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Abstract. We consider finitely generated free semigroup actions on a compact metric space
and obtain quantitative information on Poincaré recurrence, average first return time and hit-

ting frequency for the random orbits induced by the semigroup action. Besides, we relate the
recurrence to balls with the rates of expansion of the semigroup generators and the topological
entropy of the semigroup action. Finally, we establish a partial variational principle and prove
an ergodic optimization for this kind of dynamical action.

1. Introduction

The research on partially hyperbolic dynamics brought to the stage iterated systems of functions
modeling the behavior within the central manifold. This circumstance led to the study of random
dynamical systems and a thorough understanding of the dynamical and ergodic properties of
these systems has already been achieved [26]. On the other hand, sequential dynamical systems
have been introduced to model physical phenomena: instead of iterating the same dynamics, one
allows the system that describes the real events to readjust with time, in a way that matches the
inevitable experimental errors [16]. However, it is not yet clear how the classical results on first
hitting or return times may be generalized to stationary and non-autonomous sequences of maps.

In this work we aim at an extension of the quantitative analysis of Poincaré recurrence to the
realm of finitely generated free semigroup actions. In this context, a first important contribution
was obtained in [19], where the authors proved that, for rapidly mixing systems, the quenched
recurrence rates are equal to the pointwise dimensions of a stationary measure. One should also
refer [4, 24, 25] on the distribution of hitting times and extreme laws for random dynamical
systems. Equally significant are the recent advances on the distribution of return times and on
quantitative Poincaré recurrence stemming from the discoveries in [1, 14, 26, 12]. Ultimately, we
are concerned with the description of the fastest return time when considering all the semigroup
elements instead of a single dynamical system. In a recent work [23], it has been introduced a
notion of topological entropy and pressure for finitely generated continuous free semigroup actions
on a compact metric space. Later, in [11], it has been shown that a free semigroup action of either
C1 expanding maps, or, more generally, Ruelle-expanding transformations, has a unique measure
of maximal entropy which is linked to annealed equilibrium states for random dynamical systems
[5]. The main strategy to deal with such a system has been the codification of the random orbits
by a true dynamics, namely the skew product based on a full shift with finitely many symbols.
Keeping this approach in mind, here we address a few questions regarding recurrence, first return
or hitting time maps, and the connection between the rate of frequency of visits to a set, its size,
the entropy of the semigroup action and the Lyapunov exponents of the generators.

We will start proving that almost every point is recurrent either by random dynamical systems
or by stationary sequential dynamics. Then we will establish a Kac-like property for such return
times and estimate an upper bound for the Poincaré recurrence to balls, linking the latter to the
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quenched pressure of random dynamical systems. As return times are strongly related to other
dynamically significant quantities, like entropy and Lyapunov exponents, we will also show that,
in the case of random dynamical systems generated by expanding maps, the shortest fiber return
time to dynamic balls grows linearly, which implies that typical fiber return times to balls may
be expressed in terms of the random Lyapunov exponents of the dynamics and, consequently, are
independent of the point. Moreover, we shall study the connection between the maximum hitting
frequency/fastest mean return time to a set with its size when estimated by different invariant
measures, extending the ergodic optimization obtained in [15] to the random context we are con-
sidering. Finally, we will introduce the notion of measure-theoretic entropy of a semigroup action
and obtain a partial variational principle which improves the estimate in [18] and complements
[6, 7]. We refer the reader to Subsection 2.2 for the precise statements of the main results.

2. Main results

In this section we describe the free semigroup actions we are interested in and state our major
conclusions on the quantitative recurrence within this context. The concepts and results we
will consider in this work depend on the fixed set of generators G1 but, to improve the general
readability of the paper, we will omit this data in the notation.

2.1. Setting. Given a compact metric space (X, d), a finite set of continuous maps gi : X → X,
i ∈ P = {1, 2, . . . , p}, and the finitely generated semigroup (G, ◦) with the finite set of generators
G1 = {Id, g1, g2, . . . , gp}, we write G =

∪
n∈N0

Gn, where G0 = {Id} and g ∈ Gn if and only

if g = gin . . . gi2gi1 , with gij ∈ G1 (for notational simplicity’s sake we will use gj gi instead of
the composition gj ◦ gi). We note that a semigroup may have multiple generating sets. In what
follows, we will assume that the generator set G1 is minimal, meaning that no function gj , for
j = 1, . . . , p, can be expressed as a composition of the remaining generators. Observe also that
each element g of Gn may be seen as a word which originates from the concatenation of n elements
in G1. Yet, different concatenations may generate the same element in G. Nevertheless, in most
of the computations to be done, we shall consider different concatenations instead of the elements
in G they create. One way to interpret this statement is to consider the itinerary map ι : Fp → G
given by

i = in . . . i1 7→ g
i
:= gin . . . gi1

where Fp is the free semigroup with p generators, and to regard concatenations on G as images
by ι of paths on Fp.

Set G∗
1 = G1 \ {Id} and, for every n ≥ 1, let G∗

n denote the space of concatenations of n
elements in G∗

1. To cite each element g of G∗
n, we will write |g| = n instead of g ∈ G∗

n. In G,
one considers the semigroup operation of concatenation defined as usual: if g = gin . . . gi2gi1 and
h = him . . . hi2hi1 , where n = |g| and m = |h|, then g h = gin . . . gi2gi1him . . . hi2hi1 ∈ G∗

m+n.
The finitely generated semigroup G naturally induces an action in X

S : G×X → X
(g, x) 7→ g(x).

We say that S is a semigroup action if, for any g, h ∈ G and every x ∈ X, we have S(g h, x) =
S(g,S(h, x)). The action S is continuous if the map g : X → X is continuous for any g ∈ G. As
usual, x ∈ X is a fixed point for g ∈ G if g(x) = x; the set of these fixed points will be denoted by
Fix(g). A point x ∈ X is said to be a periodic point with period n by the action S if there exist
n ∈ N and g ∈ G∗

n such that g(x) = x. Write Per(Gn) =
∪

|g|=n Fix(g) for the set of all periodic

points with period n. Accordingly, Per(G) =
∪

n≥ 1 Per(Gn) will stand for the set of periodic

points of the whole semigroup action. We observe that, when G∗
1 = {f}, these definitions coincide

with the usual ones for the dynamical system f .
The action of semigroups of dynamics has a strong connection with skew products which has

been scanned in order to obtain properties of semigroup actions by means of fiber and annealed
quantities associated to the skew product dynamics (see e.g. [11]). We recall that, ifX is a compact



QUANTITATIVE RECURRENCE FOR FREE SEMIGROUP ACTIONS 3

metric space and one considers a finite set of continuous maps gi : X → X, i ∈ P = {1, 2, . . . , p},
p ≥ 1, we have defined a skew product

FG : Σ+
p ×X → Σ+

p ×X
(ω, x) 7→ (σ(ω), gω1(x))

(1)

where ω = (ω1, ω2, . . . ) is an element of the full unilateral space of sequences Σ+
p = PN and σ

denotes the shift map on Σ+
p . We will write Fn

G(ω, x) = (σn(ω), fnω (x)) for every n ≥ 1.
In what follows, we will denote by MG the set of Borel probability measures on X invariant

by gi for all i ∈ {1, · · · , p}. Pa will stand for the Bernoulli probability measure in Σ+
p which is the

Borel product measure determined by a vector a = (a1, · · · , ap) satisfying 0 < ai < 1 for every
i ∈ {1, 2, · · · , p} and

∑p
i=1 ai = 1.

2.2. Statements. As a semigroup action is not a classical dynamical system, but rather an action
of several dynamics in the same ambient space which are selected randomly according to some
probability measure, the possible notions of recurrence must be carefully chosen and one needs to
guarantee that recurrence actually happens. In what follows, we shall examine recurrence either
from the point of view of individual concatenations of maps (associated to individual infinite paths
in the free semigroup) or by estimating the fastest return (the smallest return time associated to
any of the dynamics in the semigroup).

2.2.1. Poincaré recurrence for sequences of stationary maps. While using infinite concate-
nations of elements in G1, it is natural to consider the shift space Σ+

p = {1, . . . p}N. Any sequence

ω ∈ Σ+
p determines a sequential dynamical system (gωi

)i∈N and their compositions

n ≥ 1 7→ fnω = gωn . . . gω2gω1 .

For any random walk P one expects to find generic paths for which the dynamics in X exhibits
recurrence, meaning that, if one disregards the first shift iterations of the sequence ω ∈ Σ+

p , then
almost every point in X returns infinitely often by the shifted stationary sequence of maps (a
notion that generalizes periodicity). Our first result asserts that this is indeed the case.

Theorem A. Let G be a finitely generated free semigroup, S be the corresponding continuous
semigroup action, ν be a Borel probability measure invariant by every generator in G∗

1 and P be
a σ−invariant Borel probability measure on Σ+

p . Then, for any measurable subset A ⊂ X the
following properties hold:

(1) For any ω ∈ Σ+
p , the set of points x ∈ A for which there are positive integers n ≥ k

satisfying gωngωn−1 . . . gωk
(x) ∈ A has full ν−measure in A.

(2) For P−almost every ω ∈ Σ+
p , the set of the points x ∈ A whose orbit

(
fkω(x)

)
k∈N returns

to A infinitely often has full ν−measure in A.

2.2.2. Kac expected return time. Given a measurable map f : X → X preserving an ergodic
probability measure ν, Kac’s Lemma asserts that the expected first return time to a positive
measure set A ⊂ X is 1

ν(A) . More precisely, if ν(A) > 0 and the first hitting time of x to A is

defined by

nA(x) =

{
inf
{
k ∈ N : fk(x) ∈ A

}
if this set is nonempty

+∞ otherwise

then nA is ν−integrable and ∫
A

nA(x) dνA =
1

ν(A)
(2)

where νA = ν
ν(A) is the normalized probability in A. A version of Kac’s Lemma for suspension

flows may be found in [28].
In view of Theorem A(2), it is natural to define, for each measurable A ⊂ X and P−almost

every ω ∈ Σ+
p , the first return time to A of x ∈ A by the dynamics

(
fkω
)
k∈N0

as follows:

nωA(x) =

{
inf
{
k ∈ N : fkω(x) ∈ A

}
if this set is nonempty

+∞ otherwise.
(3)
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We say that the semigroup action S is ergodic with respect to P and ν if the measure P × ν
is ergodic with respect to FG. This assumption is somehow demanding, implying, in particular,
that P is ergodic with respect to σ. In most instances, however, we will only need to assume
that P is ergodic and that, for any set A ⊂ X such that g−1

i (A) = A for all 1 ≤ i ≤ p, we have
ν(A)× ν(X \A) = 0.

In Section 4 we will show that ergodic semigroup actions satisfy a Kac-like recurrence property:
the average asymptotic behavior, as k tends to infinity, of the expected first return time to A by
the sequence

(
fnσk(ω)

)
n∈N =

(
gωn ◦ · · · ◦ gωk+1

◦ gωk

)
n∈N is precisely 1

ν(A) .

Theorem B. Let G be a finitely generated free semigroup endowed with a Bernoulli probability
measure Pa and S be the corresponding continuous semigroup action. Consider a Borel probability
measure ν in X invariant by every generator in G and assume that S is ergodic with respect to Pa

and ν. Then, for every measurable subset A of X with ν(A) > 0 and Pa−almost every ω,

lim
k→+∞

1

k

k−1∑
j=0

∫
A

n
σj(ω)
A (x) dνA(x) =

1

ν(A)
.

Moreover, there exists a Baire residual subset R ⊂ Σ+
p such that, for every ω ∈ R,∫

A

nωA(x) dνA(x) =
1

ν(A)
.

Besides, there is ωmin ∈ Σ+
p such that∫

A

nωmin

A (x) dν(x) = min
ω∈Σ+

p

∫
A

nωA(x) dν(x).

As a consequence of the last claim, there exists a dense set of values ω ∈ Σ+
p for which the non-

autonomous dynamics (fnω )n≥1 satisfy Kac’s formula (2). It is still an open question to determine
whether this formula holds for Pa−almost every ω.

2.2.3. Partial variational principle. The formula of Abramov and Rokhlin [2] for the measure
theoretical entropy of the skew product FG with respect to the product measure P × ν suggests
a way to define a relative metric entropy of the skew product, as done by Ledrappier and Walters
in [17], and also a fiber metric entropy hν(S,P) of a free semigroup action with respect to a
random walk P on Σ+

p and an invariant probability measure ν on X. This will be explained in
Subsection 5.2, just before proving a partial variational principle which extends Lin, Ma and Wang
Theorem 1.2 of [18] to non-symmetric random walks. Meanwhile, recall that,

P
(q)
top(FG, 0,P) = sup

{µ : FG∗µ=µ, π∗(µ)=P}

{
hµ(FG)− hP(σ)

}
is the quenched topological pressure of the skew product FG with respect to the random walk P (see
[5]), where π∗ is the natural projection taking Borel probability measures in Σ+

p ×X to probability

measures in Σ+
p ; htop(S,P) stands for the relative topological entropy of the free semigroup action

S with respect to the random walk P (see [11] or Section 5) and htop(S) = htop(S,Pp) denotes the

topological entropy of the semigroup action S (see [23] or Section 5).

Theorem C. Let S be a finitely generated free semigroup action with generators G1 = {Id, g1, . . . , gp}
and consider a Borel σ−invariant probability measure P on Σ+

p . Then

sup
ν ∈MG

hν(S,P) ≤ htop(S) + (log p− hP(σ)) .

If, additionally, each generator gi is C
2 expanding (1 ≤ i ≤ p) and P = Pa, then

sup
ν ∈MG

hν(S,Pa) ≤ P
(q)
top(FG, 0,Pa) ≤ htop(S,Pa). (4)

We remark that the second inequality in (4) may be strict, as shown by Example 5.5.
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2.2.4. Poincaré recurrence of balls. In this subsection we will refer to return times of a set to
itself by concatenations fnω of dynamics in G1 associated to a fixed ω ∈ Σ+

p . Given A ⊂ X and

ω ∈ Σ+
p , the ω−shortest return time of A to itself is defined by

T ω(A) =

{
inf {k ∈ N : fkω(A) ∩A ̸= ∅} if this set is nonempty
+∞ otherwise.

(5)

The shortest return time of the ball Bδ(x) by the semigroup action S is equal to

T S(Bδ(x)) = inf {k ∈ N : ∃ g ∈ G∗
k : g(Bδ(x)) ∩Bδ(x) ̸= ∅} (6)

whenever this set is nonempty. Or, equivalently,

T S(Bδ(x)) = inf
ω∈Σ+

p

T ω(Bδ(x)).

Concerning this concept, the next result asserts that, for P−typical infinite concatenations of
dynamics, the minimal returns of dynamical balls grow linearly with the radius, similarly to what
happens with a single dynamical system satisfying the orbital specification property and having
positive entropy (cf. [3, Theorem 1] and [27, Theorem B] for the case of return times to cylinders
and dynamic balls, respectively).

Theorem D. Let G be the semigroup generated by G1 = {Id, g1, . . . , gp}, where the elements in G∗
1

are C1 expanding maps on a compact connected Riemannian manifold X preserving a common
Borel probability measure ν. Consider the continuous semigroup action S induced by G and a
σ−invariant probability measure P on Σ+

p . If hν(S,P) > 0, then, for ν−almost every x ∈ X one
has

lim sup
δ→ 0

T S(Bδ(x))

− log δ
≤ 1

log λ
(7)

where λ = min1≤ i≤ p ∥Dgi∥. If, in addition, all elements in G∗
1 are conformal maps, P = Pa

and the semigroup action is ergodic with respect to Pa and ν, then, for Pa−almost every ω and
ν−almost every x ∈ X,

lim
δ→ 0

T ω(Bδ(x))

− log δ
=

dimX∑p
i=1 ai

∫
log |detDgi| dν

(8)

where dimX stands for the dimension of the manifold X.

We note that, in the special case of finitely generated semigroups of conformal expanding maps
for which |detDgi(·)| is constant for every 1 ≤ i ≤ p, the expression in the denominator of the
right hand-side of (8) coincides with the quenched pressure of the skew product FG with respect
to the null observable and the random walk Pa (cf. definition in [5]), and this is bounded above
by the topological entropy of the semigroup action with respect to Pa (cf. definition in [11]).
Consequently, in this setting, for Pa−almost every ω and ν−almost every x ∈ X, we obtain

lim
δ→ 0

T ω(Bδ(x))

− log δ
≥ dimX

htop(S,Pa)
> 0.

2.2.5. Ergodic optimization. Our last result, inspired by [15], deals with the relation between
the maximum hitting frequency, the essential maximal mean return time and the size of a set when
measured by different measures. For the required definitions and the proof we refer the reader to
Section 7.

Theorem E. Let S be a finitely generated free semigroup action with generators G1 = {Id, g1, . . . , gp}
and P be a Borel σ−invariant probability measure on Σ+

p . For every closed set A ⊂ X there exists
a marginal ν on X such that

P− esssup sup
x∈X

lim sup
n→+∞

# {0 ≤ i ≤ n− 1 : f iω(x) ∈ A}
n

= ν(A).
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3. Proof of Theorem A

Let S : G × X → X be a semigroup action generated by a finite set {g1, g2, . . . , gp} of p ≥ 2
dynamics acting on a compact metric space X endowed with a Borel probability measure ν which
is invariant by gi for every i ∈ {1, 2, . . . , p}. Consider the shift map σ on the full unilateral space
of sequences Σ+

p = {1, 2, . . . , p}N and a σ−invariant Borel probability measure P in Σ+
p . The

corresponding skew product FG : Σ+
p ×X → Σ+

p ×X has been defined in (1) and preserves the
probability measure P× ν.

3.1. Random Ergodic Theorem. Let us recall a generalized ergodic theorem from [13]. Let Z
andX be measure spaces with probability measures P and ν, respectively. Suppose that U : Z → Z
is an P preserving transformation and denote by Q : Z ×X → Z ×X the skew product defined
by Q(z, x) = (U(z), Tz(x)), where the family (Tz)z ∈Z is assumed to be measurable and, for each
z ∈ Z, Tz : X → X is a ν−measure preserving map. The skew product Q is measurable and
preserves the probability measure P× ν. Write T 0

z = Tz and, for k ∈ N, T k
z = TUk(z) . . . TU(z) Tz.

If φ : X → R is a ν−integrable function, using Birkhoff Ergodic Theorem applied to the skew
product Q, the probability measure P× ν and the P× ν−integrable map ψ : Z ×X → R defined
by ψ(z, x) = φ(x), we conclude that there exists a full (P× ν)−measure subset E ⊂ Z ×X such
that, for every (z, x) ∈ E, the averages(

1

n

n−1∑
j=0

φ(T j
z (x))

)
n∈N

converge to a ν−integrable function φ∗
z : X → R satisfying∫

φ(x) dν(x) =

∫ ∫
ψ(z, x) dν dP =

∫ ∫
φ∗
z(x) dν(x) dP(z).

Then, Fubini-Tonelli Theorem ensures that, for P−almost every z ∈ Z, the set Ez of points x ∈ X

whose averages
(

1
n

∑n−1
j=0 φ(T j

z (x))
)
n∈N

converge to φ∗
z has full ν−measure. If, moreover, P× ν

is ergodic with respect to the skew product Q, then φ∗
z(x) =

∫
φdν for P−almost every z ∈ Z and

ν−almost every x ∈ X.

3.2. Recurrence via the skew product. We will start deducing properties on recurrence of
stationary non-autonomous sequences of dynamical systems and fiber maps.

Proposition 3.1. Consider the skew product FG, a σ−invariant probability measure P on Σ+
p

and a Borel probability measure ν in X invariant by every generator in G. For any measurable
subset A ⊂ X the following properties hold:

(1) For P−almost every ω ∈ Σ+
p , the set of the points x ∈ A whose orbit

(
fkω(x)

)
k∈N returns

to A infinitely often has full ν−measure in A.
(2) For every ω ∈ Σ+

p , the set of points x ∈ A for which there are positive integers n ≥ k
satisfying gωngωn−1 . . . gωk

(x) ∈ A has full ν−measure in A.
(3) If ν is ergodic with respect to one of the generators, say g1, then there exists a subset

Ω ⊂ Σ+
p with P(Ω) > 0 such that for every ω ∈ Ω there is a set Yω ⊂ X with ν(Yω) = 1 so

that, for any x ∈ Yω, we may find ℓ = ℓ(ω, x) ∈ N such that the orbit
(
fkω(g

ℓ
1(x))

)
k∈N of

gℓ1(x) enters infinitely many times in A.
(4) If P×ν is ergodic with respect to FG, then for P−almost every ω ∈ Σ+

p the orbit
(
fkω(x)

)
k∈N

of ν−almost every x ∈ X enters infinitely many times in A.

Some comments are in order. Items (1) and (4) provide expected results on the recurrence of
almost every point with respect to almost every random path. Item (2) indicates that, for any
stationary sequence of maps, recurrence surely happens up to a convenient shifting of the orbits.
Item (3) imparts a dual statement by replacing this shifting by a finite transient of some generator
g1, which is assumed to be ergodic with respect to ν. We also remark that, in the case of finitely
generated free abelian semigroups, the generators commute and probability measures invariant by
any generator do exist.
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Proof. Given k ∈ N and ω = ω1ω2 . . . ∈ Σ+
p , recall that we write fkω = gωk

gωk−1
. . . gω1 . Let A be

a measurable subset of X with ν(A) > 0 and consider Σ+
p ×A. As the probability measure P× ν

is invariant by the skew product FG and (P × ν)(Σ+
p × A) = ν(A) > 0, by Poincaré Recurrence

Theorem there is a subset E ⊂ Σ+
p × A with (P × ν)(E) = ν(A) > 0 such that every (ω, x) ∈ E

returns to Σ+
p ×A infinitely often by the iteration of FG. Observe now that

Fk
G(ω, x) = (σk(ω), gkω(x)) ∈ Σ+

p ×A ⇔ fkω(x) ∈ A (9)

so the property describing the set E informs that, for every (ω, x) ∈ E, there are infinitely many
values of k ≥ 1 such that fkω(x) ∈ A. Besides, by Fubini-Tonelli Theorem we have

ν(A) = (P× ν)(E) =

∫
X

P(Ex) dν(x) =

∫
Σ+

p

ν(Eω) dP(ω),

where Ex = {ω ∈ Σ+
p : (ω, x) ∈ E} and Eω = {x ∈ A : (ω, x) ∈ E}. Thus, for P−almost every

ω ∈ Σ+
p , we must have ν(Eω) = ν(A). This completes the proof of item (1).

To prove item (2), we will pursue another argument without calling up the skew product, aiming
the recurrence by the (possibly non-generic) random orbits

(
fkω
)
k∈N. Given ω = ω1ω2ω3 . . . ∈ Σ+

p ,
write

Bω =
∩
k≥ 1

∩
n≥ k

{x ∈ A : gωngωn−1 . . . gωk
(x) /∈ A}.

Points in Bω are in A but never return to A by any concatenation of dynamics given by the
sequences (gωj )j ≥ k, for all k ≥ 1. We claim that {(gωj . . . gω1)(Bω)}j ≥ 1 defines a family of

pairwise disjoint subsets of X. Indeed, given positive integers m > n, if (gωm . . . gω1)
−1(Bω) ∩

(gωn . . . gω1)
−1(Bω) ̸= ∅, then there would exist x ∈ X such that z = gωngωn−1 . . . gω1(x) ∈ Bω as

well as gωmgωm−1 . . . gωn+1(z) ∈ Bω, which contradicts the definition of Bω. As ν is invariant by
gi for every i ∈ P, it is also invariant by gωngωn−1 . . . gω1 for every n ∈ N. Therefore,

∞∑
n=1

ν(Bω) =
∞∑

n=1

ν
(
(gωngωn−1 . . . gω1)

−1(Bω)
)
= ν

( ∞∪
n=1

(gωngωn−1 . . . gω1)
−1(Bω)

)
≤ 1

and so ν(Bω) = 0. Thus, for ν−almost every x ∈ A, there exists n ≥ k ≥ 1 such that
gωngωn−1 . . . gωk

(x) ∈ A. It is not hard to adapt the previous argument to show that, for every
ω ∈ Σ+

p , there exists a full ν−measure subset of points x ∈ A which exhibit infinitely many returns
to A (that is, which admit infinitely many values nℓ ≥ kℓ such that gωnℓ

gωnℓ−1 . . . gωkℓ
(x) ∈ A).

We now focus on item (3). As the probability measure P× ν is invariant by the skew product
FG, we may apply to φ = χA the Random Ergodic Theorem quoted in Subsection 3.1. This way,
we conclude that, for P−almost every ω ∈ Σ+

p , the frequency of visits to A given by

1

n
#
{
0 ≤ j ≤ n− 1 : f jω(x) ∈ A

}
=

1

n

n−1∑
j=0

χA(f
j
ω(x))

is convergent for ν−almost every x ∈ X. As ν(A) > 0, we may add that, for P−almost every
ω ∈ Σ+

p and ν−almost every x ∈ A, those averages converge to the value at x of a ν−integrable

function φ∗
ω that satisfies

∫ ∫
φ∗
ω(x) dν(x) dP(ω) =

∫
φ(x) dν(x) = ν(A) > 0. Consequently, the set

C ⊂ Σ+
p ×X of the points (ω, x) for which we have φ∗

ω(x) > 0 satisfies (P× ν)(C) > 0. Therefore,

for every (ω, x) ∈ C, the point fkω(x) is in A for infinitely many choices of k ∈ N. By Fubini-
Tonelli Theorem, we get (P × ν)(C) =

∫
X
ν(Cω) dP(ω) > 0 where Cω = {x ∈ X : (ω, x) ∈ C} =

{x ∈ X : fkω(x) ∈ A for infinitely many k ∈ N}. Thus, there must exist a subset Ω ⊂ Σ+
p with

P(Ω) > 0 such that, for every ω ∈ Ω, we have ν(Cω) > 0. Notice, however, that, if ν(A) < 1, the
previous property is not enough for us to be sure whether ν(A∩Cω) > 0 for some relevant subset
of elements in Ω. Nevertheless, under the assumption that ν is ergodic by one of the generators,
say g1, we may take for each ω ∈ Ω the set

Yω =
∪
k∈N

g−k
1 (Cω)



8 M. CARVALHO, F. RODRIGUES, AND P.VARANDAS

and conclude that, as Yω ⊂ g−1
1 (Yω), we have ν(Yω) = 1. That is, for each ω ∈ Ω and every

x ∈ Yω, there is k ∈ N such that gk1 (x) ∈ Cω.
Concerning item (4), observe that, if P× ν is ergodic with respect to FG, then φ

∗
ω =

∫
φdν =

ν(A) > 0 for P−almost every ω ∈ Σ+
p and ν−almost every x ∈ X. That is, (P × ν)(C) = 1 and

there exists a subset Ω ⊂ Σ+
p with P(Ω) = 1 such that, for every ω ∈ Ω, we have ν(Cω) = 1.

Observe now that, even without assuming the ergodicity of ν with respect to one of the generators,
the first part of the argument in the previous paragraph shows that, for P−almost every ω ∈ Σ+

p

and ν−almost every x ∈ X, the orbit (fmω (x))m∈N of x returns infinitely many times to A. This
completes the proofs of Proposition 3.1 and Theorem A. �

Remark 3.2. The full ν−measure subset mentioned in Proposition 3.1(1) depends on the sequen-
tial dynamical system ((fnω )ω∈Σ+

p
)
n≥ 1

. Nevertheless, the argument used in its proof contains a

stronger statement if the semigroup G is finite or countable (as, for instance Zp
+): if A is a positive

ν−measure subset of X, then there exists B ⊂ A such that, for every ω ∈ Σ+
p , there are positive

integers n ≥ k such that gωngωn−1 . . . gωk
(x) ∈ A.

Example 3.3. Let X be a compact connected Riemannian manifold, m stand for the volume
measure in X, A ⊂ X be an open set, Diff 1

m(X) denote the group of C1 volume preserving
diffeomorphisms on X and G1 ⊂ Diff 1

m(X) be a finite set. Then, for any sequence (fn)n∈N in
GN

1 , there exists a full m−measure subset of points x ∈ A for which we may find infinitely many
positive integers ki(x) < ℓi(x) such that fℓi ◦ · · · ◦ fki(x) ∈ A.

4. Proof of Theorem B

Throughout this section we will study recurrence properties for semigroup actions using ergodic
information about the skew product FG and the measure P × ν. Take ν ∈ MG and a Borel
σ−invariant probability measure P. The corresponding skew product FG : Σ+

p × X → Σ+
p × X,

defined in (1), preserves the probability measure P×ν. The next result is a quenched version of the
expected first return time and provides an averaged fiber Kac’s Lemma, from which Theorem B
is a consequence.

Proposition 4.1. Assume that P× ν is ergodic with respect to the skew product FG. Then, given
a measurable set A ⊂ X with ν(A) > 0, for P−almost every ω in Σ+

p one has

lim
k→+∞

1

k

k−1∑
j=0

∫
A

n
σj(ω)
A (x) dνA(x) =

1

ν(A)
.

Proof. Firstly, the Proposition 3.1 ensures that, for P−almost every ω ∈ Σ+
p , the set Aω of points

x ∈ A whose orbit
(
fkω(x)

)
k∈N returns to A infinitely often has full ν−measure in A. Therefore,

we may consider the map φ : Σ+
p → R defined by

ω ∈ Σ+
p 7→ φ(ω) =

∫
A

nωA(x) dν(x)

where nωA(·) denotes the first hitting time to the set A by the sequence (fnω )n≥ 1 (cf. definition in
(3)). The map φ is measurable and, as we are assuming that P× ν is ergodic with respect to FG,
then, by Kac’s Lemma, φ belongs to L1(P) and∫

φdP =

∫
Σ+

p

∫
A

nωA(x) dν(x) dP(ω) = 1. (10)

Besides, as P is ergodic (a consequence of the ergodicity of P × ν), the application of Birkhoff
Ergodic Theorem to φ and P yields that, for P−almost every ω,

lim
k→+∞

1

k

k−1∑
j=0

∫
A

n
σj(ω)
A (x) dν(x) =

∫ ∫
A

nωA(x) dν(x)dP(ω) = 1.

�
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Lemma 4.2. The map φ : Σ+
p → R is lower semi-continuous.

Proof. First of all, we notice that nωA(x) < ∞ for P−almost every ω ∈ Σ+
p and ν−almost every

x ∈ X (cf. Theorem A). For such an ω = ω1 ω2 · · · ∈ Σ+
p and k ∈ N, let Ak be the set

{x ∈ A : nωA(x) = k} and [ω1 . . . ωk] denote the set of sequences θ ∈ Σ+
p such that θi = ωi for all

1 ≤ i ≤ k. Observe also that, if θ ∈ [ω1 . . . ωk], then n
ω
A(x) = nθA(x) for any x ∈ Ak. Besides, as∫

A

nωA(x) dν(x) =

∞∑
k=1

k ν(Ak) <∞

for any ε > 0 there exists N(ε) ∈ N such that
∑∞

k=N(ε)+1 k ν(Ak) < ε. Therefore,

φ(ω) =

N(ε)∑
k=1

k ν(Ak) +
∞∑

k=N(ε)+1

k ν(Ak) <

N(ε)∑
k=1

k ν(Ak) + ε

and so

φ(ω)− ε <

N(ε)∑
k=1

k ν(Ak) <

N(ε)∑
k=1

k ν(Ak) +

∫
A\∪N(ε)

k=1 Ak

nθA(x) dν(x) =

∫
A

nθA(x) dν(x) = φ(θ).

�

As φ is lower semi-continuous, φ has a residual set C of points of continuity and there exists
ωmin where φ attains its minimum, that is,∫

A

nωmin

A (x) dν(x) = min
ω∈Σ+

p

∫
A

nωA(x) dν(x).

(A similar reasoning proves that φ attains a minimum when restricted to the support of P.)
If P = Pa, then it gives non-zero measure to every nonempty open set, and therefore we may

take ωc in C ∩ suppP. Besides, as Pa is ergodic, σ is continuous and σ(Σ+
p ) = Σ+

p , we may also

find ωd ∈ Σ+
p with a dense orbit (the set of dense orbits is Baire residual in Σ+

p ; cf. [29, Theorem
5.16]) and belonging to the full Pa−measure set where Proposition 4.1 holds (which is dense as
well). Therefore, there exists a sequence nk → ∞ satisfying

lim
k→∞

σnk(ωd) = ωc

lim
k→+∞

1

k

k−1∑
j=0

∫
A

n
σnj (ωd)
A dν(x) = 1.

Consequently, as ωc is a continuity point of φ, we conclude that∫
A

nωC

A (x) dν(x) = φ(ωc) = lim
k→+∞

φ(σnk(ωd)) = lim
k→+∞

1

k

k−1∑
j=0

φ(σnj (ωd))

= lim
k→+∞

1

k

k−1∑
j=0

∫
A

n
σnj (ωd)
A dν(x) = 1.

This ends the proof of Theorem B.

5. Proof of Theorem C

Firstly we will recall from [11] the definition of relative topological entropy of the free semigroup
action S, quote from [5] the concept of quenched topological pressure of the skew product FG, and
introduce the definition of measure-theoretic entropy for a free semigroup action. Afterwards, we
will deduce a partial variational principle.
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5.1. Topological entropy of a free semigroup action. Given ε > 0 and g := gin . . . gi2 gi1 in
Gn, the dynamical ball B(x, g, ε) is the set

B(x, g, ε) := {y ∈ X : d(g
j
(y), g

j
(x)) ≤ ε, for every 0 ≤ j ≤ n}.

The dynamical metric dg : X ×X → R+ is given by dg(x, y) := max0≤j≤n d(gj(x), gj(y)). Notice

that both the dynamical ball and the metric depend on the underlying concatenation of generators
gin . . . gi1 and not on the semigroup element g, since the latter may have distinct representations.
Given g = gin . . . gi1 ∈ Gn, we say that a set K ⊂ X is (g, n, ε)-separated if dg(x, y) > ε for any

distinct x, y ∈ K. The maximal cardinality of a (g, ε, n)-separated set on X will be denoted by
s(g, n, ε).

Definition 5.1. The topological entropy of the free semigroup action S is

htop(S) = lim
ε→0

lim sup
n→∞

1

n
log
( 1

pn

∑
|g|=n

s(g, n, ε)
)
. (11)

If, instead of Pp, we take another σ-invariant Borel probability measure P, then we are consid-

ering an asymmetric random walk on Σ+
p and may generalize the previous concept of topological

entropy of S as follows:

Definition 5.2. The relative topological entropy of the semigroup action S with respect to P is

htop(S,P) = lim
ϵ→0

lim sup
n→∞

1

n
log

∫
Σ+

p

s(gωn . . . gω1 , n, ϵ) dP(ω)

where s(gωn . . . gω1 , n, ϵ) is the maximum cardinality of a (g, n, ε)-separated set, ω = ω1ω2 · · · and
g = gωn . . . gω1 .

5.2. Measure-theoretic entropy of a free semigroup action. Let P be a σ−invariant proba-
bility measure and ν a probability measure invariant by any generator in G∗

1. Given a measurable
finite partition β of X, n ∈ N and ω = ω1ω2 · · · ∈ Σ+

p , define

βn
1 (ω) = g−1

ω1
β
∨

g−1
ω1
g−1
ω2
β
∨

· · ·
∨

g−1
ω1
g−1
ω2

· · · g−1
ωn−1

β (12)

βn
0 (ω) = β

∨
βn
1 (ω) and β∞

1 (ω) =
∞∨

n=1

βn
1 (ω).

Then the conditional entropy of β relative to β∞
1 (ω), denoted by Hν(β|β∞

1 (ω)), is a measurable
function of ω and P−integrable (cf. [21]). Let hν(S,P, β) =

∫
Σ+

p
Hν(β|β∞

1 (ω)) dP(ω). Proposition
1.1 of [21, §6] shows that

hν(S,P, β) = lim
n→+∞

1

n

∫
Σ+

p

Hν(β
n
0 (ω)) dP(ω). (13)

where Hν(β
n
0 (ω)) is the entropy of the partition βn

0 (ω).

Definition 5.3. The metric entropy of the semigroup action with respect to P and ν is given by

hν(S,P) = sup
β

hν(S,P, β).

For instance, if P is a Dirac measure δj supported on a fixed point j = jj · · · , where j ∈
{1, · · · , p}, then hν(S, δj) = hν(gj). If, instead, P is the symmetric random walk, that is, the

Bernoulli ( 1p , · · · ,
1
p )−product probability measure Pp, then

hν(S,Pp) = sup
β

lim
n→+∞

1

n

 1

pn

∑
|ω|=n

Hν(β
n
0 (ω))

 .

The last equality is precisely the concept of metric entropy of a semigroup action employed by
Lin, Ma and Wang in [18, Definition 4.1] to prove a partial variational principle when the random
walk is symmetric.
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Let us start proving Theorem C. For every ν and P as prescribed before, Abramov and Rokhlin
proved that

hP×ν(FG) = hP(σ) + hν(S,P). (14)

If we now summon Bufetov’s formula htop(FG) = log p+ htop(S) from [10] then we conclude that,
for every σ−invariant probability measure P, we have

sup
ν ∈MG

hν(S,P) ≤ sup
ν ∈MG

{hP×ν(FG)− hP(σ) } = sup
ν ∈MG

{hP×ν(FG) } − hP(σ)

≤ htop(FG)− hP(σ) = htop(S) + log p− hP(σ).

When P = Pp, as hPp(σ) = log p we obtain

sup
ν∈MG

hν(S,Pp) ≤ htop(S).

If each generator gi, for i = 1, · · · , p is C2 expanding and P is a Bernoulli probability measure
Pa for some probability vector a = (a1, · · · , ap), then

sup
ν ∈MG

hν(S,Pa) = sup
ν ∈MG

{hPa×ν(FG) } − hPa(σ) ≤ sup
µ: (FG)∗µ=µ, π∗µ=Pa

{hµ(FG) } − hPa(σ)

= P
(q)
top(FG, 0,Pa) ≤ P

(a)
top(FG, 0,Pa) = htop(S,Pa).

This finishes the proof of Theorem C.

Remark 5.4. Observe that, when a = p, we have (cf. [11])

htop(S,Pp) = htop(S) and P
(q)
top(FG, 0,Pp) < P

(a)
top(FG, 0,Pp).

So, in this case, we get supν ∈MG
hν(S,Pp) < htop(S).

Example 5.5. Let g1 : S1 → S1 and g2 : S1 → S1 be the unit circle expanding maps given by
g1(z) = z2 and g2(z) = z3 and consider the free semigroup G generated by G1 = {Id, g1, g2}.
Their topological entropies are log 2 and log 3, respectively. Let S be the corresponding semigroup
action. According to [11, Section §8], we have htop(FG) = log 5 ∼ 1.609, htop(S) = log(52 ) ∼ 0.916

and P
(q)
top(FG, 0,P2) =

log 3+log 2
2 ∼ 0.896.

Remark 5.6. Each time we fix ω = ω1ω2 · · · ∈ Σ+
p , we restrict the semigroup action to a sequential

dynamical system, we denote by ω−SDS, whose orbits are the sequences (fnω (x)){n∈N0; x∈X}.

Given ω ∈ Σ+
p and ν ∈ MG, we may define the measure-theoretic entropy of the ω−SDS by

hν(ω−SDS) = supβ hν(ω−SDS, β), where β is any measurable finite partition of X,

hν(ω−SDS, β) = lim
n→+∞

1

n
Hν(β

n
0 (ω)) (15)

and βn
0 (ω), β

n
1 (ω) are as in (12). Using the Dominated Convergence Theorem, it is not hard to

prove that, for every probability measure ν ∈ MG, we have

hν(S,P) ≤
∫
Σ+

p

hν(ω−SDS) dP(ω).

6. Proof of Theorem D

We will start this section recalling the notion of orbital specification property introduced in [23]
and a few facts about recurrence by the skew product associated to a free semigroup action. The
reader acquainted with this preliminary information may omit the next two subsections.
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6.1. Orbital specification. We say that the continuous semigroup action S : G × X → X
associated to the finitely generated semigroup G satisfies the weak orbital specification property
if, for any δ > 0, there exists q(δ) > 0 such that, for any q ≥ q(δ), we may find a set G̃q ⊂ G∗

q

satisfying limq→∞ # G̃p/#G∗
p = 1 and for which the following shadowing property holds: for any

hqj ∈ G̃qj with qj ≥ q(δ), any points x1, . . . , xk ∈ X, any natural numbers n1, . . . , nk and any
concatenations g

nj ,j
= ginj

,j . . . gi2,j gi1,j ∈ Gnj with 1 ≤ j ≤ k, there exists x ∈ X satisfying

dist(g
ℓ,1

(x) , g
ℓ,1

(x1)) < δ,∀ℓ = 1, . . . , n1 and dist (g
ℓ,j
hqj−1

. . . g
n2,2

hq1 gn1,1
(x) , g

ℓ,j
(xj)) < δ

for all j = 2, . . . , k and ℓ = 1, . . . , nj . If G̃p can be taken equal to G∗
p, we say that S satisfies the

strong orbital specification property. If the point x can be chosen in Per(G), then we refer to this
property as the periodic orbital specification property. For instance, it is true for finitely generated
semigroups of topologically mixing Ruelle expanding maps (cf. [23, Theorem 16]).

6.2. First return times. Although the recurrence for a semigroup action S and for the random
dynamical system modeled by the skew product FG are not the same, they are nevertheless bonded.
Given a measurable subset A of X and x ∈ A, we may define the first return of x to A by the
semigroup action as follows

nSA(x) =

{
inf
{
nωA(x) : ω ∈ Σ+

p

}
if this set is nonempty

+∞ otherwise.
(16)

Then nSA(x) = inf {k ≥ 1: Fk
G (Σ+

p ×{x})∩ (Σ+
p ×A) ̸= ∅}. Moreover, given B ⊂ Σ+

p ×X, we may
take the shortest return time of B to itself by the skew product FG, that is,

T FG(B) = inf {k ∈ N : Fk
G(B) ∩B ̸= ∅}.

In particular, if B = Σ+
p ×A, we obtain

inf
x∈A

nSA(x) = T FG(Σ+
p ×A) = inf

ω∈Σ+
p

T ω(A)

and (see Definition (6))

T S(A) = inf {k ≥ 1: Fk
G(Σ

+
p ×A) ∩ (Σ+

p ×A) ̸= ∅} = T FG(Σ+
p ×A). (17)

The pointwise return time functions for the semigroup action S and the skew product FG are also
related: by (9), given a measurable set A ⊂ X, for every x ∈ X and ω ∈ Σ+

p we have

nωA(x) = nFG

Σ+
p ×A

(ω, x) = first return time of (ω, x) to the set Σ+
p ×A by FG.

6.3. Shortest returns of balls and Lyapunov exponents. In the special case of semigroups
of topologically mixing expanding maps, it is known that the skew product map FG satisfies the
periodic specification property (see e.g. [23, Theorem 28]). Moreover, if P×ν has positive entropy
with respect to FG then, using (17), for P× ν−almost every (ω, x) one has (cf. [3, 27])

lim
δ→ 0

lim sup
n→∞

T FG(Bδ((ω, x), n))

n
= lim

δ→ 0
lim inf
n→∞

T FG(Bδ((ω, x), n))

n
= 1

where Bω
δ (x, n) = {y ∈ X : d(f jω(x), f

j
ω(y)) < δ, ∀ 0 ≤ j ≤ n − 1} stands for the dynamical ball

with center x, radius δ and length n for the dynamics (fnω )n≥1. The next result generalizes this
statement.

Proposition 6.1. Let G be the semigroup generated by G1 = {Id, g1, . . . , gp}, where the elements
in G∗

1 are C1 expanding maps on a compact connected Riemannian manifold X, satisfy the orbital
specification property and preserve a Borel probability measure ν on X. Consider a σ−invariant
Borel probability measure P on Σ+

p such that hν(S,P) > 0. Assume also that P× ν is ergodic with
respect to FG. Then, for P−almost every ω and ν−almost every x ∈ X, we have

lim
δ→ 0

lim sup
n→+∞

T ω(Bω
δ (x, n))

n
= lim

δ→ 0
lim inf
n→+∞

T ω(Bω
δ (x, n))

n
= 1.
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Proof. Firstly, observe that, as we are considering the product metric in Σ+
p ×X, then Bδ((ω, x)) =

Bδ(ω)×Bδ(x) for every (ω, x) ∈ Σ+
p ×X and any δ > 0. Moreover, dynamical balls with respect

to the skew product dynamics FG are in fact dynamical balls for the random composition of
dynamics; that is, for every n ≥ 1,

Bδ((ω, x), n) =
∪

θ∈Bδ(ω,n)

{θ} ×Bθ
δ (x, n). (18)

Besides, if we take Λ = max1≤ i≤ p; x∈X ∥Dgi(x)∥ and λ = min1≤ i≤ p; x∈X ∥Dgi(x)∥, then clearly

Bδ(ω, n)×BδΛ−n(x) ⊂ Bδ((ω, x), n) ⊂ Bδ(ω, n)×Bδλ−n(x) (19)

for every x ∈ X and n ≥ 1, which implies that the corresponding first return times are in decreasing
order.

The periodic orbital specification property of the skew product guarantees that, for any δ > 0,
there existsNδ ≥ 1 such that, given n ≥ 1, we may find a periodic point y ∈ Bω

δ (x, n)∩Fix (fn+Nδ
ω ).

In particular, T ω(Bω
δ (x, n)) ≤ n+Nδ and, consequently,

lim
δ→ 0

lim sup
n→+∞

T ω(Bω
δ (x, n))

n
≤ 1.

To complete the proof we are left to show that, for (P× ν)−almost every (ω, x),

lim
δ→ 0

lim inf
n→+∞

T ω(Bω
δ (x, n))

n
≥ 1. (20)

We will proceed arguing as in [27, pages 2372–2373]. Notice that, as P×ν is ergodic and hν(S,P) >
0, Theorem 2.1 of [30] informs that, for P× ν−almost every (ω, x),

lim
δ→ 0

lim sup
n→+∞

− 1

n
log ν(Bω

δ (x, n)) = lim
δ→ 0

lim inf
n→+∞

− 1

n
log ν(Bω

δ (x, n)) > 0 (21)

and that

hν(S,P) =
∫

lim
δ→ 0

lim sup
n→+∞

− 1

n
log ν(Bω

δ (x, n)) d(P× ν)(ω, x).

Take now a finite measurable partition β ofX satisfying ν(∂β) = 0 and hν(S,P, β) > 0. Let Vδ(∂β)
stand for the neighborhood of size δ of Σ+

p ×∂β in Σ+
p ×X; notice that (P×ν)(Vδ(∂β)) = ν(Vδ(∂β)).

The Random Ergodic Theorem (cf. Subsection 3.1) assures that, for any small γ > 0, there exists
δ > 0 such that, at P× ν−almost everywhere, one has

1

n

n−1∑
j=0

δVδ(∂β)(F
j
G(ω, x)) ≤ 2 (P× ν)(Vδ(∂β)) < γ. (22)

Fix ω ∈ Σ+
p in the full P−measure subset of Σ+

p where (21) and (22) hold. As the semigroup
action S is ergodic (cf. definition in Subsection 2.2.2), for any ξ, ε > 0 small enough there exist
N ∈ N and a measurable set Eω

ξ ⊂ X satisfying ν(Eω
ξ ) > 1− ξ,

e−n (hν(S, P, β)+ ξ) ≤ ν(βn
0 (ω)(x)) ≤ e−n (hν(S, P, β)− ξ) (23)

and
∑n−1

j=0 δFj
G (ω,x) ≤ γn for all x ∈ Eω

ξ and n ≥ N . Besides, by equation (23), there exists

Kω > 0 such that

K−1
ω e−n (hν(S, P, β)+ ξ) ≤ ν(βn

0 (ω)(x)) ≤ Kωe
−n (hν(S, P, β)− ξ)

for every n ≥ 1 and x ∈ Eω
ξ . As ξ > 0 was chosen arbitrary, in order to prove (20) for ν−almost

every x, it is enough to show, using Borel-Cantelli Lemma, that ν
(
{x ∈ Eω

ξ : T ω(Bω
δ (x, n)) ≤

(1− ξ)n}
)
is summable for every small δ.

We proceed covering the dynamical ball Bω
δ (x, n) ⊂ X by a collection β̃n

0 (ω) of partition
elements in βn

0 (ω). If δ > 0 is chosen small enough, then (22) implies that the piece of orbit
(f jω(x))

n
j=0 enters the δ−neighborhood of ∂β in at most γn iterates. The argument used in [27,

Lemma 3.2] implies that, for any α > 0, there exist γ > 0 and δ > 0 (given by (22)) so that
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Bω
δ (x, n) ⊂ X is covered by a collection β̃n

0 (ω) of at most eαn partition elements of βn
0 (ω), for

every x ∈ Eω
ξ . Therefore,

ν
( {
x ∈ Eω

ξ : T ω(Bω
δ (x, n)) ≤ (1− ξ)n

} )
=

(1−ξ)n∑
k=0

ν
( {
x ∈ Eω

ξ : T ω(Bω
δ (x, n)) = k

} )
≤

(1−ξ)n∑
k=0

∑
Q∈ β̃n

0 (ω)

fk
ω(Q)∈ β̃n

0 (ω)

ν(Eω
ξ ∩Q).

Notice that Bω
δ (x, n) is covered by at most eαn elements of β̃n

0 (ω) and, among these, every Q ∈
β̃n
0 (ω) satisfying f

k
ω(Q) ∈ β̃n

0 (ω) is determined by the first k elements of the partition β that are
visited under the iterations of f jω, 1 ≤ j ≤ k. Thus

ν
(
{x ∈ Eω

ξ : T ω(Bω
δ (x, n)) ≤ (1− ξ)n}

)
≤

≤ Kωe
−n (hν(S,P,β)− ξ) eαn

(1−ξ)n∑
k=0

#
{
Q ∈ β̃n

0 (ω) : f
k
ω(Q) ∈ β̃n

0 (ω)
}

≤ Kωe
−n (hν(S,P,β)− ξ) eαn

(1−ξ)n∑
k=0

Kω e
k (hν(S,P,β)+ ξ)

≤ K2
ω (1− ξ)n e−n (hν(S,P,β)− ξ) eαn e(1−ξ)n (hν(S,P,β)+ ξ)

and so it is summable provided that α, ξ are small enough. �
If we restrict to either C1 expanding or conformal maps on a Riemannian manifold, we obtain

the following corollary and finish the proof of Theorem D.

Corollary 6.2. Let G be the semigroup generated by G1 = {Id, g1, . . . , gp}, where the elements
in G∗

1 are C1 expanding maps on a compact connected Riemannian manifold X preserving a
common Borel probability measure ν on X, and P be a σ−invariant Borel probability measure on
Σ+

p . Assume that P× ν is ergodic with respect to FG and that hν(S,P) > 0. Then, for P−almost
every ω and ν−almost every x ∈ X, we have

1

log Λ
≤ lim inf

δ→ 0

T ω(Bδ(x))

− log δ
≤ lim sup

δ→ 0

T ω(Bδ(x))

− log δ
≤ 1

log λ
(24)

where Λ ≥ λ > 1 are, respectively, Λ = max1≤ i≤ p ∥Dgi∥∞ and λ = min1≤ i≤ p ∥Dgi∥∞.
Proof. As a consequence of [23, Theorem 16], we know that every finitely generated free semigroup
action by C1 expanding maps on compact connected manifolds satisfies the orbital specification
property. Moreover, for every x ∈ X, n ∈ N, ω ∈ Σ+

p and δ > 0, we have BΛ−nδ(x) ⊂ Bω
δ (x, n) ⊂

Bλ−nδ(x). Thus, if ν is a probability measure invariant by all elements in G, P× ν is ergodic for
FG and hν(S,P) > 0, then we conclude from Proposition 6.1 that

lim sup
δ→ 0

T ω(Bδ(x))

− log δ
≤ lim

δ→ 0
lim sup
n→+∞

T ω(Bλ−nδ(x))

− log(λ−nδ)
≤ lim

δ→ 0
lim sup
n→+∞

T ω(Bω
δ (x, n))

n log λ
=

1

log λ
.

The lower bound estimate is obtained by a similar reasoning. �
It is a straightforward consequence of (24) that, in the case of semigroups of C1−expanding

maps one has

lim sup
δ→ 0

T S(Bδ(x))

− log δ
≤ 1

log λ
.

Although we believe that a similar lower bound holds, we have not been able to obtain it.

Remark 6.3. Notice that, if the generators are not expanding maps one expects larger return
times. For instance, if the semigroup action is generated by circle rotations with rotation α0 and
α1 satisfying 0 < α0 ≤ α ≤ α1 < 1, then it is not hard to check that T S(Bδ(x)) ≤ ( 1

α1
+ 1) 1δ for

every δ > 0 and x ∈ S1. However, it is not clear whether this bound is optimal.
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If, besides being expanding, all elements in G∗
1 are conformal, then Dgi(x) = ∥Dgi(x)∥Id and

det |Dgi(x)| = ∥Dgi(x)∥dimX for every x ∈ X and any i ∈ {1, 2, · · · , p}. In particular, it follows
from Oseledets Theorem that all the Lyapunov exponents of the skew product FG along the fiber
direction are equal and coincide with

χ : =
1

dimX
lim

n→+∞

1

n
log |detDfnω (x)| =

1

dimX
lim

n→+∞

1

n

n−1∑
j=0

log
∣∣∣ det ∂FG

∂x
(Fj

G(ω, x)
∣∣∣

=
1

dimX

∫ ∫
log
∣∣∣ det ∂FG

∂x
(ω, x)

∣∣∣ dν(x) dPa(ω) =
1

dimX

p∑
i=1

ai

∫
log |detDgi| dν.

(Notice that, in the last but one estimate we have used the ergodicity of P × ν.) Moreover, the
expanding nature of the generators in G∗

1 and the assumption that P = Pa, for some probability

vector a, imply that χ > 0. Observe also that, since ∥Dgi(x)∥ = det |Dgi(x)|
1

dimX then, as a
consequence of the Mean Value Theorem, given δ > 0, for Pa × ν−almost every (ω, x) there exists
N = N(ω, x) ≥ 1 such that, for all n ≥ N ,

Be−(χ+ε)n δ(x) ⊂ Bω
δ (x, n) ⊂ Be−(χ−ε)n δ(x).

Therefore, an argument identical to the one used in the first part of this proof yields that

1

χ+ δ
≤ lim sup

δ→ 0

T ω(Bδ(x))

− log δ
≤ 1

χ− δ
.

To obtain (8) it is enough to let δ go to 0. This ends the proof of Theorem D.

Remark 6.4. If the measure P × ν has positive entropy and FG has the specification property,
then it is a consequence of [9, 27] that, for P× ν−almost every (ω, x),

lim
δ→ 0

lim sup
n→+∞

T (Bδ((ω, x), n))

n
= lim

δ→ 0
lim inf
n→+∞

T (Bδ((ω, x), n))

n
= 1.

This differs substantially from the fiber assertion provided by Theorem D.

Example 6.5. Consider the generators g1 and g2 of Example 5.5, the Lebesgue measure Leb on
S1 (which is invariant by both dynamics) and the symmetric random walk corresponding to the
Borel probability measure P2. The maps g1 and g2 are conformal, C1 expanding, |detDg1(·)| = 2
and |detDg2(·)| = 3. Besides, P2 ×Leb is ergodic with respect to the skew product FG (it is even
weak Bernoulli; cf. [20]). Therefore, by Corollary 6.2 and Example 5.5, for P2−almost every ω in

Σ+
2 and Leb−almost every z ∈ S1, we have

lim
δ→ 0

T ω(B(z, δ))

− log δ
=

2

log 3 + log 2
>

1

htop(S)
.

7. Proof of Theorem E

In this section we examine the connection between maximum random hitting frequency and the
size of sets when evaluated by different measures. We start reviewing these concepts. Denote by
MFG

the set of all probability measures invariant by the skew product FG. For every µ ∈ MFG

the marginal of µ on X is the probability measure (πX)∗(µ) := µ ◦ π−1
X where πX : Σ+

p ×X → X
is the natural projection.

7.1. Random mean sojurns. Let G be a finitely generated free semigroup, with corresponding
action S, and P a σ−invariant probability measure on Σ+

p .

Definition 7.1. For a measurable subset A ⊂ X, the maximum random hitting frequency of A
with respect to P is given by

γP(A) = P− esssup sup
x∈X

γω,x(A) (25)
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where

γω,x(A) = lim sup
n→+∞

# {0 ≤ i ≤ n− 1 : f iω(x) ∈ A}
n

. (26)

The absolute maximum hitting frequency of A with respect to P is defined by

γ(A) = sup
(ω,x)∈Σ+

p ×X

γω,x(A).

Given a measurable set A ⊂ X, consider the upper bound of its sizes when estimated by all
probability measures in MFG which project on P, that is,

αP(A) = sup
{µ∈MFG

: π∗µ=P}
µ(Σ+

p ×A).

Lemma 7.2. If A is a closed subset of X, then there exists an ergodic probability measure µA ∈
MFG

with π∗µA = P and such that αP(A) = µA(Σ
+
p × A). Moreover, the set of maximizing

measures is compact.

Proof. Firstly, endow the space MFG with the weak∗ topology. Therefore, as A is closed, the
functional

ΨA : µ ∈ MFG 7→ µ(Σ+
p ×A)

is upper semi-continuous (cf. [29]). Moreover, MFG,P := MFG∩π−1
∗ ({P}) is a non-empty compact

subset of MFG
. Hence, ΨA attains a maximum in MFG,P.

Let Erg(FG,P) be the ergodic members of MFG,P, and consider a measure ξA ∈ MFG,P
where ΨA attains its maximum, whose ergodic decomposition (cf. [29, 22]) in MFG,P is ξA =∫
Erg(FG,P) mdτ(m). As ξA maximizes ΨA, we know that m(Σ+

p × A) ≤ ξA(Σ
+
p × A) for ev-

ery m ∈ MFG,P. Therefore, as ξA(Σ
+
p × A) =

∫
Erg(FG,P) m(Σ+

p × A) dτ(m), we must have

m(Σ+
p × A) = ξA(Σ

+
p × A) = αP(A) for τ−almost every m. Thus, we may take an ergodic

maximizing measure of ΨA, as claimed.
We observe that the upper semi-continuity of ΨA also implies that the set of maximizing

probability measures is compact. Indeed, if a sequence of measures ξA,n ∈ MFG,P satisfies
limn→+∞ ξA,n = ξ in the weak∗ topology and αP(A) = ξA,n(Σ

+
p × A) for every n ∈ N, then

ξ ∈ MFG,P and, as ΨA is upper semi-continuous, we conclude that

αP(A) = lim
n→+∞

ξA,n(Σ
+
p ×A) = lim

n→+∞
ΨA(ξA,n) ≤ ΨA(ξ) = ξ(Σ+

p ×A)

≤ sup
{µ∈MFG

: π∗µ=P}
µ(Σ+

p ×A) = αP(A)

so ΨA(ξ) = αP(A). �

We are now ready to compare the rates of visits with the size of the visited set.

Proposition 7.3. Let P be a σ−invariant probability measure on Σ+
p . Then:

(1) αP(A) ≤ γP(A) ≤ γ(A) for every measurable set A ⊂ X.
(2) If P is ergodic, one has:

(a) For every x ∈ X, there exists an FG−invariant probability measure µP,x such that
π∗(µP,x) = P and γω,x(A) ≤ µP,x(Σ

+
p ×A) for every closed set A ⊂ X.

(b) γP(A) = αP(A) for every closed set A ⊂ X.

Proof. Consider a measurable set A ⊂ X. The inequality γP(A) ≤ γ(A) is immediate. Conversely,
if µ is an FG−invariant and ergodic probability measure on Σ+

p ×X, then it follows from Birkhoff
Ergodic Theorem that, for µ−almost every (ω, x),

lim
n→+∞

# {0 ≤ i ≤ n− 1 : f iω(x) ∈ A}
n

= lim
n→+∞

# {0 ≤ i ≤ n− 1 : F i
G(ω, x) ∈ Σ+

p ×A}
n

= µ(Σ+
p ×A).
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Thus, taking the supremum and the essential supremum in the first term of the previous equalities,
we conclude that

γP(A) = P− esssup sup
x∈X

lim sup
n→+∞

# {0 ≤ i ≤ n− 1 : f iω(x) ∈ A}
n

≥ µ(Σ+
p ×A).

This proves item (1) since µ is an arbitrary ergodic measure and, as a consequence of the Ergodic
Decomposition Theorem, we have

sup
{µ∈MFG

: π∗µ=P}
µ(Σ+

p ×A) = sup
{µ∈MFG

: π∗µ=P & µ is ergodic}
µ(Σ+

p ×A).

Concerning item (2), assume that P is ergodic and take a point ω ∈ Σ+
p in the ergodic basin of

the measure P

B(P) = {ω ∈ Σ+
p : lim

n→+∞

1

n

n−1∑
j=0

δσj(ω) = P}.

Fix x ∈ X and a closed set A ⊂ X. From Definition 7.1 (26), we may find a subsequence
(nk = nk(x))k∈N going to +∞ and such that

γω,x(A) = lim
k→+∞

# {0 ≤ i ≤ nk − 1 : f iω(x) ∈ A}
nk

.

By compactness of the set of probability measures on the Borel subsets of Σ+
p ×X, the sequence

of measures (µk)k≥ 1 given by µk := 1
nk

∑nk−1
i=0 δFi

G(ω,x) admits a weak∗ convergent subsequence

to some FG−invariant probability measure µP,x. Assume, without loss of generality, that µP,x =
limk→+∞ µk. Moreover, the continuity of the projection π∗ and the choice of ω imply that

π∗(µP,x) = lim
k→+∞

π∗

(
1

nk

nk−1∑
i=0

δFi
G(ω,x)

)
= lim

k→+∞

1

nk

nk−1∑
i=0

δσi(ω) = P.

Moreover, as Σ+
p ×A is a closed set and (µk)k∈N is weak∗ convergent to µP,x, we get

γω,x(A) = lim
k→+∞

# {0 ≤ i ≤ nk − 1 : f iω(x) ∈ A}
nk

= lim
k→+∞

µk(Σ
+
p ×A) ≤ µP,x(Σ

+
p ×A).

This ends the proof of the item (2(a)) and also implies that

γP(A) = P− esssup sup
x∈X

γω,x(A) ≤ µP,x(Σ
+
p ×A)

for every closed set A ⊂ X. Finally, notice that items (1) and (2(a)) together yield the equality
γP(A) = αP(A) for every closed set A ⊂ X. �

To complete the proof of Theorem E we have just to assemble the statements of Lemma 7.2
and (2(b)) of Proposition 7.3, and take the marginal (πX)∗(µA).

Example 7.4. Let g1 : [0, 1] → [0, 1] and g2 : [0, 1] → [0, 1] be the maps given by g1(x) = 4x (1−x)
and g2(x) = 2x mod 1, and consider the continuous semigroup G generated by G1 = {Id, g1, g2}.
Given n ∈ N, take ℓ1 ∈

[
sin π

2(2n+1) , sin
π

2(2n−1+1)

)
and ℓ2 ∈

[
1

2n+1 ,
1

2n−1+1

)
. By Theorems 3 and

5 of [15], if Aℓi = [ 1−ℓi
2 , 1+ℓi

2 ], then the maximum hitting frequency for the map gi is equal to

γi(Aℓi) =
1
n (i = 1, 2). Moreover, there are periodic points z1, z2 ∈ [0, 1] with period n and 2n by

g1 and g2, respectively, whose orbits hit Aℓi with maximum frequency (i = 1, 2).

Let P = 1
3δ1̄ + 2

3δ2̄ and µ = 1
3n

(∑n
j=1 δFj

G(1,zα) +
∑2n

j=1 δFj
G(2,zβ)

)
. Then µ is FG−invariant

and, although P is not ergodic, we have π∗µ = P. Besides, by [15], for all ℓ ∈
[

1
2n+1 ,

1
2n−1+1

)
∩

[sin π
2(2n+1) , sin

π
2(2n−1+1) ), we obtain γP(Aℓ) =

1
n = αP(Aℓ).



18 M. CARVALHO, F. RODRIGUES, AND P.VARANDAS

References

[1] M. Abadi and R. Lambert. The distribution of the short-return function. Nonlinearity 26:5 (2013) 1143–1162.
[2] L.M. Abramov and V.A. Rokhlin. Entropy of a skew product of mappings with invariant measure. Vestnik

Leningrad. Univ. 17:7 (1962) 5–13.
[3] V.S. Afraimovich, J.R. Chazottes, and B. Saussol. Pointwise dimensions for Poincaré recurrence associated
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