
A pipelined data-parallel algorithm for ILP

Nuno A. Fonseca Fernando Silva
DCC-FC & LIACC, Universidade do Porto,Portugal

{nf,fds}@ncc.up.pt
Vitor Santos Costa

COPPE/Sistemas & Universidade Federal do Rio de Janeiro,Brasil
vitor@cos.ufrj.br
Rui Camacho

Faculdade de Engenharia & LIACC, Universidade do Porto,Portugal
rcamacho@fe.up.pt

Abstract

The amount of data collected and stored in databases is
growing considerably for almost all areas of human activ-
ity. Processing this amount of data is very expensive, both
humanly and computationally. This justifies the increased
interest both on the automatic discovery of useful knowl-
edge from databases, and on using parallel processing for
this task. Multi Relational Data Mining (MRDM) tech-
niques, such as Inductive Logic Programming (ILP), can
learn rules from relational databases consisting of multiple
tables. However, current ILP systems are designed to run in
main memory and can have long running times. We propose
a pipelined data-parallel algorithm for ILP. The algorithm
was implemented and evaluated on a commodity PC clus-
ter with 8 processors. The results show that our algorithm
yields excellent speedups, while preserving the quality of
learning.

1. Introduction

The amount of data collected and stored in databases is
growing considerably in almost all areas of human activ-
ity. A paramount example is the explosion of biotech data,
where the volume of data doubles every three to six months
as a result of automation in biochemistry [3]. In this case,
as in many others, processing this amount of data is be-
yond human analysis and is computationally very expen-
sive. This justifies the increased interest both on the auto-
matic discovery of useful knowledge from databases and on
using parallel processing for this task.

Multi Relational Data Mining (MRDM) is a fast growing
multi-disciplinary field that deals with knowledge discov-

ery from relational databases consisting of multiple tables.
Several techniques in Relational Data Mining have been de-
veloped through Inductive Logic Programming (ILP). ILP
is a form of supervised relational learning that aims at the
induction of first-order logic theories (sets of rules) from
a given set of examples and from prior knowledge. The
expressiveness of first-order logic gives ILP the flexibility
and understandability of the induced models. However, ILP
systems suffer from significant limitations. First, most ILP
systems execute in main memory, limiting their ability to
process large databases. Second, ILP systems, like other
MRDM algorithms, are computationally expensive. On siz-
able applications, ILP systems can take several hours, if not
days, to return a model.

Previous research on improving the efficiency of ILP
systems has largely focused in reducing their sequential
execution time, either by reducing search space size (see,
e.g., [26]), or by efficiently testing candidate rules (see,
e.g., [2, 8]). Parallelism provides an attractive alternative
solution, as it may both significantly decrease learning time
and allow the original database to be split among different
nodes, therefore increasing maximum data size. In most
cases the speedup techniques proposed for sequenctial ex-
ecution are still usable in a parallel setting. Most parallel
ILP implementations so far [11] have focused on speed-
ing up execution and targeted shared-memory machines,
due to their more convenient programming model. How-
ever, distributed memory machines have important advan-
tages, namely regarding data scalability. Unfortunately, to
the best of ourt knowledge, previous work on distributed-
memory implementations of ILP has only achieved limited
performance [19, 14, 6], mainly due to communication and
load-balancing issues.

In this paper we propose a novel parallel ILP algorithm
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targeted for distributed memory machines. Our algorithm
exploits pipelined data-parallelism [16, 17] and is geared to
achieve good speedups while preserving the quality of the
models. The algorithm takes advantage of data-parallelism
by dividing examples evenly between the p processors and
starting p searches in parallel. This makes it possible to fit
large datasets into main memory. Unfortunately, training
on small subsets of the whole data might reduce the quality
of learning. We address this problem by streaming the best
rules over every subset in a pipelined fashion.

In more detail, our key idea is to start p independent
searchs, such that each search is divided into p stages. Each
step (stage) of the search uses a local subset of the exam-
ples. The good rules found in each stage are sent to the next
stage and are used as a starting point for a new search, now
using the next subset of examples. The search for a good
rule eventually traverses all subsets of examples. We expect
all different searches to complete at about the same time,
giving us balanced parallelism.

We implemented and evaluated this algorithm on a PC
cluster with 8 processors using real world applications. Our
experiments show that indeed the algorithm does achieve
substancial performance improvements in a fully distributed
environment, while preserving the quality of the models.

The remainder of the paper is organised as follows. We
next introduce some background on ILP and the notation
used in this paper. Section 3 presents a widelly used se-
quential ILP algorithm. Section 4 describes a pipelined
data-parallel algorithm for ILP. Section 5 discusses the per-
formance of the proposed algorithm based on an empirical
evaluation. In Section 6 we review the related work. Last,
we draw some conclusions and present future work.

2. Background

2.1. ILP

Arguably, one of the most expressive and human under-
standable representation scheme for learning is if-then rules.
ILP is one of several approaches that learn such rules. In
ILP’s case, rules can contain variables, and are based on
first-order Horn clauses. Sets of first-order Horn clauses
can be interpreted as logic programs. This type of learn-
ing is thus called Inductive Logic Programming (ILP). For
a gentle introduction to the field we refer to [24, 27].

ILP systems induce (learn) sets of rules from data. As in-
put, ILP require training examples of the concept to learn.
Usually, we have positive and negative examples. Often,
they benefit from prior knowledge, also named background
knowledge. Both, examples and background knowledge are
usually represented as logic programs. One common case
is for examples to be tuples in a table in a database, and

the background knowledge to be all other tables on that
database.

ILP systems try to to find a consistent and complete the-
ory, i.e., a set of rules that explain all given positive ex-
amples (completeness), and do not explain the negative ex-
amples (consistency). In the real world, examples may be
misclassified (noise). ILP systems handle noise by relax-
ing the consistency condition: rules can be accepted even if
they do cover some small number of negative examples.

The percentage of correctly classified examples is called
accuracy. Training accuracy is the accuracy observed on
the training data, i.e., the data we used for learning. Our real
goal, though, is to achieve best predictive accuracy, i.e., the
accuracy measured on unseen examples. Accuracy of a rule
r essentially depends on its coverage: the number of posi-
tive (positive cover) and negative examples (negative cover)
derivable from r given the background knowledge B. The
time needed to compute the coverage of a rule depends pri-
marily on the cardinality of E (i.e., | E+ | and | E− |)
and on the theorem proving effort required to evaluate each
example using the background knowledge.

2.2. Notation

We will use the following notation in the remainder
of the paper. p is the number of processors/workers
available. The processors are organized in a master-
worker model. We abstract three communication opera-
tions: send, broadcast, and receive. The broadcast
and send operations are assumed to be non-blocking, while
receive is blocking. In our model, workers receive the tasks
to execute in messages sent by the master. After receiving
a message, a worker executes it. If the task returns some
value, it is sent to the master when the task completes.

3. A sequential ILP algorithm

In order to assess our algorithm, we really need to be
able to compare ir with a standard ILP search algorithm. A
widely implemented technique in ILP is Mode-Directed In-
verse Entailment (MDIE) [22]. In MDIE we iterate through
a search process to find good rules, and ultimately obtain a
set of rules, our theory.

3.1. Algorithm

Figure 1 presents an MDIE-style procedure. It induces
the theory Rules Learned from a set of examples E, back-
ground knowledge B, and some constraints C. In a nut-
shell, the algorithm learns one rule at a time (step 6) using a
generalization procedure that performs a search through an
ordered space of legal rules. After accepting a rule, all pos-
itive examples covered are removed from the training set.
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mdie(B,C,E+,E−)
Input: Background knowledge (B), constraints (C), positive (E+) and
negative (E−) examples.
Output: A set of complete and consistent rules (RulesLearned).
1. Rules Learned=∅

2. Remaining=| E+ |
3. while Remaining > 0 and stopping condition not met do
4. e=select an example from E+

5. ⊥e=build msh(e,B,E+,C)
6. R=bestOf(learn rule(B,C,E+,E−,⊥e))
7. Rules Learned=Rules Learned ∪ {R}
8. Covered={Examples Covered by R}
9. E+=E+ \ Covered

10. Remaining=| E+ |
11. end while
12. return Rules Learned

Figure 1. A learning procedure based on
MDIE. The build msh() procedure con-
structs the most-specific-clause ⊥e that en-
tails the example selected and is within lan-
guage restrictions provided (C). The search
procedure, invoked in step 6, finds the best
consistent clause more general than example
e by performing a search through the space
of legal clauses.

The next rule is then learned from the remaining examples.
The process repeats until no positive examples are left or
until some other stopping criteria is met (e.g., some time
limit).

Steps 4 and 5 show that each rule is obtained by starting
from a specific example, and looking for derivable literals.
Technically, these literals form a most specific rule ⊥e that
entails the example selected and satisfies the language re-
strictions in C. The most specific rule is also known as
bottom clause. The step is important because it constrains
the search: we will use the literals in the bottom clause to
compose the rules. Even so, the number of rules grows ex-
ponentially with the size of the bottom clause, resulting in a
very large, or even infinite, search space.

The procedure shown in Figure 1 is implemented by a
number of ILP systems (e.g., [22, 25, 31, 5, 1]). Most
often, the algorithms differ in how they perform the
learn rule() procedure (step 6). This procedure, out-
lined in Figure 2, receives a set of examples and prior
knowledge and returns a set of consistent rules, that explain
some or, ideally, all positive examples. Usually, this proce-
dure returns a single rule, but here we assume it will return
a set of good rules and then the best one is chosen.

The learn rule() procedure searches the (potentially
infinite) space of rules for a rule that optimizes some qual-
ity criteria. The search for a rule involves traversing the

learn rule(B,C,E+,E−,⊥e)
Input: Background knowledge (B), constraints (C), positive (E+) and
negative (E−) examples, and the bottom clause (⊥e).
Output: A set of rules (Good).
1. Good=∅

2. S=START RULE
3. P ick=pickRule(S)
4. S=S \ {Pick}
5. NewRule=genNewRule(Pick,C,⊥e)
6. Val=evalOnExamples(B,E+ ,E−,C,NewRule)
7. if is good(NewRule,C,Val) then
8. Good=Good ∪ {NewRule}
9. endif
10. if stop criterium not satisfied then
11. goto 3
12. endif
13. return Good

Figure 2. An example of a generic
learn rule() procedure.

space of rules, that in turn involves generating and evaluat-
ing rules. In order to traverse the space of rules systemati-
cally a structure is imposed upon it, i.e., an ordering. The
most popular ordering used in ILP is the θ-subsumption,
defined by Plotkin [28]. It introduces the syntactic notion
of generality. The evaluation of a rule usually requires the
computation of its coverage, i.e., computing how many ex-
amples the rule explains. The time taken to compute the
coverage of a rule depends, primarily, on the number of ex-
amples. Thus, scalability problems may arise when dealing
with a great number of examples or/and when the computa-
tional cost to evaluate a rule is high.

4. P
2 − mdie: A pipelined data-paralllel algo-

rithm for ILP

This section presents our pipelined data-parallel cover-
ing algorithm, p2 algorithm for short. As the name sug-
gests, the algorithm combines pipelining and data paral-
lelism. The algorithm exploits data-parallelism by dividing
the data (set of examples E) by all workers and by learning
in parallel on each worker. Pipelining is possible by break-
ing the process of learning the best rule into a sequence of
stages. Each stage performs a search using a subset of ex-
amples local to the stage’s owner. The good rules found are
sent to the next stage (worker) to be used as starting point of
a new search using a different subset of examples. There-
fore, the search for a rule is incrementally performed using
different sets of examples. When the pipeline completes the
newly found rules are then sent to the master.

Parallelism is obtained by having the p stages of the
pipeline always busy. This is possible because every stage
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Figure 3. Parallel pipelined rule search with 3
stages

of the pipeline does the same task, just on a different set of
examples. We thus simultaneously start p searches at the p

pipeline stages. When a search completes level p it is folded
back to level 1. Figure 3 exemplifies this process on a par-
allel pipeline with 3 workers. The master starts 3 searches,
one for each worker. Each worker learns a set of rules, us-
ing the local data. At the end of its stage, it passes the good
rules (represented as squares in Figure 4) to the next worker
in the pipeline. The next worker receives a set of rules found
previously and uses them as starting points for a new search
using the local data, as exemplified in Figure 4. At the end,
the 3 sets of rules found (R1, R2, R3) are sent to the master.

4.1. The algorithm

The p2 −mdie algorithm is a pipeline data-parallel cov-
ering algorithm based on MDIE. Figure 5 outlines the algo-
rithm of the master (the notation used is explained in Sec-
tion 2.2).

We divide execution into a number of epochs. Each
epoch is responsible for finding rules that cover a number
of positive examples. As in MDIE, epochs are run sequen-
tially, and execution will consist of as many epochs as we
need to have all positive examples covered.

Each epoch is managed by a master. The master per-
forms three steps. At step 1, the master randomly and
evenly partitions the examples into p subsets. Each worker

W2

...

Master

W1

Master

W3

h1

h1

h2 h3

h1

h2 h3

={h1,h2,h3}R1

Figure 4. Example of a pipelined rule search.
The squared box represent nodes in the
search space considered good. The good
nodes are used as starting points of the
search in the next worker.

is then notified to load its subset of examples together with
the remaining data (prior knowledge, constraints, . . . ).

We assumed in this algorithm that the data can be shared
by all processors, through a distributed file system, and
therefore no messages containing background knowledge
(B), the constraints (C), and the examples (E+ and E−)
are exchanged. Obviously, if file sharing is not possible one
needs to exchange messages containing the referred data.
Example data is loaded only once, hence the transmission
cost should be low in both approaches.

The next step for the master is to start p pipelines in par-
allel, one pipeline per worker. The algorithm for a pipeline
stage I proceeds as follows:

1. If first step, select an example eI and generate the most
specific rule ⊥eI

from example eI . This rule con-
strains the search space (as explained in Section 3). If
not first step, ⊥eI

is provided by the previous stage.
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p2-mdie(E+,E−,B,C,p,w)
Input: set of positive (E+) and negative (E−) examples, background
knowledge (B), constraints (C), number of processors (p), and the maxi-
mum number of consistent rules (w) passed on each stage of the pipeline.
Output: A set of complete and consistent rules (Rules Learned).
1. Rules Learned=∅

2. Partition E+ and E− into p subsets (E+
1

,E−
1

), . . . ,(E+
p ,E−p )

3. broadcast load examples()
4. Remaining=| E+ |
5. while Remaining > 0 or stopping condition met do
6. for k=1 until p do
7. send k start pipeline(w) /* start pipeline at worker k */
8. end for
9. RulesBag=∪p

k=1
(receive k Rulesk)

10. broadcast evaluate(RulesBag)
11. Results=

Pp

k=1
(receive k Resultk)

12. while RulesBag 6= ∅ do
13. R=pickBest(RulesBag,Results)
14. RulesBag=RulesBag \ {R}
15. Rules Learned=Rules Learned ∪ {R}
16. broadcast mark covered(R)
17. Remaining=Remaining-PosCovered(R,Results)
18. broadcast evaluate(RulesBag)
19. Results=

Pp

k=1
(receive k Resultk)

20. Rules2Delete=notGood(RulesBag,Results)
21. RulesBag=RulesBag \ Rules2Delete

22. end while
23. end while
24. return Rules Learned

Figure 5. Procedures of the p2-mdie algorithm
executed by the master node.

2. Perform search using ⊥eI
.

3. If last step output “good” rules back to the master. Oth-
erwise, output “good” rules and ⊥eI

to next worker
(I + 1)%P .

The last step of the master can be started when the mas-
ter receives a set of rules from every worker. The master
collects all such rules in a bag (RulesBag) and then broad-
casts the whole set to every worker. This step is necessary
in order to appreciate the global quality of the rules.

The rules in the bag are then consumed (added to the
Rules Learned) according to the following sequential al-
gorithm, designed to emulate MDIE as closely as possible:

1. select the best rule from the bag, according to prede-
fined criteria, and remove it from the bag;

2. remove the positive examples covered by the rule on
all subsets;

3. update the Remaining number of examples by sub-
tracting the positive examples covered by the rule R;

4. reevaluate, in parallel, the value of the rules in the bag
(on all subsets) and collect the results;

5. remove the rules from RulesBag that are no longer
“good”.

The consumption of rules ends when there are no more
rules in the bag or other criteria is verified. At this point the
epoch is over. This is a main difference to the sequential
algorithm, since several rules can be added to the theory in
a single epoch as opposed to a single rule in the sequential
algorithm. Epochs repeat until have all positive examples
covered.

start pipeline(W )
Input: The maximum number of consistent rules W passed on each stage
of the pipeline.
E+ and E− are, respectively, the local set of positive and negative exam-
ples, and B the background knowledge, and C the set of constraints
1. e=select an example from E+

2. ⊥e=build msh(e,B, C)
3. learn rule’(⊥e ,1,W ,∅)

evaluate rules(Rules)
Input: Set of rules (Rules)
1. Stats=∅

2. foreach rule in Rules

3. Stats=Stats ∪ evalOnExamples(rule)
4. endfor
5. send master Stats

load examples()
1. me=processor id
/* Loads the subset of examples and remaining data */
2. <B,C,E+,E−>=load(me)

mark covered(R)
Input: Rule (R)
1. B=B ∪ { R }
2. E+=E+ \ {e | e ∈ E+ ∧ B ` e}

Figure 6. p2-mdie - A pipelined data-parallel
covering algorithm based on MDIE (worker
view).

Pipelining is exploited by the learn rule
′() procedure,

shown in Figure 7. It is similar to the learn rule() de-
scribed previously with the following differences. First, it
includes a parameter to indicate the set of starting points of
the search. Secondly, the procedure has a parameter that in-
dicates the current pipeline stage. When the pipeline starts
this value is set to 1, and is incremented when the rules
found are passed to the next stage in the pipeline. Thirdly,
the procedure outputs a set consisting of the “best” W rules
instead of the single “best” rule. The W can be seen as a
parameter that defines the pipeline width. After performing
the search, the best W rules are selected and sent to: i) the
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learn rule’(⊥e,Step,w,S)
Input: current pipeline step (step), pipeline width (w),
initial set of rules S.
Output: A set of rules (Good).
Local data: Background knowledge (B), constraints (C),
positive E+ and negative E− examples.
1. Good=S

2. P ick=pickRule(S)
3. S=S \ {Pick}
4. NewRule=genNewRule(Pick,C,⊥e)
5. Val=evalOnExamples(B,E+,E−,C,NewRule)
6. if is good(NewRule,C,Val) then
7. Good=Good ∪ {NewRule}
8. endif
9. if stop criterium not satisfied then
10. goto 3
11. endif
12. if is last step(step) then
13. send master Good
14. return
15. endif
16. NextWorker=next worker()
17. send NextWorker learn rule’(⊥e,step+1,w,Good)

Figure 7. A pipelined learn rule procedure.
next worker() computes the identifier of
the next worker on the pipeline.

master if the pipeline has reached the end, i.e., current stage
value is p; or ii) to the next stage of the pipeline (i.e., next
worker).

The granularity of the parallel tasks are medium or high,
and depend primarily on the number of examples on each
partition and the complexity of the background knowledge.
The granularity of the tasks executed in parallel are very
similar, leading to balanced computations, hence simplify-
ing processor load balancing.

As computation evolves and the rules are learned, the ex-
amples explained by them are removed from the subsets of
examples. This may lead to unbalanced subsets, i.e., their
sizes may vary considerably, which in turn may result in
unbalanced computations. A possible solution to cope with
this problem, with a considerable cost in message commu-
nication, could be the repartitioning of examples always be-
fore starting the pipelines. However, we did not considered
this approach mainly because the high communication cost
of repartitioning.

One drawback of the algorithm is that it is not possible to
learn recursive rules. This results from having partitioned
the set of positive examples. We are aware of this prob-

lem, but, at this stage, we did not consider it important since
in most real world applications very few concepts seem to
have recursive definitions.

4.2. Implementation

We implemented the ILP pipeline data-parallel covering
algorithm based on MDIE as described in the previous sec-
tion. The implementation was done in the context of the
April [12] ILP system. April combines ideas and features
from several systems, such as Progol [22] et seq. [23, 31],
Indlog [5], CILS [1], into a single coherent system. April
aims at maximum flexibility through a very modular design.
April is implemented using the Prolog language. The Pro-
log engine used was the Yap prolog system [7]. We chose
Yap because it is one of the fastest available Prolog sys-
tems [9].

April was configured to perform a top-down breadth-first
search to find a rule. The rules generated during a search
are evaluated using a heuristic that relies on the number of
positive and negative examples. The rules in the bag were
ordered based on their global coverage, i.e., the aggregate
coverage on all subsets.

We used for the communication layer LAM [4, 30] MPI.
A YAP module was developed in C to act as the interface
between Prolog and LAM/MPI libraries.

It is interesting to note that the proposed algorithm is also
applicable to other ILP systems that are based on the mdie

algorithm.

5. Experiments and Results

The proposal of using pipelined data-parallelism in cov-
ering algorithms aims, primarily, at the reduction of the exe-
cution time. A variation in predictive accuracy could be ex-
pected as a side effect of data partitioning. The question is
to know if the quality of the model is significantly changed.
To answer this question and to evaluate the speedup of the
algorithm we performed several experiments using a set of
ILP applications.

5.1. Materials

For the experiments we used 3 ILP applications. Table 1
characterizes the datasets using the number of positive and
negative examples. The carcinogenesis [32], and pyrim-
idines [18] datasets are applications from molecular biol-
ogy. The mesh [10] dataset is an application from the area
of mechanical engineering.
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Dataset | E+ | | E− |
carcinogenesis 162 136
mesh 2840 278
pyrimidines 848 764

Table 1. Datasets Characterization

5.2. Method

The experiments were performed on an Beowulf Cluster
composed with 4 nodes. Each node is a dual processor com-
puter with 2GB of memory and runs the Linux Fedora OS.
We used the YAP Prolog system, version 4.5, and the April
ILP system [12], version 0.9. Its important to point out that
our proposal is applicable to other ILP systems based on the
mdie algorithm. For each dataset we tuned the settings of
the ILP system so that the sequential runs would not take
more than two hours. We did this by imposing a threshold
on the number of rules that can be generated on each search.

The performance of our p2 −mdie algorithm, described
in Section 4, was evaluated using 5-fold cross validation,
i.e., the data was dividided into 5 subsets (folds) of (ap-
proximately) equal size. Then, for each run one fold was
set aside for testing while the remaining were joined and
used for learning. The values presented are the average of
the five runs, with the standard deviations in parenthesis.

5.3. Results

We ran the algorithm with two different pipeline widths:
in the first case, no limit was imposed on the width of the
pipeline, i.e., all good rules were passed to the next stage
of the pipeline; in the second case we imposed a limit of
10 rules between stages (the limit is based on the maximum
number of processors for our tests). Note that the number of
good rules found at each stage of the pipeline can be quite
high. For instance, in the Mesh dataset is usual to have
some thousand rules at the end of one pipeline. Therefore,
the ammount of communication exchanged between stages
can be quite large.

The run time and speedups observed in the experiments
are summarised in Table 2 and Table 3, respectively. Se-
quential running times for all three cases are on the order of
the thousands of seconds. Using two processors results in
a speedup ranging from 20% to almost 90%. Speedups im-
prove at 4 processors, and get close to linear and, in some
cases, superlinear for 8 processors. Note that accuracy is
about the same throughout, as shown in Table 6.

Two factors may explain the superlinear performance.
First, the division of the data among more processors speeds
up the evaluation of each rule in a subset, since there are
less examples to test. Second, an increase on the number of

Dataset Width 2 4 8
carcinogenesis nolimit 1.63 3.47 11.12

10 1.19 3.48 10.22
mesh nolimit 1.32 3.11 4.90

10 1.21 4.22 10.85
pyrimidines nolimit 1.89 3.71 4.70

10 1.72 3.82 9.00

Table 2. Average speedup observed for 2, 4
, and 8 processors for a pipeline width of 10
and unlimited.

Dataset Width 1 2 4 8
carcinogenesis nolimit 3,231 1,976 930 290

10 - 2,704 927 316
mesh nolimit 4,412 3,335 1,419 900

10 - 3,639 1,045 407
pyrimidines nolimit 5,704 3,013 1,536 1,215

10 - 3,202 1,493 633

Table 3. Average execution time (in seconds)
observed for 2, 4 , and 8 processors

processors may also result on an increase of the number of
rules each epoch generates, therefore reducing the number
of epochs. Table 5 shows this to be indeed the case. The re-
duction in the number of epochs while keeping or reducing
the time to process an epoch explains the speedups.

We observe that the best speedups were obtained when
constraining the width of the pipeline. We believe that the
explanation is that the wider pipeline results in more data
being exchanged between processors. Table 4 does show
that the communication is usually much higher when the
width of the pipeline is unconstrained. Namely, both Mesh
and Pyrimidines have the speedup for 8 processors to be
below linear for unlimited pipeline width, but superlinear
when the pipeline is constrained. In both cases the am-

Dataset Width 2 4 8
carcinogenesis nolimit 3 13 33

10 2 7 18
mesh nolimit 80 105 1,074

10 46 92 552
pyrimidines nolimit 12 105 1,166

10 6 55 593

Table 4. Average communication exchanged
(in MBytes) for 2, 4 , and 8 processors.
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Dataset Width 2 4 8
carcinogenesis nolimit 19 12 8

10 20 13 10
mesh nolimit 309 150 65

10 315 149 64
pyrimidines nolimit 241 122 64

10 250 126 64

Table 5. Average number of epochs for 2, 4 ,
and 8 processors for a pipeline.

mount of communication exchanged when using 8 proces-
sors grows more 10 times when compared with 4 proces-
sors. The large amount of messages being transfered should
affect performance.

On the other hand, using the unlimited pipeline width
results in better performance in carcinogenesis. The reason
is that in this application, the amount of data transferred
between stages is quite small, suggesting that stages are not
finding enough rules to cause a significant communication
overhead.

Table 5 presents the average number of epochs for the
three benchmarks. We can notice that in all cases there is a
significant reduction in epochs as we increase the number of
processors, indicating that we do benefit from running the
pipelines in parallel.

Table 6 reports the averaged accuracy for each dataset.
We use the paired t-test to detect significance. Our conclu-
sion, up to a 98% confidence level in, was that accuracy did
not significantly change for most runs except on the cases
marked as ’*’. Accuracy improved in these cases, as com-
pared with the sequential algorithm.

We believe the speedup results are quite good, overall,
especially when compared with other distributed ILP im-
plementations [11]. Constraining the pipeline width leads
to increased speedups, without affecting the quality of the
models.

6. Related Work

Several approaches have already been implemented to
parallelize ILP systems. Most implementations where done
for shared memory multi-computers, where data transmis-
sion is very low when compared to distributed memory
computers. In spite of the higher cost in communication,
distributed memory computers are capable of scaling bet-
ter (e.g., just add another computer) and are cheaper (con-
sider the widespread use of Beowulf clusters). Thus, it is
not a surprise that research and implementation are cur-
rently focusing on the development of algorithms and their

implementations for distributed memory architectures (see
e.g., [19, 14, 6]).

PolyFarm [6] is a parallel ILP system for the discovery
of association rules targeted to distributed memory archi-
tectures. The system follows a master-worker scheme. The
master generates the rules and reports the results. The work-
ers perform the coverage tests of the set of rules received
from the master on the local data. The counts are aggre-
gated by a special type of worker (Merger) that reports the
final counts to the master. No empirical evaluation of the
system was presented in [6].

Konstantopoulos [19] implemented a data parallel ver-
sion of the Aleph [31] system using MPICH [15] MPI [13]
library. The algorithm performs coverage tests in parallel.
This approach was very similar to the one of Graham et
al. [14] with the difference that in [19] only a single clause
is evaluated in parallel, while in [14] a set of clauses are
evaluated. The smaller granularity of the parallel tasks may
be the justification for the poor results presented by Kon-
stantopoulos.

Matsui et al. [20] evaluated and compared data paral-
lelism (background knowledge and the set of examples)
and, what they called, parallel exploration of the search
space. The search space parallel approach consisted in
evaluating in parallel the refinements of a clause with-
out doing data partitioning. The three strategies were im-
plemented within the FOIL [29] system and were evalu-
ated on a distributed memory computer using the trains
dataset [21]. Unfortunately, parallelizing the search resulted
in low speedups. The authors observed that the size of the
divided tasks may not be all the same, hence reducing the
efficiency. The other two approaches based on data par-
allelism showed a linear speedup up to 4 processors. The
speedup decreased above 4 processors as a result of an in-
crease in communication due to the exchange of the training
set.

7. Concluding Remarks

This paper describes the first pipelined data-parallel al-
gorithm for multi-relational learning. The algorithm ex-
ploits data parallelism by evenly dividing the set of exam-
ples by the available processors and parallel-pipelining in
the search for good rules. The empirical evaluation of the
algorithm shows excellent results, in some cases even super-
linear speedups. We believe that our work is a step towards
having MRDM systems to tackle large scale data mining
tasks.

Our algorithm has several interesting characteristics. It
fosters scalability on the number of examples, resulting
from partitioning the set of examples and then incremen-
tally learn partially correct rules on each subset. The granu-
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Dataset Width 1 2 4 8
carcinogenesis nolimit 61.73 (8.30) 58.12 (8.11) 59.05 (7.98) 56.67 (8.61)

10 - 59.35 (7.64) 54.89 (8.49) 59.63 (8.74)
mesh nolimit 63.76 (2.35) 61.96 (2.54) 63.79 (2.50) *70.72 (2.44)

10 - 63.41 (2.30) *69.05 (2.24) *74.95 (2.20)
pyrimidines nolimit 76.47 (1.38) 76.18 (1.34) 74.64 (1.31) 74.89 (1.24)

10 - 74.93 (1.44) 74.43 (1.31) 75.61 (1.24)

Table 6. Average predictive accuracy observed for 2, 4 , and 8 processors, with the standard deviations
in parenthesis.

larity of the tasks executed in parallel are very similar, lead-
ing to balanced computations, and we believe therefore sim-
plifying processor load balancing. The granularity of the
parallel tasks are medium or high, and depend primarily on
the number of examples on each subset. It is possible to
control the granularity of data exchanged between the pro-
cessors in the pipeline (i.e., by limiting the number of good
rules passed on each stage of the stream). The experimental
results show that the algorithm does not affect the quality of
the model.

In the future, we plan to experiment on a variety of other
applications. We are particularly interested in applications
where ILP has performed badly so far due to lack of re-
sources, such as some large biological and web-mining ap-
plications.
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