ of
the linear part of the vector field (8) at O is diagonal, and the eigendirections eb and e1−b

coincide with ∂x and ∂p, respectively.
In the case of node (0 < b < 1) the resonance relations (5) have the form b = 1

n+1
, n ≥ 2

or b = n
n+1

, n ≥ 3, for natural n. In a neighborhood of the non-resonant and resonant node
O, the vector field (8) is C∞-smoothly orbitally equivalent to

ξ̇ = ξ, η̇ = βη, where β = max
{ b

1− b
,
1− b

b

}

, (9)

and
ξ̇ = ξ, η̇ = nη + εξn, where ε ∈ {0, 1}, (10)

respectively.

Lemma 1. The vector field (8) has at least one integral curve γ1−b ∈ Ck, k ≥ 2, passing
through O with the vertical tangential direction e1−b, and at least one integral curve γb ∈ C l,
l ≥ 1, passing through O with the tangential direction eb. Moreover,

1) k = l = ∞ if O is a saddle or non-resonant node or resonant node with ε = 0,
2) k = ∞ and l = n− 1 if b = 1

n+1
, n ≥ 2, ε 6= 0,

3) k = n− 1 and l = ∞ if b = n
n+1

, n ≥ 3, ε 6= 0.
Proof. In the case of saddle the integral curves γ1−b and γb are separatrices, and the

statement is trivial. Indeed, by the Hadamard–Perron theorem, a C∞-smooth vector field
with hyperbolic singular point O on the plane has C∞-smooth stable and unstable manifolds
passing through O and tangent to eλ1,2

at this point.
In the case of non-resonant node we have the normal form (9), and after integrating obtain

the family of integral curves η = cξβ, c = const, with common tangential direction ∂ξ, and
the sole integral curve ξ = 0. The family η = cξβ contains at least one C∞-smooth integral
curve (with c = 0). Hence the initial vector field has at least one C∞-smooth integral curve
tangent to e1−b and at least one C∞-smooth integral curve tangent to eb.

For the resonant node with b = 1
n+1

, n ≥ 2, vector field (8) has the normal form (10), where
the direction ∂ξ corresponds to eb and ∂η corresponds to e1−b. Integrating the differential
equation dη/dξ = (nη + εξn)/ξ, we get the family of integral curves

η = ξn(c+ ε ln |ξ|), c = const, (11)
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with common tangential direction ∂ξ, and the sole integral curve ξ = 0. The integral curves
(11) are C∞-smooth if ε = 0 and Cn−1-smooth (but not Cn-smooth at O) if ε 6= 0. The
integral curve ξ = 0 corresponds to the integral curve γ1−b ∈ C∞, and any integral curve of
the family (11) corresponds to γb ∈ C l with l = n− 1 if ε 6= 0 and l = ∞ if ε = 0.

For the resonant node with b = n
n+1

, n ≥ 3, vector field (8) has the normal form (10),
where the direction ∂ξ corresponds to e1−b and ∂η corresponds to eb. The integral curve
ξ = 0 corresponds to the integral curve γb ∈ C∞, and any integral curve of the family (11)
corresponds to γ1−b ∈ Ck with k = n− 1 if ε 6= 0 and k = ∞ if ε = 0.

Lemma 2. Let γ1−b be a C2-smooth integral curve of the vector field (8) passing through
the singular point O with the vertical tangential direction e1−b. Then the germ of γ1−b is given
by x = v0p

2 + o(p2), where v0 = 1/(3b− 2), and the projection π(γ1−b) has the asymptotical
representation

x =
1

3b− 2
p2 + o(p2), y =

2

3(3b− 2)
p3 + o(p3), as p→ 0. (12)

Proof. The integral curve γ1−b can be locally presented in the form x = v0p
2 + v(p)

with a C2-smooth germ v(p) = o(p2) as p→ 0. Substituting this expression in the equality

dx

dp
=

bx− p2 + ϕ′(p) + xψp(x, p)

(1− b)p− ψ(x, p)− xψx(x, p)
,

we get

2v0p+ o(p) =
bv0p

2 − p2 + o(p2)

(1− b)p + o(p)
⇒ 2v0 =

bv0 − 1

1− b
⇒ v0 =

1

3b− 2
.

Substituting x = v0p
2 + v(p) with v0 = 1/(3b− 2) in (6), we get the representation (12).

Theorem. In a neighborhood of the point O, equation (6) can be reduced to the form

p
(

bx−
1

3
p2 + ϕ̃(p) + xψ̃(x, p)

)

= y, p =
dy

dx
, (13)

where the germ ϕ̃(p) is 2-flat at O and ψ̃(0, 0) = 0, by appropriate change of variables

y → y − u(x), u(0) = u′(0) = 0, u(·) ∈ Cs, (14)

where s = n if b = 1
n+1

, n ≥ 2, ε 6= 0, and s = ∞ otherwise.
Proof. The statement is equivalent to the existence of a solution y = u(x) such that

u(·) ∈ Cs and u(0) = u′(0) = 0. Indeed, the change of variables (14) takes the solution
y = u(x) to y = 0, consequently, it brings equation (6) to the form (13).

Thus it is necessary and sufficient to establish the existence of a Cs−1-smooth integral
curve of the vector field (8) passing through the point O with the tangential direction eb.
Clearly, the integral curve γb from Lemma 1 satisfies the required conditions.

The representations (7) and (12) show that the curves π(K ) and π(γ1−b) are semicubic
parabolas on the (x, y)-plane having the common cusp at O with the same tangential direc-
tion ∂x. To determine the mutual arrangement of π(K ) and π(γ1−b) in a neighborhood of
O, it is convenient to represent the semicubic parabolas π(K ) and π(γ1−b) in the form of a
sole algebraic equation:

x = Ap2, y = Bp3 ⇒ y2 = mx3, m =
B2

A3
. (15)
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Lemma 3. The semicubic parabolas π(γ1−b) and π(K ) belong to different semiplanes
into which the y-axis divides the (x, y)-plane if 0 < b < 2

3
, and to the same semiplane

otherwise. Moreover, π(γ1−b) lies in the “smaller” (tongue-like) of the domains into which
π(K ) locally divides the (x, y)-plane if b < −2 or 2

3
< b, and vice versa if −2 < b < 0.

Proof. Formula (15) gives m = 4
9
b3 and m = 4

9
(3b − 2) for the semicubic parabolas

defined by the principal parts of asymptotic formulae (7) and (12), respectively.

In accord with the above reasonings, classification of phase portraits of equation (6) in a
neighborhood of the pleated improper point O is presented in Tab. 1 and Fig. 3, 4.

Name of case S1 S2 N1 N2 N3 S3

Range b < −2 −2 < b < 0 0 < b < 1

2

1

2
< b < 2

3

2

3
< b < 1 1 < b

Lifted field saddle saddle node node node saddle
sign(1

b
) : sign( 1

3b−2
) − : − − : − + : − + : − + : + + : +

| 1
b
| : | 1

3b−2
| > 1 > 1 < 1 > 1

|b3| : |3b− 2| > 1 < 1 > 1 > 1

Table 1: Classification of phase portraits in a neighborhood of a pleated improper singular point.

The difference between the cases N2 and N3 needs to be commented. In both cases
b > 1 − b, and almost all integral curves of the vector field (8) have vertical tangential
direction e1−b at O. Resonance relations do not occur in the case N2. In the case N3 they
have the form b = n

n+1
, n ≥ 3, and all integral curves (11) are at least C2-smooth. In the

non-resonant case, the germ of the vector field (8) has the orbital normal form (9) with
1 < β < 2 if 1

2
< b < 2

3
and β > 2 if 2

3
< b < 1. Hence the curves η = cξβ, c 6= 0, are

C2-smooth in the case N3 and only C1-smooth in the case N2. This also holds true for the
corresponding integral curves of the vector field (8).

In the case N3 Lemma 2 is applicable to all integral curves of (8) passing through the
point O with vertical tangential direction e1−b, and all the curves have the same 2-jet at O.
In the case N2 Lemma 2 is not applicable to all integral curves of (8) passing through O
with vertical tangential direction e1−b (except for only one curve mentioned in Lemma 1),
and this family contains both convex and concave curves.

The phase portraits of equation (13) for all cases from the table are presented below,
where the integral curve γb from Lemma 1 coincides with the axis p = 0, and its projection
π(γb) coincides with the axis y = 0.
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