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In this article, we introduce a novel backward method to model stochastic gene expression and
protein level dynamics. The protein amount is regarded as a diffusion process and is described by
a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed
in the literature, the BSDE method is backward in time; that is, instead of initial conditions it
requires the specification of endpoint (“final”) conditions, in addition to the model parametrization.
To validate our approach we employ Gillespie’s stochastic simulation algorithm (SSA) to generate
(forward) benchmark data, according to predefined gene network models. Numerical simulations
show that the BSDE method is able to correctly infer the protein level distributions that preceded
a known final condition, obtained originally from the forward SSA. This makes the BSDE method
a powerful systems biology tool for time reversed simulations, allowing, for example, the assessment
of the biological conditions (e.g. protein concentrations) that preceded an experimentally measured
event of interest (e.g. mitosis, apoptosis, etc.).

PACS numbers: 02.50.Fz, 87.10.Mn, 07.05.Tp, 87.16.Yc

I. INTRODUCTION

Gene regulatory networks involving small numbers of
molecules can be intrinsically noisy and subject to large
protein concentration fluctuations [1, 2]. This fact sub-
stantially limits the ability to infer the causal relations
within gene regulatory networks and the ability to un-
derstand the mechanisms involved in healthy and patho-
logical conditions. A large interest has been raised in de-
veloping tools for gene regulatory network inference [3, 4]
acknowledging the noisy/stochastic properties of experi-
mental data [5–7], in parallel with studies addressing the
prospective, forward, simulation of stochastic equations
describing biochemical reactions [8]. There is, however,
another context which, despite its relevance as a tool to
better understand intracellular dynamics, has received
little attention from a mathematical modeling perspec-
tive. That is the situation where the basic gene regula-
tory network is known, together with a present distri-
bution of molecules/proteins, and one wants to infer the
previous molecules distributions that gave rise to the ob-
served data. This is the case, for example, of a sample of
necrotic cells where the concentration distributions for
the relevant molecules can be calculated, and one would
like to infer the previous concentrations that gave rise
to the necrotic condition. In this context, the problem
can be addressed with backward stochastic differential
equations.

BSDEs were introduced by Bismut in 1973 [9], and
over the last twenty years have been extensively studied
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by many mathematicians (e.g. [10], [11]).
In what follows, we present a method to model gene ex-

pression based on backward stochastic differential equa-
tions. We consider a gene regulatory network, where the
stochastic variables are the amounts of proteins that are
expressed from the genes of the network. To illustrate our
method, we apply it to four simple gene networks: a pos-
itive self-regulating gene, which is the simplest network,
networks composed by two and five interacting genes, and
a bistable two-gene network. To generate data to test and
validate our approach we use Gillespie’s stochastic simu-
lation algorithm, referred to below as SSA ([8]), for sim-
ulation of biochemical reactions. From the trajectories of
multiple simulations, the SSA provides the distribution
of protein amounts at a fixed final time, as well as at some
fixed moments of time prior to the final. For realization
of the SSA we used the COPASI software [12]. The net-
work models used in the BSDE and the SSA simulations
were taken the same. The BSDE method, which requires
the final distribution as the input data, was applied to
perform a simulation backwards in time. Importantly, at
the end of the backward simulation we arrive at some
deterministic value for the number of proteins which is
very close to the SSA initial condition. Since in many
applications the initial protein amounts are not known,
and are, in fact, the goal of the study, we believe that our
approach can be a useful tool in systems biology.

II. THE BSDE METHOD

In what follows, we describe the BSDE method to
model gene expression. Specifically, we model the dy-
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namics of protein amounts expressed by the genes of a
gene regulatory network. In our simulation, the protein
synthesis and degradation occurs on the time interval
[t0, T ]. The input data for the BSDE method is the pro-
tein number distribution at time T . The amount of pro-
teins is modeled by a continuous Rn-valued diffusion pro-
cess ηt = (η1(t), η2(t), . . . , ηn(t)), where n is the amount
of species, or types of proteins expressed by the genes of
the network, and ηi(t) is the amount of the i-th type of
protein at time t.

In our model, the transcription and translation are
treated effectively as a single process. In other words,
we assume that different mRNAs transcribed from the
gene are translated at the same rate.

A. General description of the method

In the BSDE method, the evolution of ηt is governed
by the following BSDE

ηt = ηT −
∫ T

t

f(ηs) ds−
∫ T

t

zs dWs, t ∈ [t0, T ]. (1)

On the right-hand side, ηT is the vector of final amounts
of proteins whose distribution at time T is known, the
second term is a drift that represents the regulation of
the protein production, and the last term is an unknown
noise that makes the solution ηt stochastic. Furthermore,
Ws is a real-valued Wiener process (also referred to be-
low as a Brownian motion), and f is an Rn-valued syn-
thesis/degradation rate of the proteins under regulation
whose explicit form is discussed in detail in Section IIIA.
Rigorously speaking, the last term in (1) is an Itô stochas-
tic integral with respect to the Brownian motion Ws,
where the integrand zs is an unknown stochastic process.

In order to solve BSDE (1) numerically we represent
ηT in the form h(WT ), where h(x) is a continuous func-
tion defined for real values x and taking values in Rn.
This function will be obtained numerically during the re-
alization of our method. The main tool for obtaining a
numerical solution to (1) is the following deterministic fi-
nal value problem with respect to an unknown Rn-valued
function θ(t, x) defined for (t, x) ∈ [t0, T ]× R:{

∂tθ(t, x) + 1
2θxx(t, x)− f(θ(t, x)) = 0,

θ(T, x) = h(x), x ∈ R.
(2)

In the above PDE, the variable x is an abstract variable
that is to be substituted by a Wiener process to generate
the solution to equation (1), and PDE (2) itself is a tool
to obtaining a solution to BSDE (1). Namely, the theory
of BSDEs ([11]) implies that if θ(t, x) is a solution to
problem (2), then the pair of stochastic processes

ηt = θ(t,Wt) and zt = ∇θ(t,Wt) (3)

is the unique solution to (1) under the constraint that ηt
is adapted with respect to Wt (see [10], [11] for details).

The forementioned adaptedness means that for each t,
ηt is a function of Wt. We provide more details about
BSDEs in the appendix.

Let us summarize the algorithm of obtaining a numer-
ical solution to BSDE (1). (a) Construct the function h
with the property h(WT ) = ηT ; (b) Obtain a numerical
solution θ(t, x) to problem (2); (c) Simulate a sufficient
number of Brownian motion trajectories and obtain the
solution to (1) in the form ηt = θ(t,Wt).

Let us start with (a). We obtain the distribution of ηT
in the form of a histogram H. The Rn-valued function
h is chosen so that the distribution of h(WT ) produces
a histogram approximately equal to H. The method of
finding the function h and, therefore, obtaining ηT as
h(WT ), is referred to below as the final data approxima-
tion technique.

Let li, i = 1, 2, . . ., be the bin ends of the given his-
togram H, and pi be the bin probabilities. This means
that the probability that ηT belongs to [li, li+1] is pi. We
search h as a piecewise linear continuous increasing func-
tion of the form

h(x) =

N∑
i=1

χ[ri,ri+1)(x)(kix+ bi) (4)

where χ(ri,ri+1](x) is the characteristic function the in-
terval [ri, ri+1), i.e. χ[ri,ri+1)(x) = 1 if x belongs to
[ri, ri+1) and it is zero otherwise. We aim to choose ki
and bi so that h(ri) = li, i.e. h maps [ri, ri+1] onto
[li, li+1]. Since ηT is in [ri, ri+1] with probability pi, the
forementioned property of h implies that WT belongs
to [ri, ri+1] also with probability pi. Thus, we produce
20000 realizations of the random variable WT . The end-
point r1 is choosen as the smallest of the realizations
of WT . Suppose we constructed the endpoint ri. Note
that WT is a Gaussian random variable with mean zero
and variance

√
T . Let ΦT (x) be the distribution func-

tion of WT . Clearly, we can uniquely find the point ri+1

so that ΦT (ri+1) − ΦT (ri) = pi. Further, we compute
ki = (li+1− li)/(ri+1− ri) and choose bi so that h(x) be-
comes continuous at point ri, i.e. bi = ri(ki−1−ki)+bi−1.
Since computing of b1 requires b0, we set b0 to be the
mean of ηT .

We remark that continuous function h satisfying
h(WT ) = ηT may not be unique. However, the goal of
the construction of h is to be able to solve BSDE (1) by
means of problem (2). From the theory of BSDEs ([10])
it is known that the Ft-adapted solution pair (ηt, zt) is,
in fact, uniquely determined by the final data ηT .

Now we describe part (b) of the algorithm which is
obtaining a numerical solution to (2). By doing the time
change θ̃(t, x) = θ(T − t, x) we transform (2) to a Cauchy
problem with the initial condition θ̃(0, x) = h(x). Note
that, by (4), the function h is defined only on a com-
pact interval [r1, rN+1] which is the support for all the
realizations of WT . The values of h outside of this inter-
val do not affect the solution to (1). Therefore, we can
extend h to the whole real line R so that the extended
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function is continuous and its derivative vanishes outside
of a compact interval [a, b] containing [r1, rN+1]. There-
fore, in practice, instead of (2) we solve the following
initial-boundary value problem:

∂tθ̃(t, x)− 1
2 θ̃xx(t, x) + f(θ̃(t, x)) = 0,

θ̃(0, x) = h(x),

θ̃x(t, a) = θ̃x(t, b) = 0.

(5)

Finally, in part (c) we simulate a sufficient number of
Brownian motion trajectoriesWt starting at zero at time
t0 and obtain the trajectories ηt as θ(t,Wt). In our simu-
lation, we took 20000 trajectories of Wt. We note that
the noise can be computed as the stochastic integral∫ T

t
∇θ(s,Ws)dWs. However, as mentioned earlier, in this

work we are only interested in the protein amount process
ηt.

B. BSDE model for multistability

Here we extend the model described in IIA to the case
when the observed final distribution is bimodal. For sim-
plicity, we describe the method for two-gene networks,
although our strategy can be naturally extended for net-
works composed by more than two genes. The stochastic
equation describing the dynamics of proteins synthesis
and degradation is still BSDE (1), however we decou-
ple it into two BSDEs and solve each BSDE separately.
Namely, we split the set of random parameters Ω into two
disjoint sets Ω = ΩA ∪ ΩB , and represent the stochastic
process ηt = (η1(t), η2(t)) in the form

ηt =

(
η1(t)
η2(t)

)
χΩA

+

(
η1(t)
η2(t)

)
χΩB

= ηAt + ηBt ,

where χΩC
(ω), C = A,B, is the characteristic function

of the set ΩC (i.e. χΩC
(ω) = 1 if ω ∈ ΩC and χΩC

(ω) = 0
otherwise), ηAt = ηtχΩA

and ηBt = ηtχΩB
.

In fact, in SSA numerical experiments involving two-
gene networks for some rate functions f(η) we observed
that protein amount trajectories η1(t) and η2(t) split into
two branches (See Fig. 1). Recall that each experiment
(which we regard as a trial and parametrize by a random
parameter ω ∈ Ω) produces one trajectory for the first
gene, η1(t, ω), and one trajectory for the second gene,
η2(t, ω). As we repeat the numerical experiment, the tra-
jectories η1 split into the “red” and the “blue” branches,
and the trajectories η2 split into the “green” and the
“black” branches. Moreover, the observation shows that
whenever a trajectory η1(t, ω) is “blue”, the trajectory
η2(t, ω) is “black”, and whenever a trajectory η1(t, ω) is
“red”, the trajectory η2(t, ω) is “green”. Based on this ob-
servation, we build our BSDE model for bistable gene
networks by attributing the random parameters from ΩA

to the blue-black-trajectory experiments, and the random
parameters from ΩB to the red-green-trajectory experi-
ments.
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Protein number trajectories:
Multistability in a 2-gene network

FIG. 1. Observation of bistability in a 2-gene network. The
protein number trajectories for the first gene (the initial num-
ber 100) split into the “blue” and “red” branches. The protein
number trajectories for the second gene (the initial number
50) split into the “black” and “green” branches. Each numeri-
cal experiment produces either a “blue” and a “black” trajec-
tory or a “red” and a “green” trajectory. The trajectories are
obtained by the SSA method.

We decouple BSDE (1) into two independent BSDEs
with respect to ηAt and ηBt by multiplying the both parts
of (1) by the characteristic functions χΩA

and χΩB
, re-

spectively:

ηAt = ηAT −
∫ T

t

χΩA
f(ηAs ) ds−

∫ T

t

zAt dWs, (6)

ηBt = ηBT −
∫ T

t

χΩB
f(ηBs ) ds−

∫ T

t

zBt dWs, (7)

where zAt = χΩ1
zt and zBt = χΩ2

zt. Above, χΩA
and χΩB

are assumed to be independent from the Wiener process
Wt for any t ∈ [t0, T ].

Next, we apply our final data approximation technique
to obtain the real-valued functions hA and hB (tak-
ing values in R2) so that hA(WT ) approximates ηAT and
hB(WT ) approximates ηBT .

Further, by employing the BSDE method presented in
Section IIA, we obtain the solutions (η1

t , z
1
t ) and (η2

t , z
2
t )

to the BSDEs

η1
t = hA(BT )−

∫ T

t

f(η1
s) ds−

∫ T

t

z1
t dWs, (8)

η2
t = hB(BT )−

∫ T

t

f(η2
s) ds−

∫ T

t

z2
t dWs. (9)

Finally, setting ηAt = η1
tχΩA

, zAt = z1
t χΩA

, ηBt = η2
tχΩB

,
zBt = z2

t χΩB
, and multiplying (8) by χΩA

and (9) by χΩB
,

we obtain that (ηAt , z
A
t ) and (ηBt , z

B
t ) solve (6) and (7),

respectively. It remains to remark that summing equa-
tions (6) and (7) gives original BSDE (1) with (ηt, zt)
(defined as ηt = ηAt + ηBt and zt = zAt + zBt ) being its
solution.
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III. NUMERICAL REALIZATION

We employed SSA to produce data for validation of
the BSDE method. Specifically, we performed a number
of numerical simulations using the software COPASI [12],
which implements the SSA. The following four cases were
simulated: a self-regulating gene, networks of two and five
interacting genes, and a bistable network of two genes.
For all the networks, the distributions of protein num-
bers produced by the two methods, were compared at
two middle time points by analyzing visually the corre-
sponding histograms plotted jointly, and, where it was
possible, by comparing the means and the standard de-
viations. Also, we studied how precise the initial pro-
tein numbers for the SSA were recovered by the BSDE
method.

In all simulations, the time is measured in seconds. We
used the default options for numerics of the SSA imple-
mented in COPASI.

At time T = 200 (T = 250 for the bistable case), the
distribution obtained by the SSA for each type of protein
is used to produce a histogram which we take as the input
data for our method.

A. Protein production

In equation (1), the function f(ηt) represents phe-
nomenologically the protein synthesis and degradation.
In practice, the protein synthesis is regulated due to the
gene interaction with transcription factors. However, for
simplicity, we consider coupled transcription-translation,
i.e. we neglect the translational regulation, and only take
into account the transcriptional regulation. The regula-
tory effect onto gene i is represented by a sigmoidal func-
tion multiplied by νi. Sigmoidal functions have been fre-
quently adopted for phenomenological modeling of the
transcriptional regulation (see [13–20]). Further, we as-
sume that the degradation of each type of protein is of
the first order and that for i-th protein it occurs at rate
ρi [21]. Namely, for two or more genes in the network,
the synthesis/degradation rate assumes the form

fi(η) = νi
1

1 + exp(−Θi)
− ρiηi, (10)

where the first term is the rate of proteins synthesis, and
the second term is the proteins degradation rate. Here
Θi =

∑n
j=1Aijηj , where Aijηj represents the net regula-

tory effect of gene j on gene i with Aij being the strength
of this regulation, while Θi is the total regulatory input
to gene i. The n× n weight matrix {Aij} was the previ-
ously introduced in [20]. Its element Aij can be negative,
positive, or null, indicating repression, activation or non-
regulation, respectively, of gene i by gene j. If Θi goes
to the negative infinity, the synthesis rate tends to zero,
and it tends to its maximum value νi for Θi going to the
positive infinity. The exponential term in the denomina-
tor appears due to the Arrhenius law with Θi indicating

the synergestic effect of binding of multiple transcription
factors on gene’s enhancer ([22]).

In case of one protein (n = 1), we consider a positive
self-regulating gene whose synthesis rate is given by a Hill
function multiplied by the maximum protein synthesis
rate ν [21, 23–25] , and the degradation rate is a linear
function with the rate constant ρ:

f(η) = ν
aη2

1 + aη2
− ρη. (11)

Here a is a positive constant indicating the strength of
the self-regulation.

B. Numerical solution to the PDE

Problem (5) is solved numerically using the finite-
difference discretization with the implicit treatment of
the linear terms (the Crank-Nicolson method) and the
explicit treatment of the nonlinear terms. In all compu-
tations the time step is taken 10−4, and the uniform spa-
tial grid (including the boundaries) is constituted of 1025
points. We verified that doubling the spatial and the tem-
poral resolutions shows no qualitative difference.

C. Self-regulating gene

We started by simulating the protein level dynamics
for a self-regulating gene. The synthesis/degradation rate
f(η), given by (11), was taken with the parameters a = 1,
ν = 1, and ρ = 0.001.

The network model for the self-regulating gene is
shown on the diagram below with fs and fd standing
for the synthesis and degradation rates, respectively.

Gene Protein ∅
fs fd

a

The SSA simulation with 20000 trajectories started at
time t0 = 0, and the values of protein numbers for each
trajectory were registered at times t = 50, 100, and 200.
Next, we represented the SSA data at time T = 200 in
the form of a histogram H. Using our technique of final
data approximation described in Section IIA, we found
a function h, so that 20000 realizations of the random
variable h(WT ) give rise to a histogram very close to
H. We took h(WT ) as the final data for BSDE (1) and
applied the BSDE method to simulate 20000 trajectories
backwards in time starting from T = 200.

D. Networks of interacting genes

We tested our method for gene regulatory networks
consisting of two and five genes. The network models
were taken as in the diagram below.
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Gi Pi

Pj

∅

Gj ∅

fs,i fd,i

Aii

Aji

Aij

Ajj

fs,j fd,j

Here gene i, denoted by Gi, generates proteins of type
i, which we denote by Pi, with the synthesis rate fs,i
given by the first term in (10). Proteins Pi disappear with
the degradation rate fd,i given by the second term in (10).
Proteins Pi have a regulatory effect on gene j (denoted
by Gj), which is represented by the regulation coefficient
Aji. This holds for any pair Gi − Pj . In particular, it
is assumed that gene Gi generates only protein Pi, i.e.
gene Gi cannot generate proteins of other types. This
means that the number of genes equals to the number of
protein types, i.e. to the dimension of the random vector
(η1, . . . , ηn), where n is either two or five.

For the network of two genes we considered the fol-
lowing values of parameters: ν1 = 0.5, ν2 = 1, ρ1 =
10−3, ρ2 = 5 · 10−4, A11 = 2, A12 = −1, A21 = 1,
A22 = 0. For the network of five genes we consid-
ered ν = (0.5, 1, 1, 1, 0.5), ρ = (10−3, 5 · 10−4, 10−3, 5 ·
10−4, 10−3), A1 = (2,−1, 0, 1, 0), A2 = (1, 0, 0, 0, 2),
A3 = (1, 0, 1, 0, 0), A4 = (0, 0, 1, 1, 1), A5 = (0, 1, 0, 0, 1),
where the i-th component of ν is νi, the i-th component
of ρ is ρi, and Ai denotes the i-th line of the matrix A,
i = 1, 2, 3, 4, 5. The final time T equals to 200 in both
simulations.

The numerical algorithm was exactly the same as for
the self-regulating gene. The number of trajectories in
both methods was taken 20000. Specifically, the SSA
simulation started at t0 = 0, and the values of protein
numbers for each trajectory were determined at times
t = 50, 100, and 200. The distribution at final time
T = 200 was approximated by h(WT ), and the BSDE
method provided the distributions at t = 50 and 100,
which were compared with the distributions of the SSA
data.

E. Bistability

As we mentioned Section II B, in some of the SSA sim-
ulations we were able to observe the bistability. It hap-
pened, for example, when we performed the SSA simu-
lation with the following set of parameters: ν1 = ν2 = 1,
ρ1 = 5 · 10−3, ρ2 = 5 · 10−4, A11 = 1, A12 = −2,
A21 = −1, A22 = 1, and with the initial protein numbers
η1(0) = 100, η2(0) = 50 (see Fig. 1). As before, we consid-
ered 20000 trajectories. At the final timepoint T = 250
we observed a bimodal distribution for both genes. As

we observe in Fig. 1 the “blue” and the “red” branches
are completely separated at T = 250, while there is a
slight overlapping between the “black” and the “green”
branches, which was also observed in histograms. In our
BSDE model for bistability, described in Section II B, we
split the set of random parameters Ω into two disjoint
subsets ΩA and ΩB . Recall that ω ∈ Ω parametrizes a
numerical experiment, and thus, we split the numerical
experiments into two groups, the first parametrized by
ω ∈ ΩA, and the second by ω ∈ ΩB , To perform this split-
ting in practice, it suffices to separate the final data based
on the observations for the first gene, i.e. to find a thresh-
old completely separating the modes (e.g. 80 according
to Fig. 1). That is, if at T = 250 the protein number is
bigger than 80 we attribute ω ∈ ΩA to this experiment,
and ω ∈ ΩB otherwise. Thus, we obtain two data sets
which are treated separately by exactly the same proce-
dure that we described in Section IIID, with the only
difference that the timepoints for comparison with the
SSA were taken t = 150 and 200. After we completed
the computation for each data set by the BSDE method,
we joined the data from two computations at timepoints
t = 150 and t = 200.

IV. RESULTS

a. Self-regulating gene. In Fig. 2, we show the his-
togram H for the SSA data and its approximation h(WT )
at time T = 200 which demonstrates that our final data
approximation technique is quite precise. The distribu-

Protein number
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0.015
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T=200, Self-regulating gene, Final data

Approximation
SSA data

FIG. 2. Histograms for the SSA data and for the approxima-
tion h(WT ) at time T = 200.

tions of the protein numbers were determined at t = 50
and t = 100, and the corresponding histograms were plot-
ted jointly with histograms for the SSA data as shown in
Fig. 3.

The means µ and the standard deviations σ for the
data obtained by the both methods are presented in Ta-
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Protein number
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SSA(b)

FIG. 3. Distributions of protein numbers for the self-
regulating gene at t = 50 (a) and t = 100 (b) for the BSDE
method and the SSA.

ble I. Although obtained by very different methods, the
means and the standard deviations are in good agree-
ment. The percent difference errors were computed as
follows:

Errµ = |(µSSA − µBSDE)/µSSA|,
Errσ = |(σSSA − σBSDE)/σSSA|.

Some trajectories of the BSDE solution ηt, represent-
ing the evolution of the number of proteins generated
by a self-regulating gene, are shown in Fig. 4. This is
an illustrative example of what the output of the BSDE
method looks like, and how the trajectories of ηt return
to the same point which is close to 500. This is a good
approximation of the protein number that we used as the
starting point for the SSA, and therefore, the prediction
of this number by the BSDE method is very precise.
b. Networks of interacting genes. In Figures 5 and

7 we show the distributions at t = 50 and 100 for some
genes of the networks of two and five genes, respectively.

Also, we compare the means and the standard devia-
tions at t = 50 and 100 for the data obtained by the both

TABLE I. The means µ and standard deviations σ for the dis-
tribution of protein numbers for a self-regulating gene com-
puted at t = 0, 50, and 100. At T = 200 we present µ and
σ obtained by using the final data approximation technique
in comparison with the SSA data. The data obtained by the
BSDE method are in the second and the third columns, and
the data obtained by the SSA are in the fourth and the fifth
columns. The last two columns present the percent difference
errors.

BSDE SSA %Errors
Time µ σ µ σ Err µ Err σ
0 500.75 0 500 0 0.15% –
50 587.13 10.99 586.44 10.53 0.11% 4.35%
100 671.37 15.30 670.78 14.78 0.08% 3.51%
200 833.80 20.46 833.27 20.52 0.06% 0.31%

FIG. 4. Trajectories of the stochastic process ηt, describing
the protein number for the self-regulating gene, obtained by
the BSDE method.

methods. At final time T = 200 we compare the means
and the standard deviations obtained by the SSA and by
our technique of final data approximation. The results
are presented in Tables II and III.
c. Bistable network of two genes. At timepoints t =

150 and t = 200 we compare the distributions with the
SSA in the form of histograms (see Fig. 7). We observe a
good agreement. Furthermore, we compare the values for
initial protein numbers predicted by the FBSDE method
with the actual initial protein numbers used in the SSA
simulation. The BSDE simulation of the “blue” branch
(Fig. 1) provides the initial number 103.83, while the
BSDE simulating of the “red” branch provides the initial
number 100.32 which are close to the initial number used
in the SSA simution (which is 100). Similar results are
obtained for the second gene. The results are presented
in Table IV.
d. Prediction of the initial value. As we mentioned

before, the BSDE method can be used to approximate
the initial number of proteins. Since the solution to (1)
can be represented as ηt = θ(t,Wt), where θ is the solu-
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FIG. 5. Distributions of protein numbers at t = 50 (a) and
t = 100 (b) for the 2nd gene of the network of two genes. The
distributions are obtained by the BSDE method and the SSA.

tion to final value problem (2), then, as it is implied by
the BSDE method, the initial protein number η0 is deter-
ministic and equals to θ(0, 0). Tables I–IV, show that the
BSDE method provides a good approximation for the ini-
tial number of proteins used as an initial condition in the
SSA. The percent difference error is the biggest, 6, 89%,
when the initial number of proteins is 5 (see Table III),
which is the smallest considered in our simulations. The
percent difference error decreases when the initial protein
number increases, and it equals to 0, 15% when we deal
with large initial protein numbers as in the case of the
self-regulating gene (see Table I).

V. DISCUSSION

In this article we presented the BSDE method to model
simple gene expression networks. As a backward method,
it relies on the specification of a gene network model
parametrization and on endpoint conditions (as opposed
to initial conditions). It can therefore be applied when
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FIG. 6. Distributions of protein numbers at t = 50 (a) and
t = 100 (b) for the 4th gene of the network of five genes. The
distributions are obtained by the BSDE method and the SSA.

we know, or can measure, the distribution of proteins
at a given time, and we want to determine the distri-
butions at previous time points. In the BSDE method
validation simulations, a good agreement was found be-
tween control and inferred protein level distributions, in
terms of mean values and, in most cases, standard de-
viations. The BSDE method is therefore a powerful tool
for time reversed simulations in gene networks / systems
biology, where frequently an endpoint of interest is easily
identifiable (and measured) and the aim is in assessing
the prior (causal) conditions. Another advantage of our
method is that it allows to determine, and even to sim-
ulate if necessary, the trajectory of the noise process. To
our knowledge, the noise process is usually unknown and
cannot be determined by any forward method. Obtaining
the noise is the subject of our future work.
a. Determining the final condition. The final condi-

tion for (1) is required to have the form h(WT ), where
T is the fixed final time. In Section IIA, we described
the construction of a piecewise linear function h so that
h(WT ) approximates a given final distribution provided
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TABLE II. The first four columns contain the means µ and
the standard deviations σ for the protein numbers of the net-
work of 2 genes at t = 0, 50, and 100 obtained by the BSDE
method and the SSA. At T = 200 we present µ and σ obtained
by using the final data approximation technique in compari-
son with the SSA data. The last two columns conintain the
percent difference errors.

Network of 2 genes
BSDE SSA %Errors

t µ σ µ σ Err µ Err σ
1st gene

0 50.22 0 50.00 0 0.44% –
50 72.24 6.24 71.88 5.14 0.50% 21.58%
100 92.99 8.39 92.75 7.21 0.25% 16.41%
200 131.85 10.81 131.23 10.94 0.47% 1.16%

2nd gene
0 25.43 0 25.00 0 1.74% –
50 74.29 7.54 73.79 7.10 0.67% 6.22%
100 121.69 10.39 121.28 9.90 0.33% 4.93%
200 213.48 13.87 212.84 13.94 0.30% 0.58%

TABLE III. The data representation is the same as in Table II.
Network of 5 genes

BSDE SSA %Errors
t µ σ µ σ Err µ Err σ

1st gene
0 50.80 0 50 0 1.61% –
50 72.70 5.75 71.90 5.19 1.11% 10.78%
100 93.54 7.72 92.86 7.19 0.73% 7.37%
200 132.23 9.89 131.73 9.92 0.38% 0.32%

2nd gene
0 25.51 0 25 0 2.04% –
50 74.25 7.52 73.78 7.14 0.63% 5.31%
100 121.79 10.35 121.39 9.93 0.33% 4.21%
200 213.42 13.94 212.92 13.98 0.23% 0.28%

3rd gene
0 10.58 0 10 0 5.83% –
50 58.82 7.77 58.31 6.98 0.89% 11.27%
100 104.72 10.43 104.16 9.86 0.53% 5.73%
200 189.94 13.36 189.43 13.39 0.27% 0.28%

4th gene
0 5.34 0 5 0 6.89% –
50 54.58 7.51 54.21 7.01 0.68% 7.04%
100 102.61 10.33 102.27 9.95 0.33% 3.81%
200 195.17 13.92 194.67 13.95 0.26% 0.25%

5th gene
0 50.66 0 50 0 1.32% –
50 72.57 5.72 71.99 5.19 0.80% 10.24%
100 93.41 7.69 92.89 7.21 0.55% 6.58%
200 132.12 9.84 131.61 9.87 0.38% 0.31%

by the SSA simulation. In practice, to obtain a distribu-
tion of protein amounts at time T , a large population of
genetically identical cells is usually considered.
b. Diffusion process approximation. We note that

the stochastic process describing the protein number is
an integer-valued pure-jump process which may change
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FIG. 7. Distributions of protein numbers at t = 150 (a) and
t = 200 (b) for the 2nd gene of the network of 2 genes for the
bimodal distribution. The distributions are obtained by the
BSDE method and the SSA.

TABLE IV. The first line contains the data for initial protein
numbers for the first gene. The value µA is obtained by a
BSDE simulation of the “blue” branch, while µB is obtained
by a BSDE simulation of the “red” branch. The second line
contains the data for initial protein numbers for the second
gene gene, the representation of the data is similar. The last
two columns contain the percent difference errors.

Bistability in 2-genes networks
BSDE SSA %Errors

Gene µA µB µ Err µA Err µB

1st 103.83 100.32 100 3.83% 0.32%
2nd 50.36 50.78 50 0.71% 1.55%

its values by ±1 at time, while the solution to (1) is a
continuous process. However, assuming that the number
of proteins of each type is sufficiently larger than 1, and
the waiting times until the next synthesis or degradation
are much smaller than the length of the interval [t0, T ],
we can model the synthesis and degradation of proteins
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employing continuous diffusion processes, i.e. by BSDEs
with Brownian drivers as (1). A diffusion process approx-
imation for the dynamics of amounts of molecules was
undertaken, for example, in [26–28].
c. Choice of rate functions. We would like to em-

phasize that the choice of rate functions of form (10) is
not important for the BSDE method to work. Although
in our simulations we (as well as many other authors [13–
20]) used rate functions of form (10), the BSDE method
works with any continuous function.

VI. APPENDIX

BSDE versus SDE

One may think that BSDE (1) is equivalent to a usual
(forward) SDE, since, similar to ODEs, knowing the final
condition instead of the initial should lead to an equiva-
lent problem. However, this is not the case if we require
the solution to be adapted with respect to a Brownian
motion (i.e. represented as a function of a Brownian mo-
tion). The requirement for the pair (ηt, zt) to be adapted
implies that (under some additional analytical assump-
tions) BSDE (1) has a unique solution pair (ηt, zt) [10].
Therefore, (1) is a different object than the traditional

(forward) SDE. One may not be convinced why we should
require from the solution ηt to be adapted. Gillespie [26]
proposed to model the dynamics of amounts of molecules
changing during a chemical reaction by a forward SDE
known as the Chemical Langevin Equation

ηt = ζ +

∫ t

t0

f(ηs) ds+

∫ t

t0

zs dWs,

where ζ is the initial condition at time t0. However, if
ηt solves this equation, the theory of SDEs implies that
this solution is adapted. The process zt also must be
adapted to ensure the existence of the stochastic integral.
Therefore, the requirement for the solution pair (ηt, zt)
to BSDE (1) to be adapted is a natural consequence of
the Langevin dynamics. In this article, we propose to use
a BSDE for modeling simple gene expression networks
due to its property to have a pair of stochastic processes
(ηt, zt) as the unique solution. The latter fact is impor-
tant since the noise generating process zt is usually un-
known.
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