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1. ABSTRACT 
 
The goal of this work is to automatically extract the contour of an object represented in 
an image after manually defining an initial contour for it. This rough initial contour will 
then evolve until it equals the border of the desired object. The contour is modelled 
through a physical formulation, using the Finite Element Method, and its evolution to 
the desired final contour of the object to segment is governed by: internal forces, de-
fined by the intrinsic physical characteristics selected for the model; and external forces, 
defined in function of the image features most suitable for the desired object. To build 
the physical model, an isoparametric finite element is employed and to obtain its evolu-
tion towards the object border the dynamic equilibrium equation is solved. 
 

2. INTRODUCTION 
 
In the domain of Computational Vision, the identification of an object represented in an 
image, usually designated by segmentation, is one of the most common and complex 
tasks. Usually, whenever it is intended to extract higher-level information from an im-
age or even from image sequences, the used process starts by segmenting the input im-
age(s). Thus, image segmentation is one of the working areas in Computational Vision 
with more research done and so it will probably be throughout the times. 
The main goal of our work is to extract the contour of an object represented in an image, 
after the definition of an initial contour for it. This contour, roughly defined by the user 
of the developed implementation, will evolve throughout an iterative process until it 
reaches the border of the desired object. For that purpose, it was decided to use deform-
able models defining their behaviour according to physical principles, as proposed by 
[1]. Thus, the dynamic equilibrium equation is used, also known as equation of motion, 
and applied to the elastic physical model built using the Finite Elements Method. 
The here used methodology is briefly described in Fig. 1. Its first step consists in draw-
ing a contour on the input image that is close to the border of the object to segment. 
That shape is considered as the initial segmentation contour for that object. Next, this 
contour is modelled according to physical principles using the Finite Elements Method; 
namely, by adopting Sclaroff’s isoparametric finite element [2]. To move the model to 
the border of the object, the dynamic equilibrium equation, that describes the equilib-
rium between the internal and external forces involved, is solved. The internal forces are 
defined by the physical characteristics adopted for the model, determined by the virtual 
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material used and the interaction between its nodes; and the external forces are defined 
in terms of the image features that best describe the object. 
 

Input image Initial contour 
  

 Physical modelling: 
 

Sclaroff’s 

 
Fig. 1: Schema of the methodology used to segmented objects represented in images. 
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3. PHYSICAL MODELLING 
 
After defining the initial contour for the object, we model it in physical terms; that is, 
we assign mass, stiffness and damp to each point of the contour, that is, to each node of 
the model used. 
To model the initial contour and simulate its elastic behaviour, [1] used affine interpola-
tion functions together with finite differences. In this work, we employ the Finite Ele-
ment Method and Gaussian interpolants instead. Namely, we use Sclaroff’s isoparamet-
ric finite element, [2], that uses a set of radial basis functions that allows an easy inser-
tion of the data points in the model. With this isoparametric finite element, when an ob-
ject is modelled it is as if each of its feature points are covered by an elastic membrane 
[3; 4]. 
For the m points Xi(xi,yi) of the initial contour, the mass matrix of Sclaroff’s isoparamet-
ric element, M, is defined as, [2-4]: 
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where  is a sub-matrix m×m defined as , where ρ is the mass 
density of the virtual material adopted, and the elements of matrix Г are the square roots 
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w action between the model nodes. 
O

here σ is the standard deviation that controls the inter
n the other hand, the stiffness matrix, K, is given by: 
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here Kij are symmetric m×m sub-matrices dependi
the virtual material adopted for the contour, [2; 3; 5]. 
w ng on constants that are functions of 

Finally, we use Rayleigh’s damping matrix, C, which is a linear combination of the 
mass and stiffness matrices with constraints, µ and γ, based upon the chosen critical 
damping, [6; 7]: 
 C M Kµ γ= + . (5) 
 

4. EQUILIBRIUM EQUATION 
 

sformed into an elastic physical model we need to 
stimate its evolution in the direction of the object edges to achieve the desired segmen-

After having the initial contour tran
e
tation. To achieve this goal, the second order ordinary differential equation, commonly 
known as Lagrange’s dynamic equilibrium equation, is solved: 
 MU CU KU Ft t t t+ + = , (6) 
for each time step t, where U , U  and U  are, respectively, the displacement, velocity 
nd acceleration vectors, a pres  the externa al forces, [8]. This equation de-nd F re ents

scribes the equilibrium between the internal and external forces involved on the model 
nodes. The internal forces are defined by the physical characteristics adopted for the 
model, determined by the adopted virtual material and the level chosen for the interac-
tion between the nodes of the model, which is considered while building Sclaroff’s 
isoparametric finite element. The external forces, F, are determined by the image fea-
tures that best describe the object to segment. In particular, the intensity value of each 
pixel of the initial image, Fint , the value of the pixels of the edges image, Fedg , and the 
distance from each pixel to the nearest edge, Fdist : 

 F F F Fedg int dist= + + . (7) 

Here, the edges im
[9 btained by calculating the distance 

age is obtained by applying Shen & Castan’s edge detection operator, 
], to the original image, and the distance image is o

 

of each pixel to its nearest edge using Chamfer’s method. 
After the physical modelling of the initial contour, our algorithm calculates the line or-
thogonal to the line tangent to the contour at each node of the model. It is along each 
one of these lines that the forces are calculated. Denoting as Qi all the pixels belonging 
to the orthogonal line of node P, the edges force at point P is given by: 
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herew  ( )iEdg Q  is the value of the pixel Qi in the edge
and N is the number of pixels of the orthogonal line. The intensity and distance forces 

ns are si

ill continually grow until the mean reaches val. Thus, 

s image, k is a stiffness constant 

equatio milar to Eq. (8). 
If the mean of the edges values of the N pixels of the orthogonal line is lesser than a 
given value, val, then the line w
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each line has the length it needs to determine a sufficient force to move its associated 
node. 
 

5. SOME RESULTS 

of the methodology considered to segment an object represented 
 an image by identifying its contour, consider the images in Fig. 2. In the first one we 

 
To illustrate the results 
in
can see, in red, the initial contour manually defined for the object. The second image 
represents the segmentation obtained using a physical model with 122 nodes (data 
points) made of rubber, and considering k=200N/m. In this case, the computational 
process took 56s to achieve the final result. (In this work we used a personal computer 
with an Intel Pentium D at 3GHz processor and 2GB of RAM.) 
 

 
Fig. 2: Initial contour (left); result of the segmentation process using  

k=200N/m and considering a rubber model (right). 
 
If the same initial co r, using k=200N/m 

ould not practically move the contour. Because copper is more rigid than rubber it can 

 

ntour is modelled with copper instead of rubbe
w
support bigger external forces, so if k takes bigger values the process continues to run 
without numerically diverging. In fact, using k=1x106N/m in the 122 nodes model made 
of copper, the segmentation is achieved after 5 minutes. Even with a much higher k the 
segmentation process using a copper model takes a lot longer to finish than using rubber 
as the adopted virtual material, which is consistent with the expected behaviour of real 
objects, because it is easier and faster to deform objects made of rubber than of copper. 
The initial contour in Fig. 2 was drawn close to the object to segment; however, because 
of the adaptive approach considered for the external forces, that does not have to be.
The initial contour can be drawn further away from the object border, but that slows 
down the segmentation process because each pixel has a longer path to go through. The 
example in Fig. 3 uses the same object and the same initial parameters to build the 
physical model as the one in Fig. 2 but with an initial contour defined further away from 
the object to segment. In this case, the segmentation process takes 178s to finish. 
 

 
Fig. 3: Initial contour defined further away from the object (left); result of  

the segmentation process using k=200N/m and a rubber model (right). 
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In the previous example no nodes redistribution was made, i.e., the nodes did not keep 
the distance between them along the segmentation process. That is why areas with high 
curvature may not be well segmented, as is the case here. The final contour shown in 
Fig. 3 presents a small number of points in the area between the beak and the opening of 
the teapot, preventing the junction of the beak and the body of the teapot to be well rep-
resented. By forcing the nodes to maintain a given distance between them, the number 
of nodes increases or decreases along the segmentation process in order to obtain a more 
accurate result, Fig. 4. 
 

 
Fig. 4: Result of the segmentation process with nodes redistribution. 

In the case of more complex segmentation cases, such as when the objects are over-
lapped, like the ones in Fig. 5, the final result may not be the expected one, because fea-
tures belonging to other objects can be stronger than the ones of the object to segment, 
consequentially attracting some nodes of the model to the wrong object. 
 

 

 
Fig. 5: Initial contour (left); result of the segmentation with k=2,000N/m  

considering a model with 50 nodes and made of rubber (right). 
 

6. CONCLUSIONS AND FUTURE WORK 
 
In this paper, a methodology to segment objects represented in images based on physi-
cal principles was presented. 
The experimental results obtained using our physically driven segmentation methodol-
ogy, some oach has 
two major
) It becomes  segmentation 
rocess increases; what can be very inconvenient when a detailed contour extraction 

ands very fast results. 
age in which the object is 

 presented in this paper, are quite satisfactory. However, our appr
 problems: 

slower as the number of nodes of the model used in the1
p
needs to be accomplished and the application dem

) The segmentation result can be compromised when the im2
represented is very complex, with noisy data or objects overlapped, for instance. 
Because of these two major problems, in the near future some changes to fasten and im-
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prove the segmentation process will be introduced, such as trying different approaches 
for the definition of the external forces, and the development of computational parallel 
implementations. The use of finite elements suitable for large deformations is also a 

nstraints in the 

ical Principles”, with refer-
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