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Abstract. This work focus on su�cient conditions of optimality for an
optimal control problem. A refined maximum principle condition which
guarantees weak local optimality of control processes for a�ne control
systems with a polyhedral set of controls is introduced. This refined
maximum principle condition expresses that the control is uniquely de-
fined for almost all instants of time and the behavior of adjoint variables
is rather regular. Several examples are presented to illustrate such suf-
ficient condition.

1. Introduction

In this work we focus on su�cient conditions of optimality for an opti-
mal control problem. Traditionally su�cient conditions involve second order
derivatives (see, for example, [3] and the references therein). However, for
certain classes of problems the Pontryagin maximum principle [4] is by itself
a su�cient condition. This is well known for linear control problems with
convex cost and convex constraints. This su�ciency of the Pontryagin max-
imum principle is also observed in certain classes of non convex problems of
hydro-electric power stations management [1].

In the optimal control context, a problem satisfying conditions of existence
theorems can be solved determining all trajectories satisfying Pontryagin’s
maximum principle and choosing the optimal one. In practice this can be
very hard and it would be important to understand if a given trajectory is
optimal or not. Here, we introduce a refined maximum principle condition

that for a�ne control systems with a polyhedral set of controls guarantees
weak local optimality of control processes. This refined maximum principle
condition means that the control is uniquely defined for almost all instants
of time and the behavior of adjoint variables is rather regular. We illustrate
this su�cient condition with di↵erent examples.

2. Preliminary considerations

We start by introducing some notation that shall be used throughout the
paper. The Euclidean norm of a point x and the inner product between x, y

are denoted respectively by |x| and hx, yi. The norm |·|
p

means the L
p

-norm,
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with 1  p  1. The set of non negative real numbers is represented by R+

and C([a, b];D) denotes the set of continuous functions f : [a, b] ! D. Given
a matrix A, the transpose of A is represented by A

⇤ and the identity matrix
is represented by I. The Lebesgue measure of a given set C is represented
by meas(C).

A set C ⇢ R

m is a polyhedral set if it defined as the set of solutions of a
linear inequalities system, i.e., C = {x 2 R

m : hx, c
i

i  ↵

i

, i = 1, k}, where
c

i

is a fixed vector in R

m and ↵
i

is a fixed real constant, for every i = 1, k.
Bounded polyhedral sets are referred to as polyhedrons.

Now we proceed with an analysis of Pontryagin’s maximum principle as
a su�cient condition and recall that such maximum principle guarantees
directional optimality of control processes. Consider the following optimal
control problem in Mayer form

�(x(T )) ! inf,(2.1)

ẋ = f(t, x) + g(t, x)u, u 2 U,(2.2)

x(0) = x0,(2.3)

where T is fixed and x0 is a given point in R

n. Here, and throughout the
paper, � : Rn ! R, f : R ⇥ R

n ! R

n and g : R ⇥ R

n ! R

n⇥m are twice
continuously di↵erentiable functions and U ⇢ R

m is a polyhedral set.
As usual in the optimal control framework, we refer to a measurable

function u : [0, T ] ! R

m that satisfies u(t) 2 U, a.e., as a control function

u(·). A control process (u(·), x(·)) (some times refereed simply by process)
comprises a control function u(·) and a state trajectory x(·) that is a solution
to the di↵erential equation ẋ = f(t, x) + g(t, x)u(t).

Denote by x(·, ū(·)) the solution to the Cauchy problem

(2.4) ẋ = f(t, x) + g(t, x)(û+ ū), x(0) = x0.

Set x̂(·) = x(·, 0). Then we have, for some di↵erence function r : [0, T ] ⇥
R

m ! R

n,

(2.5) x(t, ū(·)) = x̂(t) + x̄(t) + r(t, ū(·)),
where x̄(·) is the solution to the Cauchy problem

(2.6) ˙̄
x = (r

x

f(t, x̂) +r
x

(g(t, x̂)û))x̄+ g(t, x̂)ū, x̄(0) = 0.

From the Filippov theorem [2] we obtain

(2.7) |r(t, ū(·))|  (const)

Z
T

0
⇢(t, ū(·))dt,

where ⇢(t, ū(·)) represents the following distance

⇢(t, ū(·)) = | ˙̂x(t) + ˙̄
x(t)� f(t, x̂(t) + x̄(t))� g(t, x̂(t) + x̄(t))(û(t) + ū(t)))|

 1

2
max |r2

f(t, x)||x̄(t)|2 + 1

2
max |r2

g(t, x)||x̄(t)|2(|û(t)|+ |ū(t)|)

+max |rg(t, x)||x̄(t)||ū(t)|.



SUFFICIENCY OF PMP 3

Since

(2.8) |x̄(t)|  (const)

Z
T

0
|ū(t)|dt,

we have

(2.9) |r(t, ū(·))|  (const)

✓Z
T

0
|ū(t)|dt

◆2

.

Let û(t) 2 U and û(t) + ↵ū(t) 2 U , t 2 [0, T ], ↵ 2 [0,↵0]. Then, since

lim
↵!0

↵

�1
r(t,↵ū(·)) = 0,

we obtain

�(x(T,↵ū(·))) = �(x̂(T )) + hr�(x̂(T )),↵x̄(T ) + r(T,↵ū(·))i

(2.10) +
1

2
h↵x̄(T ) + r(T,↵ū(·)),r2

�(x
↵

)(↵x̄(T ) + r(T,↵ū(·)))i,

where x

↵

= (1� ✓)x̂(T ) + ✓x(T,↵ū(·)) for some ✓ 2 [0, 1].
Let �(t, s) be the fundamental matrix of the system

(2.11) ˙̄
x = (r

x

f(t, x̂) +r
x

(g(t, x̂)û))x̄.

Set p(t) = ��⇤(T, t)r�(x̂(T )). Then we have

(2.12) hr�(x̂(T )), x̄(T )i = �
Z

T

0
hp(t), g(t, x̂(t))ū(t)idt.

Assume that

(2.13)

Z
T

0
hp(t), g(t, x̂(t))ū(t)idt < 0

whenever ū(t) 2 (U � û(t)) and ū(·) 6= 0. Then we get

�(x(T,↵ū(·))) > �(x̂(T ))

for all ↵ > 0 su�ciently small, i.e. the condition

(2.14) hp(t), g(t, x̂(t))ui < hp(t), g(t, x̂(t))û(t)i, u 2 U, u 6= û(t),

implies that û(·) is a directional minimizer. Condition (2.14) can be inter-
preted as the maximum principle uniquely defining the control.

Two main questions arise. What shall we impose more to guarantee local
optimality of û, not merely directional optimilaty, and what is the class of
control systems for which such condition applies. We will work in the class
of a�ne control systems and polyhedral set of controls. The following two
examples show that this class is a natural one and one hardly expect to
enlarge it.
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Examples. Consider the optimal control problem for a non a�ne system:

x2(1)� 2x21(1) ! inf,

ẋ1 = u,

ẋ2 = u

2
,

u 2 [�1, 1]

x1(0) = x2(0) = 0.

The control û ⌘ 0 satisfies the maximum principle. However it is not a
local minimizer. Indeed, consider the control u ⌘ ✏. For the corresponding
trajectory, we have

x2(1)� 2x21(1) = �✏2 < 0.

Hence for the systems of general form ẋ = f(t, x, u), the maximum principle
cannot be a su�cient condition.

The following example shows that even for a�ne control systems the
maximum principle is not a su�cient optimality condition. Consider the
optimal control problem

x1(1) ! min,

ẋ1 = x3 � x

2
2,

ẋ2 = u2,

ẋ3 = u3,

u

2
2 + (u3 � 1)2  1,

x

i

(0) = 0, i = 1, 2, 3.

The control (û2(t), û3(t)) ⌘ (0, 0) is a directional minimizer. Indeed, the
solution to the adjoin system is p1 = �1, p2 = 0, p3 = t � 1, and the
maximum condition takes the form (t�1)u3 < 0, whenever u3 > 0. However,
the control (û2(t), û3(t)) is not a minimizer. Indeed, consider the control
u2 =

p
1� (✏� 1)2, u3 = ✏. Obviously we have x2 = t

p
1� (✏� 1)2,

x3 = t✏, x1(1) = �✏/6 + ✏

2
/3 < 0, ✏⌧ 1.

However, as we shall see in the next section, for a�ne systems with poly-
hedral sets of controls it is possible in many situations to introduce a refined
version of the maximum principle as a su�cient optimality condition.

3. Refined maximum principle

We say that the control û(·) satisfies a refined maximum principle, if there
exist a non-negative measurable function � : [0, T ] ! R+ and constants
� > 0 and a0 > 0 such that

(1) max
u2U (hg(t, x̂(t))(u� û(t)), p(t)i+ �(t)|u� û(t)|)  0;

(2) meas{t 2 [0, T ] | �(t) < a}  �a, whenever a 2 [0, a0],
(3) meas{t 2 [0, T ] | �(t) = a} = 0, whenever a > 0.
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Observe that the first inequality implies the maximum principle condition

max
u2U

(hg(t, x̂(t))(u� û(t)), p(t)i  0.

Let us see some examples. Assume that g = I.

(1) Let U = {(u1, u2) 2 R

2 | u21 + u

2
2  1}, û(t) = (cos t, sin t), and

p(t) = (cos t, sin t), t 2 [0, 2⇡]. In this case �(t) ⌘ 0 and the refined
maximum condition is not satisfied.

(2) Let U = {(u, 0) 2 R

2 | u 2 [�1, 1]}, û(t) = sign cos t, and p(t) =
(cos t, sin t), t 2 [0, 2⇡]. In this case �(t) = | cos t| and the refined
maximum condition is satisfied with � = 2⇡ and a0 = 1, for example.

The following result establishes conditions useful to verify the refined
maximum principle property. Let U = co{u1, . . . , uM}, 0 = t0 < t1 . . . <

t

L

= T , û(t) = u

ml , t 2]t
l

, t

l+1[, l = 0, L� 1, q(t) = (g(t, x̂(t)))⇤p(t),
M

l

= {m | hq(t
l

), u
m

i = max
u2U hq(tl), ui}, l = 0, L.

Lemma 3.1. Assume that q(·) is a continuous and piece-wise continu-

ously di↵erentiable function, that the maximum principle uniquely defines

the control û(·) (in the sense that hq(t), u� u

mli < 0, 8t 2]t
l

, t

l+1[, 8u 2 U ,

u 6= u

ml), and

max
m2Ml
m 6=ml

hq̇(t
l

+ 0), u
m

� u

mli < �2�0, l = 0, L� 1,(3.1)

min
m2Ml

m 6=ml�1

hq̇(t
l

� 0), u
m

� u

ml�1i > 2�0, l = 1, L.(3.2)

Then the refined maximum principle condition is satisfied.

Proof. Let �t > 0, u =
P

M

m=1 �mu

m

, u 6= u

ml , �m � 0,
P

M

m=1 �m = 1.
Using (3.1) we have

hq(t
l

+�t), u� u

mli = hq(t
l

+�t),
X

m 6=ml

�

m

(u
m

� u

ml)i(3.3)

=
X

m2Ml
m 6=ml

�

m

(hq(t
l

), u
m

� u

mli+�thq̇(t
l

+ 0), u
m

� u

mli+ o(�t))(3.4)

+
X

m/2Ml

�

m

hq(t
l

+�t), u
m

� u

mli(3.5)

 �
X

m2Ml
m 6=ml

�

m

�0�t+
X

m/2Ml

�

m

hq(t
l

+�t), u
m

� u

mli,(3.6)

whenever �t is small enough.
If m /2 M

l

, then we have hq(t
l

), u
m

� u

mli < 0. Since a(t) = hq(t), u
m

�
u

mli is continuous and a(t
l

) < 0, it comes a(t
l

+ �t) = hq(t
l

+ �t), u
m

�
u

mli < 0, whenever �t is small enough. As a consequence we can write
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hq(t
l

+�t), u
m

� u

mli < ��2, for some �1 > 0. So, we obtain

hq(t
l

+�t), u� u

mli  �
X

m2Ml
m 6=ml

�

m

�0�t�
X

m/2Ml

�

m

�1

 �
X

m2Ml
m 6=ml

�

m

�0�t�
X

m/2Ml

�

m

�1�t  �
X

m 6=ml

�

m

�2�t

for some �2 > 0, whenever �t is small enough. Since

|u� u

ml | =

������

X

m 6=ml

�

m

(u
m

� u

ml)

������

X

m 6=ml

�

m

max
m 6=ml

|u
m

� u

ml |,

we get

hq(t
l

+�t), u� u

mli  ��2

������

X

m 6=ml

�

m

(u
m

� u

ml)

������
max
m 6=ml

|u
m

� u

ml |
�t

= ��2
|u� u

ml |
max
m 6=ml

|u
m

� u

ml |
�t.

Analogously from (3.2) we obtain

hq(t
l

��t), u� u

ml�1i  ��3
|u� u

ml |
max

m 6=ml�1

|u
m

� u

ml�1 |
�t.

Hence the function �(t) from the refined maximum principle can be defined
as

�(t) = �̄

✓
t

l+1 � t

l

2
�
����t�

t

l+1 + t

l

2

����

◆
, t 2 [t

l

, t

l+1], l = 0, L� 1,

where �̄ > 0 is su�ciently small. ⇤

Main inequality. The following lemma provides an inequality which will
be of particular relevance to prove su�cient conditions of optimality.

Lemma 3.2. Let � be as in the refined maximum principle condition. Then

(3.7)

Z
T

0
�(t)w(t)dt� c

✓Z
T

0
w(t)dt

◆2

� 0

whenever |w(·)|1 < 1/(2�c).

Proof. Consider the following optimal control problem
Z

T

0
�(t)w(t)dt� cy

2(T ) ! inf,

ẏ = w, w 2 [0, ✏], y(0) = 0.
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Assume that the optimal control ŵ(·) is di↵erent from zero. There exist
� � 0 and an absolutely continuous function  (·) such that

 ̇ = 0,  (T ) = 2�cŷ(T );

max
w2[0,✏]

( (t)� ��(t))w = ( (t)� ��(t))ŵ(t),

�+ | (·)| > 0.

Obviously � 6= 0. Set � = 1. Hence

ŵ(t) =

⇢
✏  (t) > �(t),
0  (t) < �(t),

and
 (t) ⌘ 2cŷ(T ) = 2c✏µ,

where
M = meas{t | �(t) <  (t)}.

Thus, we have

M = meas{t | �(t) < 2c✏M}  2�c✏M.

Taking ✏ < 1/(2�c) we obtain a contradiction. Thus the optimal control is
zero. This implies (3.7) ⇤
Su�ciency of the refined maximum principle. Consider the optimal
control problem (2.1)-(2.3).

Theorem 3.3. Let (û(·), x̂(·)) be an admissible control process satisfying the

refined maximum principle, were p(·) is solution to the Cauchy problem

ṗ(t) = � (r(f(t, x̂(t)) + g(t, x̂(t))û(t))⇤ p(t), p(T ) = �r�(x̂(T )).
Then (û(·), x̂(·)) is a weak local minimizer in the following sense: there exists

✏ > 0 such that, for any admissible control process (u(·), x(·)) satisfying

|u(·)� û(·)|1 < ✏, the inequality �(x(T )) � �(x̂(T )) holds.

Proof. Indeed, from (2.8), (2.9), (2.12), and the refined maximum princi-
ple we have

�(x(T, ū(·))) � �(x̂(T )) + hr�(x̂(T )), x̄(T )i � (const)

✓Z
T

0
|ū(t)|dt

◆2

= �(x̂(T ))�
Z

T

0
hp(t), g(t, x̂(t))ū(t)idt� (const)

✓Z
T

0
|ū(t)|dt

◆2

� �(x̂(T )) +

Z
T

0
�(t)|ū(t)|dt� (const)

✓Z
T

0
|ū(t)|dt

◆2

.

Applying Lemma 3.2, we obtain the result. ⇤

Let us see some examples showing the relevance of di↵erent aspects of the
refined maximum principle.
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Examples. Consider the optimal control problem

x1(1) ! min,

ẋ1 = x3 � x

2
2,

ẋ2 = u2,

ẋ3 = u3,

|u2|+ |u3 � 1|  1,

x

i

(0) = 0, i = 1, 2, 3.

The control (û2(t), û3(t)) ⌘ (0, 0) is a weak minimizer. Indeed, the solution
to the adjoin system is p1 = �1, p2 = 0, p3 = t�1, and the refined maximum
condition is satisfied:

p3u3 = (t� 1)u3  �(1� t)
|u2|+ |u3|

2
.

Here �(t) = (1� t)/2.

The second condition in the refined maximum principle is essential. To
illustrate that, consider the optimal control problem

x1(⇡/2) ! min,

ẋ1 = x3 � x

2
2,

ẋ2 = x3 + u,

ẋ3 = �x2,

u 2 [�1, 0],

x

i

(0) = 0, i = 1, 2, 3.

The control u ⌘ 0 satisfies the maximum principle with p1 = �1, p2 =
1 � sin t, p3 = � cos t. The function � in this case is (1 � sin t). Such
function does not satisfy the second condition. Take the control functions
sequence

u

n

(t) =

⇢
0, t 2 [0,⇡/2� 1/n[,
�1, t 2 [⇡/2� 1/n,⇡/2].

Then, for the corresponding trajectory, we have

x1(⇡/2) = � 1

6n3
+ o

✓
1

n

3

◆
,

i.e., u ⌘ 0 is not a local minimizer.

The following example shows that the L1-norm in Theorem 3.3 can not
be replaced by L

p

-norm, with 1  p < 1. Consider the optimal control
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problem

x1(1)� x

2
2(1) ! min,

ẋ1 = x2,

ẋ2 = u,

u 2 [0, 1],

x

i

(0) = 0, i = 1, 2.

The zero control satisfies the refined maximum principle with p1 = �1 and
p2 = t� 1. Take the control functions sequence

u

n

(t) =

⇢
0, t 2 [0, 1� 1/n[,
1, t 2 [1� 1/n, 1].

Then, for the corresponding trajectories, we have

x1(1)� x

2
2(1) =

Z 1

1�1/n

Z
t

1�1/n
dsdt�

 Z 1

1�1/n
dt

!2

= � 1

2n2
.

4. Problems with constraints

The generalization of the refined maximum principle to optimal control
problems which accommodate not only final and initial but also path-wise
state constraints is now established.

Consider the problem

�(x(T )) ! inf(4.1)

ẋ = f(t, x) + g(t, x)u, u 2 U(4.2)

x(t) 2 C,(4.3)

x(0) 2 C0, x(T ) 2 C1.(4.4)

Theorem 4.1. Let (û(·), x̂(·)) be an admissible control process. Assume

that there exist a function of bounded variation p(·) and a vector valued

Borel measure µ defined in [0, T ], satisfying the following conditions:

dp(t) = �r
x

(f(t, x̂(t)) + g(t, x̂(t))û(t))⇤p(t)dt+ dµ(t),(4.5)
Z

T

0
hx(t)� x̂(t), dµ(t)i  0, for all admissible trajectories x(·)(4.6)

hp(0), c0 � x̂(0)i  �(const)|c0 � x̂(0)|2�✏

, c0 2 C0, ✏ 2]0, 1],(4.7)

h�p(T )�r�(x̂(T )), c1 � x̂(T )i  0, c1 2 C1.(4.8)

Moreover the refined maximum principle is satisfied. Then (û(·), x̂(·)) is

weakly locally optimal.

Weak local optimality of (û(·), x̂(·)) must be interpreted in the sense de-
fined before: there exists ✏ > 0 such that for any admissible control process
(u(·), x(·)) satisfying |u(·) � û(·)|1 < ✏ the inequality �(x(T )) � �(x̂(T ))
holds.
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The theorem do not impose any restriction on the support of the mea-
sure µ, usually present in necessary conditions. This restriction is already
contained in condition (4.6). Observe also that this condition can usually
be easily checked in practical examples.

Proof. Let (û(·) + ū(·), x(·)) be an admissible control process. We have

�(x(T )) � �(x̂(T )) + hr�(x̂(T )), x(T )� x̂(T )i � (const)|x(T )� x̂(T )|2.

Using (4.8) we obtain

�(x(T )) � �(x̂(T ))� hp(T ), x(T )� x̂(T )i � (const)|x(T )� x̂(T )|2.

Let x̄(·) be a solution to the Cauchy problem

˙̄
x = r

x

(f(t, x̂(t)) + g(t, x̂(t))û(t))x̄+ g(t, x̂(t))ū, x̄(0) = x(0)� x̂(0).

Observe that

⇢(t) = | ˙̂x(t)+ ˙̄
x(t)� (f(t, x̂+ x̄)+g(t, x̂+ x̄)(û+ ū))|  (const)(|x̄|2+ |x̄||ū|).

Since

|x̄|  (const)

✓
|x(0)� x̂(0)|+

Z
T

0
|ū(t)|dt

◆
,

applying the Filippov Theorem, we get

|x(T )� (x̂(T ) + x̄(T ))|  (const)

Z
T

0
⇢(t)dt

 (const)

 
|x(0)� x̂(0)|2 +

✓Z
T

0
|ū(t)|dt

◆2
!

From this and an obvious inequality

|x(T )� x̂(T )|  (const)

✓
|x(0)� x̂(0)|+

Z
T

0
|ū(t)|dt

◆

we obtain
�(x(T )) �

�(x̂(T ))� hp(T ), x̄(T )i � (const)

 
|x(0)� x̂(0)|2 +

✓Z
T

0
|ū(t)|dt

◆2
!
.

Let � be the fundamental matrix of the system

˙̄
x = r

x

(f(t, x̂(t)) + g(t, x̂(t))û(t))x̄.

Since

p(t) = �⇤(T, t)p(T )�
Z

T

t

�⇤(s, t)dµ(s),

we have

�hp(T ), x̄(T )i = �hp(T ),�(T, 0)(x(0)� x̂(0)) +

Z
T

0
�(T, t)g(t, x̂(t))ū(t)dti
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= �hp(0) +
Z

T

0
�⇤(s, 0)dµ(s), x(0)� x̂(0)i �

Z
T

0
hp(t), g(t, x̂(t))ū(t)idt

�
Z

T

0
h
Z

T

t

�⇤(s, t)dµ(s), g(t, x̂(t))ū(t)idt

= �hp(0) +
Z

T

0
�⇤(s, 0)dµ(s), x(0)� x̂(0)i �

Z
T

0
hp(t), g(t, x̂(t))ū(t)idt

�
Z

T

0
h
Z

s

0
�⇤(s, t)g(t, x̂(t))ū(t)dt, dµ(s)i

= �hp(0), x(0)� x̂(0)i �
Z

T

0
hp(t), g(t, x̂(t))ū(t)idt�

Z
T

0
hx̄(s), dµ(s)i

= �hp(0), x(0)� x̂(0)i �
Z

T

0
hp(t), g(t, x̂(t))ū(t)idt�

Z
T

0
hx(s)� x̂(s), dµ(s)i

+

Z
T

0
hx(s)� (x̂(s) + x̄(s)), dµ(s)i

Using (4.7), (4.6) and the refined maximum principle we have

�(x(T )) � �(x̂(T )) + (const)|x(0)� x̂(0)|2�✏ +

Z
T

0
�(t)|ū(t)|dt

�(const)

 
|x(0)� x̂(0)|2 +

✓Z
T

0
|ū(t)|dt

◆2
!
.

Applying the Lemma 3.2, we obtain the result. ⇤

Note. Condition (4.7) is satisfied if C0 is a point or a polyhedron and
x̂(0) is a vertex. As the following example shows, parameter ✏ in (4.7) cannot
be zero.

Example. Consider the problem

x2(1)� x

2
1(1) ! inf,

ẋ1 = u1,

ẋ2 = u2,

|u1|+ |u2|  1,

x

2
1(0) + (1� x2(0))

2  1.

The process û1 ⌘ 0, û2 ⌘ �1, x̂1 ⌘ 0, x̂2 = �t, satisfies the maximum
principle and the transversality condition

hp(0), c0 � x̂(0)i  �(const)|c0 � x̂(0)|2, c0 2 C0.

(Indeed, �x2(0)  �(x21(0) + x

2
2(0))/2.) However the process is not locally

optimal.
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5. Illustrative examples

Here we show how the above theorem can be used to analyse optimality
of control processes.

Example 1. Consider a rocket car equipped with two rocket jets and mov-
ing along a straight line. Its motion is modelled by the following equations:

ẋ = v,

v̇ =
u1 � u2

m

,

ṁ = �k(u1 + u2),

u1, u2 2 [0, 1],

x(0) = x0, v(0) = v0, m(0) = m0,

x(T ) = v(T ) = 0.

Here x(t) is the position at time t, v(t) the velocity, m(t) the mass of the
car (changing as fuel is burned), u1(t) and u2(t) are the thrusts, and k is
a constant. It is necessary to maximize the amount of fuel at the end of
the motion, i.e., it is necessary to maximize m(T ). We introduce two new
controls w1 = u1 � u2 and w2 = u1 + u2. The system takes the form

ẋ = v,

v̇ =
w1

m

,

ṁ = �kw2,

|w1|+ |w2 � 1|  1.

The adjoint system has the form

ṗ1 = 0, p1(T ) = �1,

ṗ2 = �p1, p2(T ) = �2,

ṗ3 =
p2w1
m

2 , p3(T ) = 1.

The maximum principle reads

max
|w1|+|w2�1|1

⇣
p2w1

m

� p3kw2

⌘
=

✓
p2ŵ1

m

� p3kŵ2

◆
.

Let x0 > 0 and v0 > 0. The admissible processes with m(T ) > 0 and the
control

(w1(t), w2(t)) =

8
<

:

(�1, 1), t 2 [0, ⌧1],
(0, 0), t 2]⌧1, ⌧2],
(1, 1), t 2]⌧2, T ],
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with 0 < ⌧1 < ⌧2 < T , is optimal. Indeed, from the form of control we see
that p2 is an increasing function, so �1 must be negative. Also, we have

q(t) = g

⇤(t, (x(t), v(t),m(t)))p(t) =

0

B@

p2(t)

m(t)

�kp3(t)

1

CA

and

q̇(t) =

0

BBB@

��1m(t) + kp2(t)w2(t)

m

2(t)

�k

p2(t)w1(t)

m

2(t)

1

CCCA
.

Therefore conditions (3.1) and (3.2) of Lemma 3.1, at point ⌧1, can be
written as

� �1

m(⌧1)
(�1� 0) =

�1

m(⌧1)
< 0

��1m(⌧1) + kp2⌧1

m(⌧1)
(0 + 1) +

kp2⌧1

m

2(⌧1)
(0� 1) = � �1

m(⌧1)
> 0

and, at point ⌧2, as

��1 + kp2(⌧2)

m

2(⌧2)
(0� 1) +

�kp2⌧2

m

2(⌧2)
(0� 1) =

�1

m(⌧2)
< 0

��1
m(⌧2)

(1� 0) = � �1

m(⌧2)
> 0

Thus, from Theorem 4.1 we see that the process is optimal.

Example 2. Consider the optimal control problem

min x3(T )

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x2 � ⇢x

2
1,

|u1|+ |u2|  1,

x2(t) � c,

x1(0) = �a, x1(T ) = a,

x2(0) = x2(T ) = b,

x3(0) = 0,

where T = 2a+2(b�c). The constants ⇢, a, b and c are positive, with b > c.
The constraint sets C,C0, C1 of Theorem 4.1 are represented in this prob-

lem by C = {(x1, x2, x3) 2 R

3 : x2 � c}, C0 = {(x1, x2, x3) 2 R

3 : x1 =
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�a, x2 = b and x3 = 0} and C1 = {(x1, x2, x3) 2 R

3 : x1 = a and x2 = b}.
The adjoint system (4.5) and (4.8) comes

dp1(t) = 2⇢x̂1(t)p3(t) + dµ1(t),

dp2(t) = �p3(t) + dµ2(t),

dp3(t) = dµ3(t),

p3(T ) = �1.

Take the admissible control process (û(·), x̂(·)) defined as:

(5.1) x̂1(t) =

8
><

>:

�a, t 2 [0, b� c[,

t� a� (b� c), t 2 [b� c, T � (b� c)[,

a, t 2 [T � (b� c), T ].

(5.2) x̂2(t) =

8
><

>:

b� t, t 2 [0, b� c[,

c, t 2 [b� c, T � (b� c)[,

t� T + b, t 2 [T � (b� c), T ].

û1(t) =

8
><

>:

0, if t 2 [0, b� c[,

1, if t 2 [b� c, T � (b� c)[,

0, if t 2 [T � (b� c), T ].

û2(t) =

8
><

>:

�1, if t 2 [0, b� c[,

0, if t 2 [b� c, T � (b� c)[,

1, if t 2 [T � (b� c), T ].

Assume that ⇢ <

1
2a and a > b� c. Consider the following set of multipliers

p1(t) = (b� c)(1� 2a⇢)� 2⇢

Z
t

0
x̂1(s) ds,

p2(t) = �2(b� c) + t+

Z
t

0
dµ(s),

p3(t) = �1,

µ(t) =

8
>>><

>>>:

0, t 2 [0, b� c[,

�a+ b� c+K

a

(t� b+ c), t 2 [b� c, T � (b� c)[,

�2(a� b+ c), t 2 [T � (b� c), T ].

The functions p1 and p2 can be equivalently written as

p1(t) =

8
><

>:

(b� c)(1� 2a⇢) + 2a⇢t, if t 2 I1,

(b� c)(1� 2a⇢)� ⇢(b� c)2 + 2⇢(a+ b� c)t� ⇢t

2
, if t 2 I2,

(b� c)(1� 2a⇢) + 4a⇢(b� c)� 2a⇢t+ 4a2⇢, if t 2 I3.
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p2(t) =

8
>>><

>>>:

K + t, t 2 I1,

K + t� a+ b� c+K

a

(t� b+ c), t 2 I2,

K + t� 2(a+ b� c�K), t 2 I3,

with K = �2(b� c) and where, for shortening, we write I1, I2, I3 to denote
respectively the intervals [0, b� c[, [b� c, T � (b� c)[ and [T � (b� c), T ].

This set of multipliers satisfies (4.5)-(4.8) of Theorem 4.1. In particular
(4.6) is complied since µ(t) generates a non positive measure with support
on the interval [b�c, T�b+c] and on this interval x(t)� x̂2(t) = x(t)�c � 0
for any admissible trajectory x. It can also be checked that conditions under
which Lemma 3.1 applies are fulfilled. In particular,

|hq̇(t
l

± 0), u
m

� u

mli| = |2a⇢| 6= 0.

We may conclude that the process (û(·), x̂(·)) is a weak local minimizer.
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