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Abstract—This paper studies the problem of sensor placement
design for efficient dynamic real-time state estimation in electric
power networks. Given a (linearized) dynamic physical model
of the power system, efficient sensor placement strategies are
proposed that minimize the observability index of the system. The
observability index plays a key role in determining the minimum
window length of filters that guarantee stable estimation error
and minimizing this index allows the design of memory and
computationally efficient filtering schemes with performance
guarantees. Specifically, given the system dynamics, the paper
addresses the following two sensor placement design problems:
(1) determining the minimal number and placement of sensors
that achieves a certain desired system observability index, and
(2) given the number of sensors to be deployed, obtaining the
placement achieving minimal system observability index. These
problems are addressed in a structural systems framework, i.e.,
the placement strategies are obtained on the basis of the sparsity
pattern (location of zeroes/non-zeroes) of the system coupling
matrix, and the design guarantees hold for almost all numerical
parametric realizations of the system. Finally, an example is
provided which illustrates the analytical findings.

Index Terms—Structural Systems, Dynamic Observability,
Real-Time Estimation

I. INTRODUCTION

In the last decade, special attention has been given to
synchronized phasor measurements, which grasp the potential
to enhance the monitoring of the power grid. Thus, enabling
near real-time system control and dynamic state estimation,
see [4] and references therein. However, the high sampling
frequency of the different technologies put a huge strain on
the communication and data processing infrastructure of the
grid. This motivates the study of judicious sensor placement to
obtain the minimum number of sensors and the corresponding
placement locations that guarantee system observability. The
judicious placement of phasor measurement units (PMUs) –
technology designed to accurately observe key power system
metrics – has been studied, for instance, in [11], [19] and
references therein. Nevertheless, state-of-the-art techniques
in sensor and/or PMU placement typically consider static
observability as the placement criterion or metric of interest,
which is fundamentally and conceptually different from our
current goal of ensuring dynamic observability, see [4] for a
study on their implications in state monitoring of the power
electric grid. Ensuring dynamic observability is, in fact, a
fundamental system-theoretic requirement for designing stable

and meaningful system estimators/observers.
Our approach, rather than focusing on a specific large-scale

system with a specified set of (numerical) parameter values,
is hinged on structural systems theory (see [3] for a survey),
which allows for a unified design and analysis treatment of
equivalence classes of such systems. For instance, in the
context of linear time-invariant (LTI) systems, the equivalence
classes described above are given by the sparsity pattern of
the state-space matrices of the system; as such, structural
system approaches may be used to provide a unified design
criteria for all the systems in an equivalence class, i.e., with
the same sparsity. Clearly, as a by-product, such an approach
often leads to robust design procedures, especially in systems
with uncertain or unknown parameter values, as is commonly
the case in power electric grids. To be precise, design and an-
alytical certificates formulated and obtained through structural
systems theory hold for almost all parameter values, except
on a manifold of zero Lebesgue measure, see [13]. When
most of the systems in an equivalence class are dynamically
observable, we say that the system is structurally observable
(see the next section for formal definition).

In practice, we are also interested in understanding how
fast the initial state vector can be recovered for a given
system, hence enabling real-time monitoring. Additionally, the
implementation of estimators to retrieve the initial state of the
system, as well as mandatory policy laws, commonly put a
strain on storage, which motivated us to look for alternative
tools to address sensor placement. In fact, inspired by the
implications of the observability index [2] in the performance
of state estimators for dynamical systems, hereafter we focus
in its structural counterpart, the structural observability index,
that was introduced in [6], and computational methods for its
computations were proposed in [15]. Further, until recently,
only upper bounds of the structural observability index were
known and given in terms of graph representations [17].
However, there is a lack of methods concerning system de-
sign when restrictions are imposed on the systems’ structural
observability index. Recently, it was shown that the problem
of obtaining the minimum number of state variables to ensure
a specified structural observability index is NP-hard [14].

As emphasized earlier, the main drawback of static observ-
ability based formulations is that they do not take into account
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the system dynamics; as such, the resulting placement config-
urations do not generally guarantee desired dynamic system
observability properties, the fundamental requirement for the
design of dynamic state estimators with error stability. The
literature on sensor placement design in power electric grids to
ensure dynamical observability is scarce, see for instance [10]
and references therein. In general, sensor placement strategies
aim to optimize some function of the observability Grammian,
which is usually hard [7]. Subsequently, some heuristics were
proposed in [12], whereas greedy algorithms with optimality
guarantees are provided in [16], [18]. Nevertheless, most
of these approaches assume that the model with accurate
parameters is given, which is not commonly true when dealing
with power electric grids. Alternatively, structural systems ob-
servability analysis and sensor placement has been previously
addressed, for example in [3] and references therein. The
present work is motivated by the results published recently in
[9] and [8], where optimal sensor placement design to ensure
structural observability is characterized, together with efficient
(polynomial in the number of dynamical state variables) algo-
rithms.

The main contributions of the present paper consist in
providing a greedy algorithm to obtain the solution to the
following two problems: (1) determining the minimal number
and placement of sensors that achieve a certain desired system
observability index, and (2) given the number of sensors to be
deployed, obtaining the placement that ensures that the system
observability index is minimal. Additionally, we explore the
solution to the above problems when the dynamic system
models a power electric grid as proposed in [5].

The rest of this paper is organized as follows. In Section III
we formally present the problems addressed in this paper.
Section II introduces some preliminary concepts and results in
structural systems theory to be used in the sequel. Section IV
presents the main results of this paper. In Section V, we
briefly review the dynamical model of the power electric grid
modeled as in [5]. Finally, an illustrative example on the IEEE
5-bus system (with 18 dynamical state variables) is provided
in Section VI.

II. PRELIMINARIES AND TERMINOLOGY

Consider a (possible large-scale) linear-time invariant (LTI)
system

x

k+1 = Ax

k

, y

k

= Cx

k

, (1)

where x 2 Rn and y 2 Rm are the system state and
measured output, respectively. Let us define Ok

(A,C) as the
k�observability matrix associated with the pair (A,C) as
Ok

(A,C) =

⇥
C

T

(CA)

T · · · (CA

k�1
)

T

⇤
T . For dynamical

systems of the form (1), the observability index associated
with the pair (A,C), given by

µ(A,C) = min{{k 2 N : rank[Ok

(A,C)] = n},1}, (2)

counts the number of iterations, at which the measurements
of the system are collected, that one has to wait until it is
possible to recover the (unknown) initial condition x0. The
pair (A,C) is observable if and only if µ(A,C) < 1.

Suppose that the sparsity (i.e., location of zeroes and non-
zeroes) pattern of A is available, but the specific numerical val-
ues of its non-zero elements are not known. Let ¯

A 2 {0, 1}n⇥n

be the binary matrix that represents the structural pattern of
A, i.e., it encodes the sparsity pattern of A by assigning 0

to each zero entry of A and 1 otherwise. A pair (A,C) is
said to be structurally observable if and only if almost all
pairs (A

0
, C

0
) with the same structure as (A,C), i.e., same

locations of zeroes and non-zeroes, are observable. Now, we
introduce the structural counterpart of the observability index,
to be referred to as structural observability index or generic
observability index and given by
µ

G

(

¯

A,

¯

C) = min{{k 2 N : max

A 2 [Ā]
C 2 [C̄]

rank[Ok

(A,C)] = n},1},

(3)
where the equivalence class [

¯

M ] = {M 2 Rn⇥m : M
i,j

=

0 if ¯

M

i,j

= 0} is induced by ¯

M 2 {0, 1}n⇥m. Therefore, the
structural pair (

¯

A,

¯

C) is structurally observable if and only
if µ

G

(

¯

A,

¯

C) < 1. Further, if a structural pair (

¯

A,

¯

C) has
a generic observability index µ

G

(

¯

A,

¯

C) = p, then almost
all pairs (A,C) with the same sparseness of (

¯

A,

¯

C) have
a observability index p, except on a manifold with zero
Lebesgue measure.

Given a dynamical system (1), an efficient approach to the
analysis of its structural properties is to associate it with a
directed graph (digraph) D = (V, E), in which V denotes a
set of vertices and E represents a set of edges, such that, an
edge (v

j

, v

i

) is directed from vertex v

j

to vertex v

i

. Denote
by X = {x1, · · · , xn

} and Y = {y1, · · · , yp} the set of state
vertices and output vertices, respectively. Denote by EX ,X =

{(x
i

, x

j

) :

¯

A

ji

6= 0} and EX ,Y = {(x
i

, y

j

) :

¯

C

ji

6= 0}, and
consider D(

¯

A) = (X , EX ,X ) and D(

¯

A,

¯

C) = (X [ Y, EX ,X [
EX ,Y) to be the state digraph and system digraph, respectively.

A sequence of edges P = {(v1, v2), (v2, v3),
. . . , (v

k�1, vk)}, with k � 2, is called a path from v1

to v

k

and in short denoted by v1  v

k

. Notice that the
vertices do not have to be necessarily distinct. The length of
the path P is given by the number of edges it contains. If the
length of the path P is p then we denote it by v1

p v

k

.
For any vertex x

i

2 X , we can define the out-neighboring
set N+

(x

i

) = {x
j

2 X : (x

i

, x

j

) 2 EX ,X } [ {y
j

2 Y :

(x

i

, y

j

) 2 EX ,Y}, and we can extend the definition to an
arbitrary set X

s

✓ X as follows:

N+
(X

s

) =

[

xi2Xs

N+
(x

i

).

We say that digraph D(

¯

A,

¯

C) has a contraction if there exists
X

s

✓ X such that |N+
(X

s

)| < |X
s

|. Otherwise, we say that
D(

¯

A,

¯

C) is free of contractions. Subsequently, we have the
following characterization of the structurally observable pairs.

Theorem 1 ([3]): Let ¯

A 2 {0, 1}n⇥n, ¯

C 2 {0, 1}p⇥n and
D(

¯

A,

¯

C) = (X [ Y, EX ,X [ EX ,Y) be the system digraph.
The pair (

¯

A,

¯

C) is structurally observable if and only if both
conditions hold:
(i) the digraph D(

¯

A,

¯

C) is free of contractions;



(ii) for every x

i

2 X there exists y

j

2 Y in D(

¯

A,

¯

C) such
that x

i

 y

j

. ⇧
Before proceeding to the characterization of the structural

observability index, we introduce the following two defini-
tions.

Definition 1 (Output-Connected Set): Let D(

¯

A,

¯

C) = (X [
Y, EX ,X , EX ,Y), where X = {x1, x2, . . . , xn

} and Y =

{y1, y2, . . . , yp}, be the system digraph associated with some
structural pair (

¯

A,

¯

C). The set Yk

j

associated with y

j

, with
j 2 {1, . . . , p} and k 2 {1, . . . , n}, defined as Yk

j

= {x
i

2
X : x

i

k y

j

} is called the output-connected set of y

j

at
iteration k. ⇧

Definition 1 is suitable for recursive computations: if we
consider that the output variable y

j

is assigned to the state
variable x

i

, i.e., x
i

1 y

j

, then Y1
j

= {x
i

} and

Yk

j

= {x
k

2 X : (x
k

, x

l

) 2 EX ,X with x

l

2 Ok�1
j

} for k � 2.

Definition 2 (Partial Transversal): Let S be a finite set and
let S = {S1, S2, . . . , Sn

} be a finite collection of subsets
of S, that is, S

i

✓ S for each i 2 {1, 2, . . . , n}. A partial
transversal with respect to S consists of a set A ⇢ S whose
elements are in a bijective relation with a sub-collection of S .

⇧
Now, we can present the characterization of pairs (

¯

A,

¯

C)

with a specified structural observability index.
Theorem 2 ([14]): Let D(

¯

A,

¯

C) = (X [ Y , EX ,X [ EX ,Y),
where X = {x1, x2, . . . , xn

} and Y = {y1, y2, . . . , yp}, be the
system digraph associated with the pair ( ¯A,

¯

C). The structural
pair ( ¯A, ¯C) has structural observability index µ

G

(

¯

A,

¯

C)  L,
L 2 {1, . . . , n}, if and only if the following conditions hold

(i) the system digraph D(

¯

A,

¯

C) is free of contractions;
(ii) X is partial transversal with respect to the collection of

the output-connected sets {Yk

j

}1jp,1kL

. ⇧
Consequently, we have the following result.
Corollary 1 ([14]): Let D(

¯

A,

¯

C) = (X [ Y, EX ,X , EX ,Y),
where X = {x1, x2, . . . , xn

} and Y = {y1, y2, . . . , yp}, be
the system digraph associated with the pair ( ¯A,

¯

C). If the pair
(

¯

A,

¯

C) has structural observability index µ

G

(

¯

A,

¯

C), then for
each state variable x

i

2 X there exists a directed path to some
y

j

2 Y with length less than or equal to µ

G

(

¯

A,

¯

C). ⇧

III. PROBLEM STATEMENT

Let the power electrical grid be given by a discrete-time dy-
namics, linearized under normal operating conditions, whose
structure is given by ¯

A 2 {0, 1}n⇥n. In this paper we aim to
address the following two problems:

P1 Given ¯

A and µ 2 {1, . . . , n}, determine J ⇤ such that

J ⇤
= arg min

J⇢{1,...,n}
|J |

s.t. µ

G

(

¯

A, IJ
n

)  µ,

where IJ
n

denotes the sub matrix (of the identity matrix)
formed by the rows with indices in J . ⇧

P2 Given ¯

A and the number of dedicated1 sensors p 2
{1, . . . , n}, determine the minimal attainable structural
observability index µ

⇤, i.e.,

µ

⇤
= arg min

µ2{1,...,n}
µ

s.t. µ

G

(

¯

A, IJ
n

)  µ

|J |  p, J ⇢ {1, . . . , n}.
⇧IV. MAIN RESULTS

In this section, we present the main results of this paper
that are as follows: first, we provide some preliminary results
that sharpen the intuition about the conditions required to
obtain a solution to P1, which is generally NP-hard. Then, we
provide a greedy algorithm (Algorithm 1) that approximates
the solution to P1 efficiently (i.e., polynomially in the size
of the state space) and with some optimality guarantees, see
Theorem 3 and Theorem 4. Finally, we propose an algorithm
(Algorithm 2) that solves P2 by resorting to Algorithm 1.

We start by introducing a result on the necessary conditions
for the solutions to P1, that can be obtained as consequences
of Corollary 1.

Corollary 2: Consider P1 with ¯

A 2 {0, 1}n⇥n and desired
structural observability index µ as input. If J is a solution of
P1, then

|J | �
⇠
n

µ

⇡
(4)

⇧
Before presenting a strategy to address P1, let us analyze

two simple cases. The first occurs when µ = 1, for which
a necessary (and sufficient) condition, by Corollary 2, is
|J | �

l
n

µ

m
= n; thus, J = {1, 2, . . . , n}, i.e., a dedicated

output must be assigned to each state variable of the dynamical
system (regardless of its dynamic structure). On the other
hand, if we only aim to ensure that the system is structurally
observable, i.e., µ  n, then an efficient (polynomial in the
size of the state space) can also be obtained as provided in [8].

Because the problem P1 is generally NP-hard [14], efficient
algorithms to determine a solution are unlikely to exist.
Therefore, hereafter we propose an approximation scheme
that relies on greedy strategies and using techniques based
on submodular function optmization [1], we derive estimates
on the optimality gap of the solutions obtained.

By comparing Theorem 1 with Theorem 2, we can see that
the difference lies on condition (ii). If we consider structural
digraphs D(

¯

A) with a self-loop on each variable, we can
conclude that regardless of the output matrix considered, the
resulting system D(

¯

A,

¯

C) is contraction-free. Therefore, in
that case, the only condition that needs to be verified is
condition (ii). That is, there must exist a partial transversal
on the output-connected sets (Definition 2) such that the
union equals the whole state vertex set. Thus, the hardness

1By dedicated we mean that the sensor is connected to a single state
variable, or equivalently, the corresponding row in the output matrix is
canonical (i.e., consists of a single non-zero entry, the remaining n�1 entries
being zero).



of P1 comes from that condition. In an attempt to find an
approximate solution, we will consider Algorithm 1, where
we assume that in the digraph D(

¯

A) there exists a self-loop
on each variable, i.e., ¯

A has non-zero diagonal entries.

ALGORITHM 1: Find an approximate solution to P1

when D(

¯

A) has self-loops on all state variables
Input: Ā 2 {0, 1}n⇥n with Āii = 1, i 2 {1, 2, . . . , n}, and

µ 2 {1, . . . , n}
Output: A set of indices J 0 ✓ {1, . . . , n} such that

µG(Ā, IJ
0

n )  µ

Compute the output-connected sets Yk
i (see Definition 2), for

i 2 {1, 2, . . . , n} and k 2 {1, . . . , µ};

Set X = {x1, x2, . . . , xn}; XS = ;; J 0 = ;;

while XS 6= X do
Determine i 2 {1, 2, . . . , n} \ J 0 such that T ⇤ ⇢ X \ XS

is a partial transversal with respect to {Yk
i }k2{1,...,µ} and

there exist no other partial transversal T 0 ⇢ X \ XS with
respect to {Yk

i }k2{1,...,µ} with |T ⇤| < |T 0|;

XS = XS [ T ⇤;
J 0 = J 0 [ {i};

for i 2 {1, 2, . . . , n} \ J 0 do
for k = 1, 2, . . . , µ do

Yk
i = Yk

i \ T ⇤;
end for

end for
end while

First, we show that the solution obtained by Algorithm 1 is
feasible.

Theorem 3: The set J 0 ⇢ {1, . . . , n} obtained using Algo-
rithm 1 is such that µ

G

(

¯

A, IJ
0

n

)  µ. ⇧

Proof: First, notice that Algorithm 1 always stops, since
in the worst case scenario J 0

= {1, . . . , n} and there exists
a partial transversal in bijective relation with Y1

i

for i 2 J 0.
Further, when the algorithm stops we have a partial transversal
on the output-connected sets {Yk

i

}
i2J 0

,1kµ

, that equals the
state vertex set. Since we are considering that the directed
graph D(

¯

A) has a self-loop on each state variable, then
D(

¯

A, IJ
n

) is free of contractions. Therefore, since conditions
(i)-(ii) of Theorem 2 hold, the pair (

¯

A, IJ
n

) has a structural
observability index µ

G

(

¯

A, IJ
n

)  µ.
In fact, Algorithm 1 consists in a polynomial (in the size

of the state space) greedy strategy that ensures the following
optimality guarantees.

Theorem 4: Algorithm 1 runs in polynomial time and is
(1 � 1

e

)-suboptimal, i.e., the solution obtained is at most 1
e

worst than the optimal solution. ⇧
Proof: [SKETCH] It is easy to see that the Algorithm 1

runs in polynomial time since in the worst case scenario
the algorithm considers J = {1, . . . , n}, which implies that
X

S

= X , i.e., it stops. Next, we notice that �µ(

¯

A, IJ
n

) is
a sub-modular function [1], i.e., if J 0 ⇢ J ⇢ {1, . . . , n}
and j 2 {1, . . . , n} \ J , then �µ(

¯

A, IJ
0[{j}

n

) � µ(

¯

A, IJ
0

n

) �

�µ(

¯

A, IJ[{j}
n

)�µ(

¯

A, IJ
n

). To verify this property, notice that
by definition of structural observabiltiy index, if µ(

¯

A, IJ
n

) =

1 the system is not structurally observable, hence, the in-
equality immediately holds. Alternatively, if µ(

¯

A, IJ
n

) < 1,
then the inequality follows by recalling the monoticity of the
structural observability index, as already pointed out in Corol-
lary 1 and Corollary 2. Given that �µ(

¯

A, IJ
n

) is sub-modular,
the proposed greedy algorithm follows those steps commonly
used to maximize such functions (in other words, minimizing
the structural observability index), see [1] for details. These
greedy algorithms ensure that the solution obtained is (1� 1

e

)-
suboptimal, and the result follows.

From Theorem 4, we have that the size of J 0 obtained using
Algorithm 1 has at most approximately 37% more indices than
the optimal solution J ⇤ to P1, which we recall to be in general
NP-hard to determine.

We can address P2 by solving instances of P1 as proposed
in Algorithm 2. Therefore, a solution to P2 can be approxi-
mated by resorting to Algorithm 1, when approximating the
solution to P1 in Algorithm 2.

ALGORITHM 2: Find a solution to P2 using the solu-
tions to P1

Input: Ā 2 {0, 1}n⇥n and p 2 {1, . . . , n} dedicated outputs.
Output: J ⇤ ✓ {1, . . . , n} such that µG(Ā, IJ

⇤
n ) is the

minimum possible provided that |J ⇤|  p

for µ = 1, 2, . . . , n do
Let J 0 be the solution to P1 with Ā and µ

if |J 0|  p then
J ⇤ = J 0 and STOP;

end if
end for

In the next section, we provide a description of a linearized
power electric grid model (under normal operation conditions),
through which we illustrate the performance of the proposed
approximations schemes to address P1 and P2.

V. LINEARIZED MODEL OF DYNAMIC POWER ELECTRIC
GRID

The electric power grid considered for illustrative purposes
in the present paper is modeled as in [5] and consists in a
linearized model under normal operating conditions. It can
be written in terms of interconnected dynamical subsystems
that consist of generators and loads denoted by G

i

and L

j

.
The state digraph representation of the generators and loads is
given by D(

¯

A

Gi) and D(

¯

A

Lj ) as depicted in Figure 1(a). The
variable P

TGi
represents the mechanical power of the turbine

of the generator G
i

, !
Gi the generator G

i

frequency, a
Gi the

valve opening of the load L

j

, l
Lj the real energy consumed

by the load between two samples (k and (k + 1)) of the load
L

j

and !

Lj the frequency at the load L

j

location.
In addition, the different components are connected through

the injected and received power from the network at the
connection site, whose dynamics depends of the frequency
of the components directly on the adjacency buses. More
precisely, additional variables, P

Gi and P

Lj , need to be
considered for each generator and load, respectively, and



the digraph representation of the dynamics has bidirectional
connection between these new variables and the frequency
of the corresponding components, see Figure 1(a). Further,
if two buses are connected through a transmission line or two
dynamic components are in the same bus, then the frequency
of the component i affects the dynamics of the power injection
in the network at site j and vice-versa; hence, the digraph
of the interconnected dynamics has outgoing edges from the
frequencies of the components into the power injections of the
adjacent sites, see, for instance, Figure 1(a), where a generator
is connected to bus i, a load is connected to bus j and these
two buses are connected through a transmission line, see [5]
for details.

(a)

l2 l3

G1 G2

L1

G3

L2

l1 l4

l5

l6

(b)

Fig. 1. (a) The generator’s state digraph D(ĀGi ) and the load’s state digraph
D(ĀLi ) contains the state variables described in Section V. The generators
and loads are coupled in the network through the power injected and received
by the different components, and the power depends upon the frequency of
the neighboring components (or adjacent buses), i.e., the buses containing the
dynamic components are connected by transmission lines, as depicted by the
red edges in the case where generator Gi and load Lj are in the same bus
or adjacent buses; (b) The IEEE 5-bus testbed system.

VI. ILLUSTRATIVE EXAMPLE
Hereafter, we illustrate how to provide an approximate

solution to P1 given the linear-time invariant system that
models the IEEE 5-bus testbed system depicted in Figure 1(b)
as described in Section V. The collection of state variables to
which the dedicated outputs need to be assigned to in order
to obtain a certain observability index is given as follows:

µ 6 5
J

0
{PG1 , PL1 , PL2 , PG3} {PG1 , PL1 , PL2 , PG3}

µ 4 3
J

0
{!G1 ,!G2 ,!G3 , PL1 , PL2} {!G1 , PG1 ,!G2 , PG2 ,

!G3 , PG3 , PL1 , PL2}

Notice that the same subset of state variables was obtained
to ensure a structural observability index µ = 5 and µ = 6,
and, as expected, a smaller µ requires a larger subset of state
variables that need to be measured by dedicated outputs. Now,
suppose that we were told that we could use at most four
dedicated outputs, and we wanted to minimize the structural
observability index, i.e., we were interested in solving P2,
then by resorting to Algorithm 2 (and checking the above
table) we conclude that the best (approximate) assignment of
those outputs would be {P

G1 , PL1 , PL2 , PG3} incurring in a
structural observability index of µ = 5.

VII. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have provided a suboptimal algorithm to
determine the minimal number and placement of dedicated
sensors that achieves a desired structural observability index.

We also provided an algorithm to, given the number of sensors
to be deployed, obtaining the placement that ensures that the
structural observability index is minimal.

Further research may consist of determining lower and
tighter upper bounds for the approximation algorithms pro-
vided. This may be accomplished by considering the specific
structure of the system dynamics and the output-connected
sets. Further, one may be able to obtain optimal algorithms
for certain more restricted classes of state digraph structures.
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