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Abstract The observational evidence for the recent acceleration of the universe
demonstrates that canonical theories of cosmology and particle physics are
incomplete—if not incorrect—and that new physics is out there, waiting to be dis-
covered. The most fundamental task for the next generation of astrophysical facilities
is therefore to search for, identify and ultimately characterise this new physics. Here
we highlight recent efforts along these lines, mostly focusing on ongoing work by
CAUP’s Dark Side Team aiming to develop some of the science case and optimise
observational strategies for forthcoming facilities. The discussion is centred on tests
of the stability of fundamental couplings (since the provide a direct handle on new
physics), but synergies with other probes are also briefly considered. The goal is to
show how a new generation of precision consistency tests of the standard paradigm
will soon become possible.

Keywords Observational cosmology · Fundamental physics · Fundamental
couplings · Dark energy · Astronomical facilities

1 Introduction

In the middle of the XIX century Urbain Le Verrier and others mathematically dis-
covered two new planets by insisting that the observed orbits of Uranus and Mercury
agree with the predictions of Newtonian physics. The first of these—which we now
call Neptune—was soon observed by Johann Galle and Heinrich d’Arrest. However,
the second (dubbed Vulcan) was never found. We now know that the discrepancies
in Mercury’s orbit were a consequence of the fact that Newtonian physics can’t ade-
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quately describe Mercury’s orbit, and accounting for them was the first success of
Einstein’s General Relativity.

Over the past several decades, cosmologists have mathematically discovered two
new components of the universe—which we have called dark matter and dark energy—
but so far these have not been directly detected. Whether they will turn out to be
Neptunes or Vulcans remains to be seen, but even their mathematical discovery alone
highlights the fact that the standard Λ CDM paradigm, despite its phenomenological
success, is at least incomplete.

Something similar applies to particle physics, where to some extent it is our con-
fidence in the standard model that leads us to the expectation that there must be new
physics beyond it. Neutrino masses, dark matter (again, assuming it exists) and the size
of the baryon asymmetry of the universe all require new physics, and, significantly, all
have obvious astrophysical and cosmological implications. Recent years have indeed
made it clear that further progress in fundamental particle physics will increasingly
depend on progress in cosmology.

Broadly speaking, fundamental physics can be defined to include two distinct but
inter-related aspects [1]

– Tests of fundamental laws and symmetries, which includes tests of the Equiv-
alence Principle (in its various forms), probing the behaviour of gravity on all
scales, understanding the structure and dimensionality of spacetime, and testing
the foundations of quantum mechanics; many of these principles are violated in
extensions of the standard model.

– Searches for fundamental constituents, including scalar fields as an explanation for
dark energy, new particles for dark matter, magnetic monopoles or fundamental
strings, as well as characterising the ones we already know (such as the Higgs), or
the number and masses of neutrinos.

After a quest of several decades, the recent LHC evidence for a Higgs-like particle
[2,3] finally provides strong evidence in favour of the notion that fundamental scalar
fields are part of Nature’s building blocks. A pressing follow-up question is whether
the associated field has some cosmological role, or indeed if there are additional scalar
fields that do. As usual, the fact that we don’t yet know the answer to the latter question
has not prevented cosmologists and particle physicists from speculating, and indeed
it may be a challenging to find one that has never used a scalar field at any point in
his/her career.

Specifically, scalar fields play a key role in most paradigms of modern cosmology,
including

– The period of exponential expansion of the early universe (inflation) that is believed
to have seeded the density perturbations that led to the cosmic structures we now
observe.

– The dynamics of cosmological phase transitions and of their unavoidable relics
(cosmic defects, such as strings, monopoles or domain walls).

– Dynamical dark energy, and alternative to Einstein’s cosmological constant for
powering current acceleration phase (and, arguably, a more likely one).

123



Fundamental cosmology in the E-ELT era Page 3 of 19 1843

– The spacetime variation of nature’s fundamental couplings, which is unavoidable
in many extensions of the current standard model, and for which there is currently
some tentative evidence.

Even more important than each of these paradigms is the fact that they don’t occur
alone: whenever a scalar field plays one of the above roles, it will also leave imprints
in other contexts that one can look for. Although this complementary point is often
overlooked, it will be crucial for the future of precision cosmology, since it can be
exploited in the form of consistency tests of various paradigms. For example, in realistic
models of inflation, the inflationary phase ends with a phase transition at which cosmic
defects will form (and the energy scales of both will therefore be unavoidably related).
More importantly, in realistic models of dark energy, where the dark energy is due
to a dynamical scalar field, this field will naturally couple to the rest of the model
(unless some unknown symmetry is postulated to suppress the couplings) and lead to
potentially observable variations of nature’s fundamental couplings.

In what follows we further develop the latter connection. We all know that funda-
mental couplings run with energy, and in many (or arguably most?) models they will
equally naturally roll in time and ramble in space (meaning that they will depend on the
local environment). Therefore astrophysical (and local) tests of their stability provide
us with key probes of fundamental cosmology, and they can also (by themselves or in
combination with other cosmological probes) shed light on the enigma of dark energy.
The discussion mainly highlights ongoing work by CAUP’s Dark Side Team aiming to
develop some of the science case and optimise observational strategies for forthcom-
ing facilities. In doing so we also summarise the contents of talks given by the author
in the past few months at Moriond (joint cosmology/QCD session), the 2014 Azores
cosmology school, MIAPP, ESO and NORDITA. Thus no attempts of completeness
are made. The interested reader may find recent, more systematic reviews of related
topics in [4–6].

2 Fundamental couplings

Nature is characterised by a set of physical laws and fundamental dimensionless cou-
plings, which historically we have assumed to be spacetime-invariant. For the former
this is a cornerstone of the scientific method (it’s hard to imagine how one could do
science at all if it were not the case), but for the latter it is only a simplifying assump-
tion without further justification. These couplings ultimately determine the properties
of atoms, cells, planets and the universe as a whole, so it’s remarkable how little we
know about them. We have no ‘theory of constants’ that describes their role in physical
theories or even which of them are really fundamental. If they do vary, all the physics
we know is incomplete.

Fundamental couplings are indeed expected to vary in many extensions of the
current standard model. In particular, this will be the case in theories with additional
spacetime dimensions, such as string theory. In such paradigms the true fundamental
constants are defined in higher dimensions, While the (3 + 1)-dimensional constants
are effective quantities, typically related to the true constants via characteristic sizes
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of the extra dimensions. Many simple illustrations of these concepts exist, in Kaluza-
Klein models [7], superstring theories [8], and brane world models [9].

Interestingly, the first generation of string theorists had the hope that the theory
would ultimately predict a unique set of laws and couplings for low-energy physics.
However, following the discovery of the evidence for the acceleration of the universe
this claim has been pragmatically replaced by an ‘anything goes’ approach, sometimes
combined with anthropic arguments. Regardless of the merit of such approaches, is
clear that experimental and observational tests of the stability of these couplings may
well be their best route towards a testable prediction.

It goes without saying that a detection of varying fundamental couplings will be
revolutionary: it will immediately prove that the Einstein Equivalence Principle is
violated (and therefore that gravity can’t be purely geometry) and that there is a fifth
force of nature [10]. But even improved null results are important and useful. The
simple way to understand this is to realise that the natural scale for cosmological
evolution of one of these couplings (driven by a fundamental scalar field) would be
the Hubble time. We would therefore expect a drift rate of the order of 10−10 per year.
However, current local bounds, coming from atomic clock comparison experiments,
are already orders of magnitude stronger [11].

Recent astrophysical evidence suggests, at more than four sigma level, a parts-
per-million spatial variation of the fine-structure constant α at low redshifts [12].
The data is unable to distinguish between a purely spatial dipole and one with an
additional dependence on look-back time (both provide equally good fits to the data,
at just above the four-sigma level). Although models that may explain such a result
seem to require some amount of fine-tuning, it should also be said that there is also
no identified systematic effect that can explain it, though some concerns have been
recently raised [13]. A possible class of models which may account for this type of
spatial variations is that of symmetrons [14], though a detailed analysis remains to be
done. (Other possibilities in the literature rely on more canonical domain walls, but
require significantly more fine-tuning, or at least properties of domain wall networks
which certainly do not apply for standard domain walls.) One possible cause for
caution (with these and other results) is that almost all of the existing data has been
taken with other purposes in mind, whereas it is clear that this kind of measurements
needs customised analysis pipelines and wavelength calibration procedures beyond
those supplied by standard pipelines.

A recent joint analysis of all existing measurements indicates some inconsistencies
[15], and highlights the need for future more precise measurements. In the short term
the PEPSI spectrograph at the LBT can play a role here, and in the longer term a
new generation of high-resolution, ultra-stable spectrographs like ESPRESSO (for the
VLT) and ELT-HIRES, which have these tests as a key science driver, will significantly
improve the precision of these measurements (and crucially, have a much better control
of systematics) and should be able to resolve the current controversy. (We will return
to this point below.) A key technical improvement will be that ultimately one must do
the wavelength calibration with laser frequency combs.

In theories where a dynamical scalar field yields a varying α, the other gauge and
Yukawa couplings are also expected to vary. In particular, in Grand Unified Theories
the variation of α is related to that of energy scale of Quantum Chromodynamics,
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whence the nucleon masses necessarily vary when measured in an energy scale that
is independent of QCD (such as the electron mass). It follows that we should expect
a varying proton-to-electron mass ratio, μ = m p/me, which can be probed with H2
[16] and other molecules.

Obviously, the specific relation between α(z) and μ(z) will be highly model-
dependent, but this very fact makes this a unique discriminating tool between com-
peting models. For example, in a broad class of unification scenarios [17,18] one
has

Δμ

μ
= [0.8R − 0.3(1 + S)]Δα

α
, (1)

where R and S are universal dimensionless parameters, respectively related to the
strong and electroweak sectors of the model in question. Thus any model in this
class may be phenomenologically characterised by its values of R and S, and thus
constrained using astrophysical measurements. It follows from this that it’s highly
desirable to identify astrophysical systems where various constants can be simultane-
ously measured, or systems where a constant can be measured in several independent
ways. Systems where combinations of constants can be measured are also interesting,
and can provide useful consistency tests [19,20].

Note that while for molecular hydrogen one is indeed measuring μ, for more com-
plex molecules (which may be more sensitive to μ variations than H2 itself) one is
actually measuring a ratio of an effective nucleon mass to the electron mass, and the
relative variation of this quantity will only equal that of μ if there are no composition-
dependent forces. A test of this hypothesis could thus by carried out by finding a
system where μ can be separately measured from different molecules with different
numbers of protons and neutrons—for example H2, H D, ammonia and methanol.

3 The UVES large programme

As mentioned in the previous section, one possible cause for caution regarding the
results of [12] was that it was based on archival data from the Keck and VLT telescopes,
meaning that the data was originally taken for other purposes—by a large number of
different observers, under a broad range of observing conditions, over a timespan of
almost a decade—and subsequently re-analysed for this purpose. Thus although the
dataset is quite large with 293 absorption systems in total, roughly half coming from
each telescope (and a few observed by both), the data acquisition procedures were far
form ideal, particularly regarding the key issue of wavelength calibration.

Trying to confirm these results was the main motivation for for the ongoing ESO
UVES Large Programme (PI: Paolo Molaro). This is so far the only large program
dedicated to tests of the stability of fundamental couplings, with an optimised sample
and methodology. The programme consisted of about 40 VLT nights, in the period
2010–2013, partly in service and partly in visitor mode. Key improvements in the data
acquisition include obtaining calibration lamp exposures attached to science exposures
(without resetting the cross-disperser encoding the position for each exposure) and
observing bright (magnitude 9–11) asteroids at twilight, to monitor the radial velocity
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accuracy of UVES and the optical alignments. The collaboration includes members
form all active observational groups.

With 40 VLT nights one can only observe a relatively small sample. Criteria for
the sample selection included the presence of multiple absorption systems, brightness,
relatively high redshift (so that the key FeII1608 transition is available), simplicity, nar-
row components at sensitive wavelengths, and no line broadening/saturation. Typically
our resolution is around R ∼ 60,000 and the signal-to-noise per pixel S/N ∼ 100.
This led us to an expectation of a potential accuracy of 1–2 parts-per-million (ppm)
per system, where photon noise and calibration errors are comparable, and thus an
overall goal of 2 ppm per system and 0.5 ppm for the full sample. Another of our
key goals is to compare, check and optimise the different analysis pipelines available,
including the introduction of blind analysis techniques.

The target selection was done before the dipole indications [12] were known, and
thus our sample is not optimised to test it (at least in the strict sense that we have no
target near the north pole of the dipole). Our sample consists of 13 lines of sight for
α measurements, and 2 lines of sight for μ measurements. Note that in the former
case lines of sight often include several absorption systems, each of which may lead
to a separate measurement. These are particularly useful for testing for hypothetical
dependencies on look-back time. A brief description of our sample may be found in
[21]. At the time of writing preliminary results on three of these lines of sight have
already been published, and the analysis of the full sample is in progress. The raw data
can already be found in the ESO public archive, and reduced data products will also
be made public in due course.

The first complete quasar spectrum we analysed [22] was that of HE 2217-2818,
which includes 5 absorption systems at redshifts zabs = 0.787, 0.942, 1.556, 1.628
and 1.692. Applying the many multiplet method we found that the most precise result
is obtained for the absorber at zabs = 1.692, where 3 Fe II transitions and Al II λ1670
have high S/N and provide a wide range of sensitivities to α. Our final result for the
relative variation in this system is

Δα

α
= +1.3 ± 2.4stat ± 1.0sys ppm, (2)

which is one of the tightest current bounds from an individual absorber. The absorbers
towards quasar HE 2217-2818 reveal no evidence for variation in α at the 3 ppm
precision level (with 1σ confidence). If the recently reported dipolar variation of α

across the sky, with a maximum variation around 10 ppm at the north pole of the
dipole [12], were correct, the expectation at this sky position is (3.2 − 5.4)± 1.7 ppm
depending on dipole model used—specifically, depending on whether one assumes a
pure spatial dipole or one with a further dependence on look-back time. Our constraint,
indicated above, is not inconsistent with this expectation.

We then carried out [23] an accurate analysis of the H2 absorption lines from the
zabs = 2.402 damped Lyα system towards HE 0027-1836 to constrain the variation of
μ. A detailed cross-correlation analysis between 19 individual exposures, taken over
3 years, and the combined spectrum was carried out to check the wavelength calibration
stability. We noticed the presence of possible wavelength dependent velocity drifts,

123



Fundamental cosmology in the E-ELT era Page 7 of 19 1843

and used available asteroid spectra taken with UVES close to our observations to
confirm and quantify this effect. We use both linear regression analysis and Voigt
profile fitting where Δμ/μ is explicitly considered as an additional fitting parameter.
Our final uncorrected result was Δμ/μ = (−2.5±8.1stat6.2sys) ppm, while when we
applied the correction to the wavelength dependent velocity drift we found

Δμ

μ
= −7.6 ± 8.1stat ± 6.3sys ppm ; (3)

the comparison of the two central values provides an indication of the potential impor-
tance of these effects, and highlights the need for further checks of previous results
and for methods to account and correct for them in future observations. We note that
intra-order and long-range distortions are not exclusive to the UVES spectrograph at
the VLT, but have also been identified in HIRES at Keck and in HARPS.

More recently [24] we observed the equatorial quasar HS 1549 + 1919 with three
telescopes: the Very Large Telescope, Keck and, for the first time in such analyses,
Subaru. By directly comparing these spectra to each other, and by ‘supercalibrating’
them using asteroid and iodine-cell tests, we detected and removed long-range distor-
tions of the quasar spectra’s wavelength scales which would have caused significant
systematic errors in our α measurements. For each telescope we measure the relative
deviation in α from the current laboratory value, Δα/α, in 3 absorption systems at
redshifts zabs = 1.143, 1.342, and 1.802. The nine measurements of Δα/α are all
consistent with zero at the 2−σ level, with 1−σ statistical (systematic) uncertainties
in the range 5.6–24 (1.8–7.0) parts per million. They are also consistent with each
other at the 1-σ level, allowing us to form a combined value for each telescope and,
finally, a single value for this line of sight:

Δα

α
= −5.4 ± 3.3stat ± 1.5sys ppm, (4)

which again is consistent with both zero and with the best-fit dipole predictions for
this line of sight. If one averages all Large Programme α results so far, we obtain

Δα

α
= −0.6 ± 1.9stat ± 0.9sys ppm. (5)

Thus while a full analysis of our sample is still in progress, our results so far demon-
strate the robustness and reliability at the 3 ppm level afforded by supercalibration
techniques and the direct comparison of spectra from different telescopes.

Our full sample consists of 15 among the brightest known quasars showing a suitable
absorber, will more then 22 good absorption systems for which individual measure-
ments can be made. On average we have therefore observed each absorber for more
than three nights, which allowed us to build, for many of the absorbers, a much higher
signal-to-noise ratio than achieved in all previous studies. In this case the photon sta-
tistical noise was reduced well below that from systematic errors. Our Large program
achieved this for all relevant absorbers. We thus expect to have a signal-to-noise ratio
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that will allow us to detect, model and remove systematic errors down to the level of
a few ppm. The final results of this analysis will be published in due course.

Before moving on to address the impact of these measurements on fundamental
cosmology, let us pause to ask why these measurements are so difficult, and why the
issue of systematics features quite frequently in the discussion. (Here we are focus-
ing specifically on the spectroscopic measurements, as in the case of the previously
discussed large Program.) The fact is that, while to some extent the radial velocity
measurements in question are akin to finding exoplanets, they are much harder in the
present context, both because one is dealing with much fainter sources (QSOs with
magnitude 16 or fainter, rather than bright stars) and because only a few absorption
lines are clean enough.

In a nutshell, spectroscopic measurements of fundamental couplings require observ-
ing procedures—and instruments—beyond current facilities. Despite their success in
other fields, spectrographs such as UVES, HARPS or Keck-HIRES were not built with
this science case in mind and are far from optimal for it. One needs customised data
reduction pipelines, as well as careful wavelength calibration procedures. In particu-
lar, one must calibrate with laser frequency combs [25,26], rather than Th-Ar lamps
or I2. Fortunately, a new generation of high-resolution, ultra-stable spectrographs is
forthcoming, which will have these measurements as key driver: shortly there will be
PEPSI at LBT, in 2016 ESPRESSO at the VLT [27], and later on a high-resolution
spectrograph at the E-ELT [28,29]. At lower redshifts, these will also be comple-
mented by ALMA measurements—two recent white papers discussing the ALMA
role are [30,31].

4 Aside: a bird’s eye view of other measurements

While the Large Program results constitute the state-of-the-art in this field, they are
complemented by a range of other local and astrophysical measurements, which probe
the stability of fundamental couplings in a vast range of physical environments. While
it is not the goal of this article to provide a thorough listing of all of these, in this
section we provide some brief remarks on a few of these, on which there has been
relevant recent activity. A more systematic review may be found in [4].

In strict terms of sensitivity, the only other probe that is competitive with QSO
spectroscopy is provided by laboratory tests using atomic clocks: in the case of α,
current sensitivity in the drift rate is [11]

α̇

α
= (−1.6 ± 2.3) × 10−17 year−1 ; (6)

for direct μ measurements the bounds are several orders of magnitude weaker. Nev-
ertheless, different clock comparisons are sensitive to different combinations of α, μ

and the proton gyromagnetic ratio gp, and a joint analysis leads to useful constraints
on the latter, as well as on some unification scenarios [19]. Significant progress is
expected in laboratory measurements: with forthcoming molecular and nuclear clocks
(particularly those based on Thorium229), a sensitivity as high as 10−21 year−1 may
be achieved.
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While direct measurements of α and μ are most commonly obtained in the ultra-
violet/optical, in the radio band one can more often measure combinations of them.
Typically combinations of HI 21 cm absorption lines, conjugate 18 cm OH lines and
molecular rotation lines are sensitive to various combinations of α, μ and gp. Here
a ppm sensitivity is nominally much easier to reach, though at significantly lower
redshifts. A compilation of recent measurements, and a comparison with optical ones,
may be found in [15]. The radio band sensitivity is even better within Galaxy (z = 0),
where one can search for environmental dependencies since measurements can be
made in regions with densities that are many orders of magnitude smaller than the
local one. Here the current best constraints come from [32], where no μ variation is
seen at the 0.05 ppm level.

Compact objects have recently started to be explored as probes of the stability
of fundamental couplings. This included both theoretical studies (studying the effect
of varying couplings on these objects and using their known properties to infer a
posteriori limits on such variations) and constraints obtained from direct observations.
Here current sensitivities are around 50 ppm, and often the limiting factor comes from
nuclear physics uncertainties. Theoretical analysis have been carried out for Population
III stars [33], solar-type stars [34] and neutron stars [35]. More recently observational
constraints have been obtained, at the above level of sensitivity, for both α and μ using
neutron stars [36,37]: these come from spectroscopic observations of highly excited
metal lines (FeV and NiV) and molecular hydrogen, respectively.

At higher redshift the cosmic microwave background provides a very clean probe in
principle: varying couplings will obviously affect the ionisation history of the universe
(including the energy levels, binding energies an Thomson cross-section). Neverthe-
less, the sensitivity of this probe is limited by the presence of degeneracies with other
cosmological parameters, so current constraints are around the 2,000 ppm level [38].
Given the ppm constraints at low redshifts, CMB constraints will only be competitive
for very specific classes of models that would predict strong variations in the very
early universe—this would not be the case in the simplest dilaton-type (string-theory
inspired) models. Moreover, current analysis assume that only α may vary (with all
other couplings fixed) or at most also allow the electron mass to vary (with the caveats
inherent to the discussion of a varying dimensionful coupling). A more realistic analy-
sis, allowing both α and all particle masses to vary, is still pending. However, these
studies do have a feature of interest, namely that they lead to constraints on the cou-
pling between the putative scalar field and electromagnetism, independently (and on
a completely different scale) from what is done in local tests, as illustrated in [39].

At even higher redshifts constraints can be obtained from Big Bang nucleosynthesis,
but they will necessarily be model-dependent. The first step in any analysis of the effect
of varying fundamental couplings is to ascertain its effect on the neutron to proton
mass difference, and this can only be done through the phenomenological Gasser-
Leutwyler formula [40]. That said, current phenomenological constraints are at around
the percent level for relatively generic models [41], though much tighter constraints
can be obtained for more specific choices of model [17]. Finally, it has been claimed
that the Lithium problem might be removed in some GUT scenarios [42]; a more
detailed analysis is probably warranted given recent observational progress.
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5 Dynamical dark energy and varying couplings

Observations suggest that the universe is dominated by an energy component whose
gravitational behaviour is quite similar to that of a cosmological constant. Although
a cosmological constant is consistent with existing data, its value would need to be
so much smaller that particle physics expectations that a dynamical scalar field is
arguably a more likely explanation. Such a field must be slow-rolling close to the
present day (which is mandatory for p < 0 and acceleration) and be dominating
the dynamics, providing some 70 % or so of the critical density (which provides
a rough normalisation). It then follows that [43] if the field couples to the rest of
the model—which it will naturally do, unless some new symmetry is postulated to
suppress the couplings—it will lead to potentially observable long-range forces and
time dependencies of the constants of nature.

Tests of the stability of fundamental couplings (whether they are detections of
variations or null results) will constrain fundamental physics and cosmology. This
therefore ensures a ‘minimum guaranteed science’: theoretical constraints will simply
depend on the sensitivity of the tests. The importance of improved null results stems
from the fact that there is no natural expectation for the scale of the putative variations,
since they are controlled by an unknown parameter. But this also implies that any new,
improved constraint will rule out some previously viable models. This is entirely
analogous to cosmological constraints on dynamical dark energy: one is looking for
deviations from the canonicalwφ = pφ/ρφ = −1, without any idea of when (meaning,
at what level) or if such deviations will be found.

Scalar field based models for varying couplings can be divided into two broad
classes. The first (which we simply refer to as Class I models) contains those where the
degree of freedom responsible for the varying constants also provides the dark energy,
These are therefore ‘minimal’ models, in the operational sense that there is a single new
dynamical degree of freedom accounting for both. In this case the redshift dependence
of the couplings is parametrically determined, and any available measurements (be
they detections of null results) can be used to set constraints on combinations of the
scalar field coupling and the dark energy equation of state. Specifically, the relative
variation of α is given by [39]

Δα

α
(z) = ζ

∫ z

0

√
3Ω.φ(z′)[1 + wφ(z′)] dz′

1 + z′ (7)

here ζ is the dimensionless coupling of the scalar field to the electromagnetic sector
of the theory, and Ωφ = ρφ/(ρφ + ρm) is the fraction of the energy density of the
universe in dark energy. Examples of these models are discussed in [39,44,45]. As is
physically clear, if one sees no variations, either the field dynamics is very slow (ie,
its equation of state is very close to w = −1) or the coupling is very small. In other
words, astrophysical measurements mainly constrain the product of a cosmological
parameter and a fundamental physics one. With a next-generation instrument such as
ELT-HIRES one will either find variations or effectively rule out the simplest classes
of these models, containing a single linearly coupled dynamical scalar field (unless
one is prepared to accept very small—and thus fine-tuned—couplings ζ ).
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However, this is not all. Standard observables such as supernovae are of limited
use as dark energy probes [46,47], both because they probe relatively low redshifts (at
least at the present time) and because to ultimately obtain the required cosmological
parameters one effectively needs to take second derivatives of noisy data. A clear
detection of varying w(z) is crucial, given that we know that w ∼ −1 today. Since
the field is slow-rolling when dynamically important (close to the present day), a
convincing detection of a varying w(z) will be tough at low redshift, and we must
probe the deep matter era regime, where the dynamics of the hypothetical scalar field
is fastest.

Varying fundamental couplings are ideal for probing scalar field dynamics beyond
the domination regime [48]: such measurements can presently be made up to redshift
z = 4.2, and future facilities such as the E-ELT should be able to significantly extend
this redshift range. Importantly, even null measurements of varying couplings can
lead to interesting constraints on dark energy scenarios. Thus ALMA, ESPRESSO
and ELT-HIRES can realise the prospect of a detailed characterisation of dark energy
properties all the way until z = 4 [6], and possibly beyond. As we will see below, in
the case of ELT-HIRES a reconstruction using quasar absorption lines can be more
accurate than using supernova data, its key advantage being huge redshift lever arm.
Importantly, these measurements have an additional key role: that of breaking degen-
eracies, when combined with more ‘classical’ probes, for constraining dynamical dark
energy models. A case in point is that of ESA’s Euclid mission, as was recently stud-
ied in [49]. These degeneracies are broken not necessarily because measurements of
varying couplings are intrinsically more constraining (that regime will only ensue
for sufficiently large samples) but because the extended redshift lever arm effectively
make is sensitive to different directions in the relevant parameter space.

Dark energy reconstruction using varying fundamental constants does assume that
one is dealing with a Class I model. As we will discuss later in this article there are
various examples of models for which this is not the case. Thus it is crucial for this
analysis that in-built consistency checks exist, so that inconsistent assumptions can
be identified and corrected. Explicit examples of incorrect assumptions that lead to
observational inconsistencies can be found in [50]. It is precisely in closing the loop
of consistency tests that the E-ELT will play the key role, particularly through the
detection of the redshift drift signal [51] deep in the matter era, using the Ly-α forest
and various additional metal absorption lines [52]. The expected signal is

Δz

Δt
= H0(1 + z) − H(z), (8)

and this is a direct probe of the dynamics of the universe, without assumptions on
gravity, geometry or clustering. It does not map out our (present-day) past light-
cone, but directly measures evolution by comparing past light cones at different times.
Therefore it provides an ideal probe of the dark sector in deep matter era. In practice
the observable is the spectroscopic velocity

Δv

v
= Δz

1 + z
. (9)
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The redshift drift is a key driver for ELT-HIRES, and possibly—at a fundamental
level—ultimately the most important E-ELT deliverable. As shown in [50,53], having
the ability to measure the stability of fundamental couplings and the redshift drift with
a single instrument is a crucial strategic advantage.

Other facilities such as PEPSI at the LBT, the SKA [54], ALMA and intensity
mapping experiments [55] may also be able do measure the redshift drift. These will
typically do it at lower redshifts. On the one hand these can therefore directly probe the
accelerating phase of the universe (at redshifts that overlap with Euclid, for example),
but on the other hand they will have a smaller lever arm—only the E-ELT can really
probe the deep matter era, roughly 2 < z < 5. Naturally the combination of low
and high redshift measurements will lead to optimal constraints and will enable the
discrimination between models that would otherwise be indistinguishable. In he case
of the SKA, suggestions have been put forth to do it using neutral Hydrogen both at
z < 1 in emission and at z > 8 in absorption. While the former should be easily within
the reach of SKA-Phase 2, the latter will certainly be much harder.

Obviously, in addition to reconstructing the dark energy equation of state using
fundamental couplings, supernovas and other cosmological observables will provide
reconstructions at lower redshifts, so one can compare and combine the two recon-
structions, as discussed in [6]. This can provide a check that the two reconstructions are
consistent with each other (in the intermediate redshift range where the two datasets
overlap), and assuming that they are consistent one can also infer a posterior likelihood
for the coupling ζ , since the fundamental couplings reconstructions depend on it but
the one based on supernovas doesn’t.

Finally, it should be pointed out that the another E-ELT instrument, ELT-IFU (in
combination with JWST), should also dramatically extend the range of redshifts where
cosmologically useful Type Ia supernovas are available—possibly up to a redshift
z ∼ 5. A detailed assessment of the impact of these future datasets on fundamental
cosmology is currently in progress. Interesting synergies are also expected to exist
between these ground-based spectroscopic methods and Euclid, which need to be
further explored.

6 Case study: dark energy constraints

Here we provide a straw man analysis of how a reconstruction of the dark energy
equation of state using measurements of the fine-structure constant α compares with
a reconstruction using type Ia supernovas. The analysis mostly follows [56]. We will
base our theoretical analysis on PCA techniques, the formalism having been described
in [57], to which we refer the reader for further details. One should bear in mind
that PCA is a non-parametric method for constraining the dark energy equation of
state. In assessing its performance, one should not compare it to parametric methods.
Indeed, no such comparison is possible (even in principle), since the two methods
are addressing different questions. Instead one should compare it with another non-
parametric reconstruction, and for our purposes with varying couplings the type Ia
supernovae provide a relevant comparison.

One can divide the relevant redshift range into Nbin bins such that in bin i the
equation of state parameter takes the value wi , and the precision on the measurement

123



Fundamental cosmology in the E-ELT era Page 13 of 19 1843

of wi can be inferred from the Fisher matrix of the parameters wi , specifically from√
(F−1)i i , and increases for larger redshift. One can however find a basis in which all

the parameters are uncorrelated. This can be done by diagonalising the Fisher matrix
such that F = W T ΛW where Λ is diagonal and the rows of W are the eigenvectors
ei (z) or the principal components; the diagonal elements of are the eigenvalues λi

(ordered from largest to smallest) and define the variance of the new parameters,
σ 2

i = 1/λi .
We will consider Class I quintessence type fields, with the simplest (linear) coupling

to the electromagnetic sector. (This coupling will be marginalised over.) This can be
seen as the first term of a Taylor expansion, and should be a good approximation if
the field is slowly varying at low redshift. Then the evolution of α is as given above,
and we will consider three fiducial forms for the equation of state parameter:

wc(z) = −0.9, (10)

ws(z) = −0.5 + 0.5 tanh (z − 1.5) , (11)

wb(z) = −0.9 + 1.3 exp

[
− (z − 1.5)2

0.1

]
. (12)

At a phenomenological level, these describe the three qualitatively different interesting
scenarios: an equation of state that remains close to a cosmological constant throughout
the probed redshift range, one that evolves towards a matter-like behaviour by the
highest redshifts probed, and one that has non-trivial features over a limited redshift
range, perhaps associated to a low-redshift phase transition. Thus in what follows we
will refer to these three cases as the constant, step and bump fiducial models.

We will assume a flat universe, and further simplify the analysis by fixing Ωm = 0.3.
This is a standard procedure, and this specific choice of Ωm has a negligible effect on
the main result of the analysis, which is the uncertainty in the best determined modes—
this has been discussed in [57]. For each fiducial model we choose the coupling such
that it leads to a few parts-per-million variation of α at redshift z ∼ 4, consistently
with [12].

In order to systematically study possible observational strategies, one has to find an
analytic expression for the behaviour of the uncertainties of the best determined PCA
modes. For this one needs to explore the range of parameters such as the number of
α measurements (Nα) and the uncertainty in each measurement (σα). For simplicity
we will assume that this uncertainty is the same for each of the measurements in a
given sample, and also that the measurements are uniformly distributed in the redshift
range under consideration. This analysis is described in [56], which also discusses
how to connect these theoretical tools to observational specifications. Specifically,
using Monte Carlo techniques an overall normalisation (which can be described in
terms of telescope time) can be derived from the present VLT performances, although
one has to proceed with some caution since the present errors on α are dominated by
systematics and not by photons.

Finally this calibrated formula can then be extrapolated to the expected performance
of ESPRESSO and ELT-HIRES. In the former case, for a sample size optimised for
the Guaranteed Time Observations one may foresee a factor of 3 gain (on average) in
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Table 1 Number of nights needed to achieve, with α measurements uniformly spaced in redshift, an
uncertainty in the best-determined PCA mode equal to that expected from a SNAP-like dataset of 3,000
Type Ia supernovas, for the ESPRESSO and ELT-HIRES spectrograph and the various fiducial models
discussed in the text

Model ESPRESSO ELT-HIRES

Constant 649.8 19.5

Step 2,231.6 66.9

Bump 1,420.1 42.6

sensitivity due to improved signal-to-noise and resolution. These improvements arise
from the fact that it will be, by design [27], free of the main systematics that are known
to affect UVES, and in particular from the much more precise wavelength calibration,
which will be done with a Laser Frequency Comb. Note that ESPRESSO does have a
wavelength coverage that is substantially reduced compared to that of UVES, and this
will certainly offset some of the improvements that would otherwise be achievable. In
the latter case, [29] further gains in sensitivity are due to the five-fold increase in the
telescope collecting area and to is its wide wavelength coverage, roughly matching
UVES in the ultraviolet and optical but also going further into the infrared.

We now assume 20 PCA bins and α measurements uniformly distributed in the
redshift range 0.5 < z < 4.0, and estimate the number of observation nights needed
to obtain the same sensitivity on the first PCA mode as a ‘classical’ dataset of 3000
supernovas, assumed to be uniformly distributed up to z ∼ 1.7. Unsurprisingly we
find that this is not possible at all with current UVES data (and the same should apply
to current spectrographs at Keck or Subaru), while our estimates for ESPRESSO and
ELT-HIRES are listed in Table 1. We thus see that a few tens of nights are sufficient
for ELT-HIRES, further highlighting the key role that the ELT will be able to play on
fundamental cosmology.

For ESPRESSO, something like a thousand nights would be needed—not an impos-
sible number as VLT time will become progressively ‘cheaper’ (and more focused on
cutting-edge surveys) in the E-ELT era. In terms of cost, a back-of-the-envelope esti-
mate would indicate comparable numbers in the two cases—something of order 60
MEuro, even including the cost of building a specific instrument. This is incompara-
bly cheaper than any space-based facility. We note that a uniform redshift cover was
important in obtaining the above results (and explains the different numbers for the
three fiducial models). The range of redshifts considered also plays a role, as it will
determine how many useful transitions will fall within the range of the spectrograph.
A more detailed analysis allowing for these factors is in progress.

Our findings are directly relevant for the target selection process for both spec-
trographs, and even for the ELT-HIRES Phase A studies (which are due to start in
about 1 year). The ELT-HIRES has clear potential for being a leading instrument in
the field of fundamental cosmology. In addition to issues of resolution, stability and
calibration, it is clear that a large redshift lever arm for the measurements is important,
leading to the requirement of a broad wavelength range for the spectrograph (which
also maximises the number of transitions available for the measurements).
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7 The quest for redundancy

Whichever way one eventually finds direct evidence for new physics, it will only be
trusted once it is seen through multiple independent probes. This was manifest in the
case of the discovery of the recent acceleration of the universe, where the supernova
results were only accepted by the wider community once they were confirmed through
CMB, large-scale structure and other data. It is clear that history will repeat itself in the
case of varying fundamental couplings and/or dynamical dark energy. It is therefore
crucial to develop consistency tests, in other words, astrophysical observables whose
behaviour will also be non-standard as a consequence of either or both of the above.

An obvious example is that of violations of the Einstein Equivalence Principle.
Varying fundamental couplings trivially violate Local Position Invariance, but one
can also show [10] that variations of α at few ppm level naturally lead to Weak
Equivalence Principle violations within one order of magnitude of current bound on
the Eotvos parameter. In that case an experiment such as MICRSOCOPE [58] should
find these violations.

An astrophysical consistency test is provided by the comparison of the temperature-
redshift relation and the distance duality (or Etherington) relation. The temperature-
redshift relation is a robust prediction of standard cosmology, based on the assumptions
of adiabatic expansion and photon number conservation, but it is violated in many
scenarios, including string theory inspired ones. At a phenomenological level one can
parametrise deviations to this law by adding an extra parameter, say β

TCMB = T0(1 + z)1−β (13)

with current constraints on β being around the 1.5 % level. (Note that here we’re refer-
ring to direct constraints—indirect ones may also be inferred from spectral distortions
[59]) Our recent work [60] has shown that forthcoming data from Planck, ESPRESSO
and ELT-HIRES will lead to much stronger constraints: Planck on its own can be as
constraining as the existing bounds, ESPRESSO can improve on the current constraint
by a factor of about three, and ELT-HIRES will improve on the current bound by one
order or magnitude. We emphasise that estimates of all these gains rely on quite con-
servative on the number of sources (SZ clusters and absorption systems, respectively)
where these measurements can be made. If the number of such sources increases,
future constraints can be correspondingly stronger. Further improvements will come
from proposed missions like COrE+ (a somewhat descoped version of [61]).

The distance duality relation is an equally robust prediction of standard cosmology;
it assumes a metric theory of gravity and photon number conservation, but is violated
if there’s photon dimming, absorption or conversion. At a similarly phenomenological
level one can parametrise deviations to this law by adding an extra parameter, say ε

dL = dA(1 + z)2+ε. (14)

with current constraints also being at the few percent level [62], and improvements
are similarly expected from Euclid, the E-ELT and JWST.
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In fact, in many models where photon number is not conserved—such as those
where α varies—the temperature-redshift relation and the distance duality relation are
not independent. Assuming adiabaticity and achromaticity one can in fact show that
β = −2ε/3, but it is easy to see that a direct relation exists for any such model. (A
recent analysis in [63], with somewhat different assumptions, confirms our analysis.)
This link allows one to use distance duality measurements to improve constraints on
β, as first shown in [60].

Now, this relation provides an important consistency test for Class II models. These
are the ones where the field that provides the varying couplings does not provide
the dark energy (or at least does not provide all of it). In this case the link with
dark energy is lost; if this was assumed in the context of an analysis as previously
discussed (ie, assuming we were in the presence of a Class I model) it would lead
to inconsistencies [50], but the temperature-distance duality relation could be used as
a subsequent consistency test. Example of Class II models include Bekenstein-type
models [64–66].

This relation between α variations and the CMB temperature may be relevant, for
example for Planck data analysis. If the ppm α dipole of [12] is correct, then there
should be a micro-Kelvin level dipole in the CMB temperature, in addition to the
standard dipole due to our motion relative to the CMB frame. Note that even if in
Class II models the degree of freedom that yields the varying couplings does not
dominate the universe’s dynamics at low redshift, it can bias cosmological parameter
estimations, so constraining these variations is important for cosmological facilities.
For example, in varying-α models the peak luminosity of Type Ia supernovas will
depend on redshift, and samples of thousands of supernovas would be sensitive to
ppm α variations.

Now, if photon number non-conservation changes observables such as T (z), the
distance duality relation, this may lead to additional biases, for example for Euclid. In
[49] we have quantified how these models weaken Euclid constraints on cosmological
parameters, specifically those characterising the dark energy equation of state. Our
results show that Euclid can, even on its own, constrain dark energy while allowing
for photon number non-conservation. Naturally, stronger constraints can be obtained
in combination with other probes. Interestingly, the ideal way to break a degeneracy
involving the scalar-photon coupling is to use T (z) measurements, which can be
obtained with ALMA, ESPRESSO and ELT-HIRES (which, incidentally, may nicely
complement each other in terms of redshift coverage for these measurements).

8 Outlook

The observational evidence for the recent acceleration of the universe demonstrates
that canonical theories of cosmology and particle physics are incomplete—if not
incorrect—and that new physics is out there, waiting to be discovered. We have high-
lighted the key role that will be played by forthcoming high-resolution ultra-stable
spectrographs in fundamental cosmology, by enabling a new generation of precision
consistency tests. The most revolutionary among these is clearly the redshift drift,
which is a key driver for ELT-HIRES, but may also be within the reach of other facil-
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ities, like PEPSI (at the LBT), SKA or even ALMA (although no sufficiently detailed
studies exist for these at present).

Tests of the stability of fundamental couplings are crossing a threshold, with the
first Large Program dedicated to them currently ongoing. So far everyone agrees that
nothing is varying at the 10−5 (10 ppm) level out to redshifts z ∼ 4, with weaker
constraints at higher redshifts and somewhat stronger ones within the galaxy z ∼ 0.
Local tests with atomic clocks also provide very tight constraints. Note that a 10
ppm constraint is already a very tight one (it’s stronger than the Cassini bound on
the Eddington PPN parameter, for example [67]), but improvements of 2–3 orders of
magnitude may be foreseen in the coming years.

Together with the opportunity, afforded by astrophysical tests of the stability of
fundamental couplings such as the fine-structure constant and the proton-to-electron
mass ratio, to map and constrain additional dynamical degrees of freedom not only
through the acceleration phase of the universe but also deep in the matter era (out to
redshift z ∼ 4, and possibly beyond), these will consolidate this as an exciting new
area of research, powered by dedicated new instruments.

Finally, let us again stress the role of consistency tests: taken together, tests of the
stability of fundamental couplings, the redshift drift and constraints on the temperature-
redshift relation and the distance duality relation will provide an exquisite mapping of
the dark side of the universe. The E-ELT will enable further relevant tests, including
tests of strong gravity around the galactic black hole, which were not discussed in this
contribution. Last but not least, interesting synergies with other facilities, particularly
ALMA, Euclid and the SKA, remain to be fully explored.

Acknowledgments This work was done in the context of project PTDC/FIS/111725/2009, The Dark Side
of the Universe, from FCT (Portugal). The author is also supported by an FCT Research Professorship, con-
tract reference IF/00064/2012, funded by FCT/MCTES (Portugal) and POPH/FSE (EC). Many interesting
discussions with other members of CAUP’s Dark Side team (Ana Catarina Leite, Ana Mafalda Monteiro,
José Pedro Vieira, Luís Ventura, Mariana Julião, Marvin Silva, Miguel Ferreira, Pauline Vieizeuf, Pedro
Leal and Pedro Pedrosa) as well as with other collaborators in the work discussed herein, have shaped my
views on this subject and are gratefully acknowledged.

References

1. Shaver, P. (ed.): Astronomy, cosmology and fundamental physics. In: Proceedings, ESO/CERN/ESA
Symposium, Garching, Germany, March 4–7, 2002 (2003)

2. Aad, G., et al.: Phys. Lett. B716, 1 (2012). doi:10.1016/j.physletb.2012.08.020
3. Chatrchyan, S., et al.: Phys. Lett. B716, 30 (2012). doi:10.1016/j.physletb.2012.08.021
4. Uzan, J.P.: Living Rev. Relativ. 14, 2 (2011)
5. Weinberg, D.H., Mortonson, M.J., Eisenstein, D.J., Hirata, C., Riess, A.G., et al.: Phys. Rep. 530, 87

(2013). doi:10.1016/j.physrep.2013.05.001
6. Amendola, L., et al.: Living Rev. Relativ. 16, 6 (2013)
7. Chodos, A., Detweiler, S.L.: Phys. Rev. D21, 2167 (1980). doi:10.1103/PhysRevD.21.2167
8. Wu, Y.S., Wang, Z.: Phys. Rev. Lett. 57, 1978 (1986). doi:10.1103/PhysRevLett.57.1978
9. Kiritsis, E.: JHEP 9910, 010 (1999). doi:10.1088/1126-6708/1999/10/010

10. Damour, T.: Astrophys. Space Sci. 283, 445 (2003). doi:10.1023/A:1022596316014
11. Rosenband, T., Hume, D., Schmidt, P., Chou, C., Brusch, A., Lorini, L., Oskay, W., Drullinger, R.,

Fortier, T., Stalnaker, J., Diddams, S., Swann, W., Newbury, N., Itano, W., Wineland, D., Bergquist, J.:
Science 319, 1808 (2008). doi:10.1126/science.1154622

123

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physrep.2013.05.001
http://dx.doi.org/10.1103/PhysRevD.21.2167
http://dx.doi.org/10.1103/PhysRevLett.57.1978
http://dx.doi.org/10.1088/1126-6708/1999/10/010
http://dx.doi.org/10.1023/A:1022596316014
http://dx.doi.org/10.1126/science.1154622


1843 Page 18 of 19 C. J. A. P. Martins

12. Webb, J., King, J., Murphy, M., Flambaum, V., Carswell, R., et al.: Phys. Rev. Lett. 107, 191101 (2011).
doi:10.1103/PhysRevLett.107.191101

13. Whitmore, J.B., Murphy, M.T.: Impact of instrumental systematic errors on fine-structure constant
measurements with quasar spectra (2014). arXiv:1409.4467

14. Silva, M.F., Winther, H.A., Mota, D.F., Martins, C.J.A.P.: Phys. Rev. D89, 024025 (2014). doi:10.
1103/PhysRevD.89.024025

15. Ferreira, M.C., Frigola, O., Martins, C.J.A.P., Monteiro, A.M.R.V.L., Solà, J.: Phys. Rev. D89, 083011
(2014). doi:10.1103/PhysRevD.89.083011

16. Thompson, R.I.: Astrophys. Lett. 16, 3 (1975)
17. Coc, A., Nunes, N.J., Olive, K.A., Uzan, J.P., Vangioni, E.: Phys. Rev. D76, 023511 (2007). doi:10.

1103/PhysRevD.76.023511
18. Luo, F., Olive, K.A., Uzan, J.P.: Phys. Rev. D84, 096004 (2011). doi:10.1103/PhysRevD.84.096004
19. Ferreira, M.C., Julião, M.D., Martins, C.J.A.P., Monteiro, A.M.R.V.L.: Phys. Rev. D86, 125025 (2012).

doi:10.1103/PhysRevD.86.125025
20. Ferreira, M.C., Julião, M.D., Martins, C.J.A.P., Monteiro, A.M.R.V.L.: Phys. Lett. B724, 1 (2013).

doi:10.1016/j.physletb.2013.05.055
21. Bonifacio, P., Rahmani, H., Whitmore, J.B., Wendt, M., Centurion, M., Molaro, P., Srianand, R.,

Murphy, M.T., Petitjean, P., Agafonova, I.I., D’Odorico, S., Evans, T.M., Levshakov, S.A., Lopez, S.,
Martins, C.J.A.P., Reimers, D., Vladilo, G.: Astronomische Nachrichten 335, 83 (2014). doi:10.1002/
asna.201312005

22. Molaro, P., Centurion, M., Whitmore, J., Evans, T., Murphy, M., et al.: Astron. Astrophys. 555, A68
(2013). doi:10.1051/0004-6361/201321351

23. Rahmani, H., Wendt, M., Srianand, R., Noterdaeme, P., Petitjean, P., et al.: Mon. Not. R. Astron. Soc.
435, 861 (2013). doi:10.1093/mnras/stt1356

24. Evans, T.M., Murphy, M.T., Whitmore, J.B., Misawa, T., Centurion, M., D’Odorico, S., Lopez, S.,
Martins, C.J.A.P., Molaro, P., Petitjean, P., Rahmani, H., Srianand, R., Wendt, M.: Mon. Not. R.
Astron. Soc. 445, 128 (2014). doi:10.1093/mnras/stu1754

25. Li, C.H., Benedick, A.J., Fendel, P., Glenday, A.G., Kaertner, F.X., et al.: Nature 452, 610 (2008).
doi:10.1038/nature06854

26. Steinmetz, T., Wilken, T., Araujo-Hauck, C., Holzwarth, R., Hansch, T.W., et al.: Science 321, 1335
(2008). doi:10.1126/science.1161030

27. Pepe, F., Cristiani, S., Rebolo, R., Santos, N.C., Dekker, H., Mégevand, D., Zerbi, F.M., Cabral, A.,
Molaro, P., Di Marcantonio, P., Abreu, M., Affolter, M., Aliverti, M., Allende Prieto, C., Amate, M.,
Avila, G., Baldini, V., Bristow, P., Broeg, C., Cirami, R., Coelho, J., Conconi, P., Coretti, I., Cupani, G.,
D’Odorico, V., De Caprio, V., Delabre, B., Dorn, R., Figueira, P., Fragoso, A., Galeotta, S., Genolet,
L., Gomes, R., González Hernández, J.I., Hughes, I., Iwert, O., Kerber, F., Landoni, M., Lizon, J.L.,
Lovis, C., Maire, C., Mannetta, M., Martins, C., Monteiro, M.A., Oliveira, A., Poretti, E., Rasilla, J.L.,
Riva, M., Santana Tschudi, S., Santos, P., Sosnowska, D., Sousa, S., Spanò, P., Tenegi, F., Toso, G.,
Vanzella, E., Viel, M., Zapatero Osorio, M.R.: The Messenger 153, 6 (2013)

28. ESO, The E-ELT Construction Proposal (2011). http://www.eso.org/public/products/books/book_
0046/29

29. Maiolino, R., Haehnelt, M., Murphy, M., Queloz, D., Origlia, L., et al.: A Community Science Case
for E-ELT HIRES (2013). arXiv:1310.3163

30. Fish, V., Alef, W., Anderson, J., Asada, K., Baudry, A., et al.: High-Angular-Resolution and High-
Sensitivity Science Enabled by Beamformed ALMA (2013). arXiv:1309.3519

31. Tilanus, R., Krichbaum, T., Zensus, J., Baudry, A., Bremer, M., et al.: Future mmVLBI Research with
ALMA: A European vision (2014). arXiv:1406.4650

32. Levshakov, S., Reimers, D., Henkel, C., Winkel, B., Mignano, A., et al.: Astron. Astrophys. 559, A91
(2013). doi:10.1051/0004-6361/201322535

33. Ekström, S., Coc, A., Descouvemont, P., Meynet, G., Olive, K.A., Uzan, J.P., Vangioni, E.: Astron.
Astrophys. 514, A62 (2010). doi:10.1051/0004-6361/200913684

34. Vieira, J.P.P., Martins, C.J.A.P.: M.J.P.F.G. Monteiro. Phys. Rev. D86, 043003 (2012). doi:10.1103/
PhysRevD.86.043003

35. Perez-Garcia, M.A., Martins, C.J.A.P.: Phys. Lett. B718, 241 (2012). doi:10.1016/j.physletb.2012.10.
047

36. Berengut, J., Flambaum, V., Ong, A., Webb, J., Barrow, J.D., et al.: Phys. Rev. Lett. 111(1), 010801
(2013). doi:10.1103/PhysRevLett.111.010801

123

http://dx.doi.org/10.1103/PhysRevLett.107.191101
http://arxiv.org/abs/1409.4467
http://dx.doi.org/10.1103/PhysRevD.89.024025
http://dx.doi.org/10.1103/PhysRevD.89.024025
http://dx.doi.org/10.1103/PhysRevD.89.083011
http://dx.doi.org/10.1103/PhysRevD.76.023511
http://dx.doi.org/10.1103/PhysRevD.76.023511
http://dx.doi.org/10.1103/PhysRevD.84.096004
http://dx.doi.org/10.1103/PhysRevD.86.125025
http://dx.doi.org/10.1016/j.physletb.2013.05.055
http://dx.doi.org/10.1002/asna.201312005
http://dx.doi.org/10.1002/asna.201312005
http://dx.doi.org/10.1051/0004-6361/201321351
http://dx.doi.org/10.1093/mnras/stt1356
http://dx.doi.org/10.1093/mnras/stu1754
http://dx.doi.org/10.1038/nature06854
http://dx.doi.org/10.1126/science.1161030
http://www.eso.org/public/products/books/book_0046/29
http://www.eso.org/public/products/books/book_0046/29
http://arxiv.org/abs/1310.3163
http://arxiv.org/abs/1309.3519
http://arxiv.org/abs/1406.4650
http://dx.doi.org/10.1051/0004-6361/201322535
http://dx.doi.org/10.1051/0004-6361/200913684
http://dx.doi.org/10.1103/PhysRevD.86.043003
http://dx.doi.org/10.1103/PhysRevD.86.043003
http://dx.doi.org/10.1016/j.physletb.2012.10.047
http://dx.doi.org/10.1016/j.physletb.2012.10.047
http://dx.doi.org/10.1103/PhysRevLett.111.010801


Fundamental cosmology in the E-ELT era Page 19 of 19 1843

37. Bagdonaite, J., Salumbides, E.J., Preval, S.P., Barstow, M.A., Barrow, J.D., et al.: Limits on a gravita-
tional field dependence of the proton–electron mass ratio from H2 in white dwarf stars (2014). doi:10.
1103/PhysRevLett.113.123002

38. Ade, P., et al.: Planck intermediate results. XXIV, Constraints on variation of fundamental constants
(2014). arXiv:1406.7482

39. Calabrese, E., Menegoni, E., Martins, C.J.A.P., Melchiorri, A., Rocha, G.: Phys. Rev. D84, 023518
(2011). doi:10.1103/PhysRevD.84.023518

40. Gasser, J., Leutwyler, H.: Nucl. Phys. B307, 763 (1988). doi:10.1016/0550-3213(88)90107-1
41. Martins, C.J.A.P., Menegoni, E., Galli, S., Mangano, G., Melchiorri, A.: Phys. Rev. D82, 023532

(2010). doi:10.1103/PhysRevD.82.023532
42. Stern, S.: Dynamical dark energy and variation of fundamental constants (PhD Thesis) (2008)
43. Carroll, S.M.: Phys. Rev. Lett. 81, 3067 (1998). doi:10.1103/PhysRevLett.81.3067
44. Thompson, R.I., Martins, C.J.A.P., Vielzeuf, P.E.: Mon. Not. R. Astron. Soc. 428, 2232 (2013). doi:10.

1093/mnras/sts187
45. Dabrowski, M.P., Denkiewicz, T., Martins, C.J.A.P., Vielzeuf, P.E.: Phys. Rev. 12, 123512 (2014).

doi:10.1103/PhysRevD.89.123512
46. Maor, I., Brustein, R., Steinhardt, P.J.: Phys. Rev. Lett. 86, 6 (2001). doi:10.1103/PhysRevLett.86.6
47. Upadhye, A., Ishak, M., Steinhardt, P.J.: Phys. Rev. D72, 063501 (2005). doi:10.1103/PhysRevD.72.

063501
48. Nunes, N.J., Lidsey, J.E.: Phys. Rev. D69, 123511 (2004). doi:10.1103/PhysRevD.69.123511
49. Calabrese, E., Martinelli, M., Pandolfi, S., Cardone, V.F., Martins, C.J.A.P., Spiro, S., Vielzeuf, P.E.:

Phys. Rev. 8, 083509 (2014). doi:10.1103/PhysRevD.89.083509
50. Vielzeuf, P.E., Martins, C.J.A.P.: Phys. Rev. D85, 087301 (2012). doi:10.1103/PhysRevD.85.087301
51. Sandage, A.: Astrophys. J. 136, 319 (1962). doi:10.1086/147385
52. Liske, J., Grazian, A., Vanzella, E., Dessauges, M., Viel, M., et al.: Mon. Not. R. Astron. Soc. 386,

1192 (2008). doi:10.1111/j.1365-2966.2008.13090.x
53. Martinelli, M., Pandolfi, S., Martins, C.J.A.P., Vielzeuf, P.E.: Phys. Rev. D86, 123001 (2012). doi:10.

1103/PhysRevD.86.123001
54. Aharonian, F., Arshakian, T. Allen, B., Banerjee, R. Beck, R., et al.: Pathway to the square kilometre

array—the German white paper (2013). arXiv:1301.4124
55. Yu, H.R., Zhang, T.J., Pen, U.L.: Phys. Rev. Lett. 113, 041303 (2014). doi:10.1103/PhysRevLett.113.

041303
56. Leite, A.C.O., Martins, C.J.A.P., Pedrosa, P.O.J., Nunes, N.J.: Phys. Rev. D90, 063519 (2014)
57. Amendola, L., Leite, A.C.O., Martins, C.J.A.P., Nunes, N., Pedrosa, P.O.J., et al.: Phys. Rev. D86,

063515 (2012). doi:10.1103/PhysRevD.86.063515
58. Touboul, P., Metris, G., Lebat, V., Robert, A.: Class. Quantum Gravity 29, 184010 (2012). doi:10.

1088/0264-9381/29/18/184010
59. Chluba, J.: Mon. Not. R. Astron. Soc. 443, 1881 (2014). doi:10.1093/mnras/stu1260
60. Avgoustidis, A., Luzzi, G., Martins, C.J.A.P., Monteiro, A.M.R.V.L.: JCAP 1202, 013 (2012). doi:10.

1088/1475-7516/2012/02/013
61. André, P., et al.: JCAP 1402, 006 (2014). doi:10.1088/1475-7516/2014/02/006
62. Avgoustidis, A., Burrage, C., Redondo, J., Verde, L., Jimenez, R.: JCAP 1010, 024 (2010). doi:10.

1088/1475-7516/2010/10/024
63. Hees, A., Minazzoli, O., Larena, J.: On a breaking of the equivalence principle in the electromagnetic

sector and its cosmological signatures (2014). arXiv:1406.6187
64. Sandvik, H.B., Barrow, J.D., Magueijo, J.: Phys. Rev. Lett. 88, 031302 (2002). doi:10.1103/

PhysRevLett.88.031302
65. Avgoustidis, A., Martins, C.J.A.P., Monteiro, A.M.R.V.L., Vielzeuf, P.E., Luzzi, G.: JCAP 1406, 062

(2014). doi:10.1088/1475-7516/2014/06/062
66. Leal, P.M.M., Martins, C.J.A.P., Ventura, L.B.: Phys. Rev. D90, 027305 (2014). doi:10.1103/

PhysRevD.90.027305
67. Bertotti, B., Iess, L., Tortora, P.: Nature 425, 374 (2003). doi:10.1038/nature01997

123

http://dx.doi.org/10.1103/PhysRevLett.113.123002
http://dx.doi.org/10.1103/PhysRevLett.113.123002
http://arxiv.org/abs/1406.7482
http://dx.doi.org/10.1103/PhysRevD.84.023518
http://dx.doi.org/10.1016/0550-3213(88)90107-1
http://dx.doi.org/10.1103/PhysRevD.82.023532
http://dx.doi.org/10.1103/PhysRevLett.81.3067
http://dx.doi.org/10.1093/mnras/sts187
http://dx.doi.org/10.1093/mnras/sts187
http://dx.doi.org/10.1103/PhysRevD.89.123512
http://dx.doi.org/10.1103/PhysRevLett.86.6
http://dx.doi.org/10.1103/PhysRevD.72.063501
http://dx.doi.org/10.1103/PhysRevD.72.063501
http://dx.doi.org/10.1103/PhysRevD.69.123511
http://dx.doi.org/10.1103/PhysRevD.89.083509
http://dx.doi.org/10.1103/PhysRevD.85.087301
http://dx.doi.org/10.1086/147385
http://dx.doi.org/10.1111/j.1365-2966.2008.13090.x
http://dx.doi.org/10.1103/PhysRevD.86.123001
http://dx.doi.org/10.1103/PhysRevD.86.123001
http://arxiv.org/abs/1301.4124
http://dx.doi.org/10.1103/PhysRevLett.113.041303
http://dx.doi.org/10.1103/PhysRevLett.113.041303
http://dx.doi.org/10.1103/PhysRevD.86.063515
http://dx.doi.org/10.1088/0264-9381/29/18/184010
http://dx.doi.org/10.1088/0264-9381/29/18/184010
http://dx.doi.org/10.1093/mnras/stu1260
http://dx.doi.org/10.1088/1475-7516/2012/02/013
http://dx.doi.org/10.1088/1475-7516/2012/02/013
http://dx.doi.org/10.1088/1475-7516/2014/02/006
http://dx.doi.org/10.1088/1475-7516/2010/10/024
http://dx.doi.org/10.1088/1475-7516/2010/10/024
http://arxiv.org/abs/1406.6187
http://dx.doi.org/10.1103/PhysRevLett.88.031302
http://dx.doi.org/10.1103/PhysRevLett.88.031302
http://dx.doi.org/10.1088/1475-7516/2014/06/062
http://dx.doi.org/10.1103/PhysRevD.90.027305
http://dx.doi.org/10.1103/PhysRevD.90.027305
http://dx.doi.org/10.1038/nature01997

	Fundamental cosmology in the E-ELT era: the status and future role of tests of fundamental coupling stability
	Abstract
	1 Introduction
	2 Fundamental couplings
	3 The UVES large programme
	4 Aside: a bird's eye view of other measurements
	5 Dynamical dark energy and varying couplings
	6 Case study: dark energy constraints
	7 The quest for redundancy
	8 Outlook
	Acknowledgments
	References


