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CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex, France

E-mail: tavgoust@gmail.com, Carlos.Martins@astro.up.pt, mmonteiro@fc.up.pt,
up110370652@alunos.fc.up.pt, gluzzi@lal.in2p3.fr

Received February 22, 2014
Revised May 6, 2014
Accepted June 9, 2014
Published June 27, 2014

Abstract. We study cosmological models involving scalar fields coupled to radiation and
discuss their effect on the redshift evolution of the cosmic microwave background tempera-
ture, focusing on links with varying fundamental constants and dynamical dark energy. We
quantify how allowing for the coupling of scalar fields to photons, and its important effect
on luminosity distances, weakens current and future constraints on cosmological parameters.
In particular, for evolving dark energy models, joint constraints on the dark energy equation
of state combining BAO radial distance and SN luminosity distance determinations, will be
strongly dominated by BAO. Thus, to fully exploit future SN data one must also indepen-
dently constrain photon number non-conservation arising from the possible coupling of SN
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photons to the dark energy scalar field. We discuss how observational determinations of the
background temperature at different redshifts can, in combination with distance measures
data, set tight constraints on interactions between scalar fields and photons, thus breaking
this degeneracy. We also discuss prospects for future improvements, particularly in the con-
text of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark
energy constraints while allowing for photon number non-conservation.

Keywords: cosmology of theories beyond the SM, dark energy experiments, supernova type
Ia - standard candles, baryon acoustic oscillations
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1 Introduction

The observational evidence for the acceleration of the universe demonstrates that our canon-
ical theories of gravitation and particle physics are incomplete, if not incorrect. A new
generation of ground and space-based astronomical facilities (most notably the E-ELT and
Euclid) will shortly be able to carry out precision consistency tests of the standard cosmo-
logical model and search for evidence of new physics beyond it.

After a quest of several decades, the recent LHC detection of a Higgs-like particle [1, 2]
finally provides strong evidence in favour of the notion that fundamental scalar fields are part
of Nature’s building blocks. A pressing follow-up question is whether the associated field has
a cosmological role, or indeed if there is another cosmological counterpart. If there is indeed
a cosmologically relevant scalar field, the natural expectation is for it to couple to the rest of
the degrees of freedom in the model, unless there are symmetry principles suppressing these
couplings. Therefore, not allowing for such couplings may significantly bias the analysis of
current and future cosmological datasets.

In this paper, which is a sequel to [3], we focus on potentially observable signatures
of the interaction of cosmological scalar fields with the electromagnetic sector, specifically
changes to the standard evolution of the Cosmic Microwave Background temperature with
redshift,

T (z) = T0(1 + z) . (1.1)

Rather than focusing on a particular favoured model and obtaining specific constraints, we
consider two general classes of models from the Cosmology literature, described in a phe-
nomenological way. These include models in which a scalar field drives variations of the
fine-structure constant, and models where the scalar field is responsible for cosmic accel-
eration. Since scalars can in general couple to the electromagnetic sector, our goal is to
demonstrate that such scalar-photon couplings, if not accounted for, can strongly bias cos-
mological parameter determination. We quantify how important an effect these couplings can
have on constraints derived from current and future datasets, and show how the degeneracy
can be broken through the independent reconstruction of the CMB temperature evolution.
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The two canonical ways to reconstruct the evolution of the CMB temperature with
redshift rely on spectroscopy of molecular/ionic transitions triggered by CMB photons [4–6]
and on the thermal Sunyaev-Zel’dovich (SZ) effect towards clusters [7–10]. New sources will
soon become available for measurements by the above methods, and entirely new methods for
measuring T (z) are also being developed, so it is timely to consider their impact on cosmology
and on searches for new physics. There is also complementarity with other techniques that are
now becoming available. In [3] we pointed out an important connection with distance-duality
tests, allowing to strengthen constrains on models that violate photon number conservation.
Such tests have a rich history starting from [11, 12], and a future more precise test will be
carried out by Euclid [13].

While in [3] deviations from the standard evolution were constrained in a purely phe-
nomenological (but nevertheless model-independent) way, here we discuss in considerably
more detail the possible links between T (z) and two other astrophysical observables: mea-
surements of nature’s fundamental dimensionless couplings and the equation of state of dark
energy. As emphasised in [14], such joint measurements will be crucial for the next generation
of cosmological experiments, which will carry out precision consistency tests of the under-
lying scenarios. We will base our discussion on two specific examples, ESA’s Euclid1 [15]
and ESO’s European Extremely Large Telescope (E-ELT) [16]. We find that, although for
varying-α models determinations of T (z) will not reach the required sensitivity in the near
future, in the case of dark energy scalars, their coupling to photons can have a major effect on
cosmological parameter determination but the degeneracy can readily be broken with T (z)
and distance measurements.

2 CMB temperature evolution

We start with a brief review on the redshift evolution of the CMB temperature. This is not
meant to be exhaustive, but simply to introduce the basic setup we will work in. Further
details can be found in the original analysis of [17], as well as in [3]. We will be assuming
the presence of a canonical scalar field in an FRW background, with a Lagrangian

L =
1

2
(∂µφ)(∂

µφ)− V (φ) , (2.1)

with

pφ =
1

2
φ̇2 − V (φ) , ρφ =

1

2
φ̇2 + V (φ) . (2.2)

Introducing a coupling Cφ between the scalar field and the radiation fluid, the evolution
equations for the radiation energy and number densities read

ρ̇γ + 4Hργ = Cφ , (2.3)

ṅγ + 3Hnγ = Ψ , (2.4)

where Ψ depends on the coupling Cφ. This will in general distort the behaviour of the
radiation fluid, and in particular the photon temperature-redshift relation, away from its
standard evolution. Restricting our attention to the observationally relevant case of adiabatic
evolution, the adiabaticity condition implies [3, 17]

Cφ =
pγ + ργ
nγ

Ψ , (2.5)

1http://www.euclid-ec.org.
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and one obtains the following evolution equation for the CMB temperature

Ṫ

T
+H =

Ψ

3nγ
=

Cφ
4ργ

. (2.6)

For future use, let us define a correction to the standard behaviour, y(z), such that

T (z) = T0(1 + z)y(z) , (2.7)

and clearly y(z) = 1 corresponds to the standard cosmological model; we can then write

dy

y
=

Cφ
4ργ

dt = −
Cφ

4Hργ

dz

1 + z
. (2.8)

The simplest ansatz for the source term Ψ in eqs. (2.4) and (2.6) is Ψ = 3βHnγ , which
yields the relation

T (z) = T0(1 + z)1−β ; (2.9)

this has been fairly widely used in the past, with the available measurements of T (z) providing
a constraint on the parameter β [3, 6, 10]. The corresponding evolution of the radiation
density is

ργ ∝ T 4 ∝ (1 + z)4(1−β) ∝ a−4(1−β) . (2.10)

A generalisation has been suggested by Bassett and Kunz [11],2 with Ψ = 3βH(1 + z)λ−1nγ
and again assuming adiabaticity. The previous case is recovered for λ = 1, while for λ 6= 1
we get

ργ ∝ a−4 exp

[

4β

1− λ
a1−λ

]

, (2.11)

T (z) = T0(1 + z) exp

[

β

1− λ

(

(1 + z)λ−1 − 1
)

]

. (2.12)

Naturally, if we linearise in β and then in redshift we recover the usual linear modification
to the standard temperature-redshift relation, T (z) = T0[1 + (1 − β)z]. The dependence on
λ appears at order O[β(λ− 2)z2].

For the scalar field energy density we have

ρ̇φ + 3H(1 + wφ)ρφ = −Cφ , (2.13)

which, in models where the scalar field is driving cosmic acceleration, could provide a link
between temperature evolution (2.7)–(2.8) and the properties of dark energy, as will be further
discussed below. In particular, for the Bassett-Kunz parametrisation [11] for photon loss,
mentioned above, T (z) is given by (2.12), while for the dark energy density we have:

ρ̇φ + 3H(1 + wφ)ρφ = −4βHa1−λργ . (2.14)

2In the notation of [11], our β corresponds to γ and our λ corresponds to −α.
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3 Links to varying alpha

In this section we consider models in which an evolving scalar field is driving variations of the
fine structure constant through its coupling to Maxwell electromagnetism. This also allows
photons to be converted into scalar particles, effectively violating photon number conserva-
tion. The violation can be described by a collision functional in the Boltzmann equation,
leading to an equation of the form (2.4) and modifying the temperature-redshift relation
through equation (2.6). At the same time, the scalar-photon coupling affects luminosity dis-
tances in a redshift-dependent way [3], potentially providing a complementary observational
channel for probing these models.

For concreteness, let us consider the Bekenstein-Sandvik-Barrow-Magueijo (BSBM)
class of models [18] in which the scalar field ψ couples exponentially to the Maxwell F 2

term in the matter Lagrangian, resulting in variations of the fine-structure constant, α. In
this case we have (cf. equation (2.3))

ρ̇γ + 4Hργ = 2ψ̇ργ = Cψ , (3.1)

with
α

α0
= exp2(ψ−ψ0) , (3.2)

and we immediately find, assuming adiabaticity, that (cf. equation (2.6))

Ṫ

T
+H =

1

2
ψ̇ , (3.3)

ln

(

aT

a0T0

)

=
1

2
(ψ − ψ0) =

1

4
ln

α

α0
, (3.4)

leading to

T (z)

T0
= (1 + z)

(

α(z)

α0

)1/4

∼ (1 + z)

(

1 +
1

4

∆α

α

)

, (3.5)

which is of the form of equation (2.7). Equation (3.5) was derived for the specific case
of exponential coupling appearing in BSBM-type models, but note that, since the relative
variation ∆α/α is constrained observationally to be small, such a linear dependence of T (z)
on ∆α/α is a good approximation (up to a model-dependent factor of order unity allowing
for a coefficient different than 1/4) for a much wider range of couplings. Thus, we can think
of (3.5) as the linear term in a Taylor expansion and use this equation as a more general
phenomenological relation that can be tested observationally.

Recently, Webb et al. [19] found a significant indication (at the 4.2-σ level,) for a spatial
dipole in the fine structure constant, α. If this is not a hidden systematic effect, and assuming
that this class of models is correct, there should also be an additional CMB temperature
dipole (that is, in addition to the standard one) in the same direction of the α dipole, and
with µKelvin amplitude. Although this is beyond the scope of the current analysis, it should
be possible to disentangle this from the ‘usual’ CMB dipole. In particular, a signal of this
magnitude may be of some relevance for the recently released Planck results.

Note that in the above we did not assume an explicit expression for the redshift be-
haviour of α. A constant non-zero ∆α/α would introduce a deviation from the standard
temperature-redshift law which grows linearly in redshift, see equation (3.5). Given that
fine-structure constant variations are constrained to be weak and that optical/UV spectro-
scopic measurements lie mostly in the redshift range 1 . z . 3, taking constant ∆α/α would

– 4 –
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be a reasonable approach, and any signal for such variations would be a hint of new physics.
However, the theory predicts that ∆α/α should evolve and, as observational sensitivity in-
creases (and data at larger redshifts gradually become available), the redshift dependence
should be included in a model-dependent way. Here, we initiate such an approach, aiming
at capturing the increase of ∆α/α with redshift in a phenomenological way. Given the lim-
ited observational sensitivity we seek a one-parameter phenomenological description for the
evolution of ∆α/α. However, such a simple parametrisation can be expected to be sufficient
because most current measurements are firmly in the matter era, where the evolution is
simple.

Let us return to the case of BSBM discussed above. In this class of models, if one
neglects the recent dark energy domination one can easily find an analytic solution (i.e., a
matter era one)

∆α

α
= −4κ ln (1 + z) , (3.6)

or in other words
T (z) = T0(1 + z) [1− κ ln (1 + z)] , (3.7)

where κ is a dimensionless parameter to be constrained by data. Note that the logarithmic
factor is of order unity in the observationally relevant redshift range, say 0.5 . z . 3. Dark
energy can easily be included numerically but, in this redshift range, it only affects the lower
end near z ∼ 0.5 by a factor of order unity. For even smaller redshifts, the effect of dark
energy is to further damp down variations of α [18]. Thus, equation (3.6) is also useful more
generally, as a one-parameter toy model alternative to the standard β parametrisation, which
phenomenologically captures the redshift evolution of ∆α/α at intermediate redshifts.

In the following, we will use equation (3.7) to make contact with T (z) data at redshifts
of order unity. We should however first check that values of the parameter κ required to
produce α variations at the level of current sensitivity are not in conflict with the atomic
clock bounds at z = 0 [20]. Since dark energy domination at late times has the effect of
damping ∆α/α [18], taking the above redshift dependence for α is conservative in that it
overestimates ∆α/α at small redshifts. Assuming (3.6) we have

1

α

dα

dt
= 4κH , (3.8)

and consequently today we must have
(

1

α

dα

dt

)

0

. 4κH0 = 1.3(κh)× 10−17s−1 , (3.9)

where the inequality is due to dark energy. According to Rosenband et al. [20] this variation
is constrained to be

(

1

α

dα

dt

)

0

= (−1.6± 2.3)× 10−17yr−1 , (3.10)

which corresponds to the bound

κclocks < (5.4± 7.7)× 10−8 (3.11)

when the inequality in (3.9) is saturated. In practice, κ can be significantly larger due to
the effect of dark energy suppressing α variations in the present era, but note that even this
figure is consistent with the aforementioned dipole hint [19]: if one ignores the direction of

– 5 –
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sources on the sky and naively fits the entire dataset to the above function, there is no strong
evidence for a non-zero κ. The spatial dependence of these measurements will be addressed
in subsequent work. There is thus no tension with atomic clock constraints.

As discussed in [3] the typical precision expected for temperature measurements
will significantly increase with the next generation of facilities. Specifically we consider
ESPRESSO [21], under construction for the VLT, and the planned HIRES for the E-ELT
(for which the CODEX Phase A study [22] provides a realistic benchmark); their typical
expected precisions in the temperature measurements are respectively

∆TEspresso ∼ 0.35K (3.12)

and
∆THires ∼ 0.07K . (3.13)

These are about three orders of magnitude larger than what one would expect the tempera-
ture variation to be in the BSBM model at z ∼ 4, on the assumption that the Webb detection
is correct. To get an intuitive picture of the sensitivity of T (z) measurements within this class
of models, one can determine what would be the smallest value of κ detectable by a single
measurement by those two future spectrographs. This result is shown in figure 1, giving then
a detection limit around κ = 0.004 for HIRES and κ = 0.02 for ESPRESSO.

However, these sensitivities will rapidly improve. Note that the detection limits shown
in figure 1 are for a single measurement and they also depend on the redshift at which the
measurements are made: the higher the redshift, the stronger the constraints that can be
achieved. Clearly a detection of a Webb-level value of κ would require a very large number
of sources, which are not currently known. However, this may be possible for clusters (whose
expected sensitivity in the case of Planck is also depicted): even though they are at much
lower redshifts (when deviations from the standard behaviour are correspondingly smaller),
samples of thousands of clusters are expected to become available very soon. This is further
discussed in [3, 23].

Recently Muller et al. [24] have provided the very tight measurement T = (5.08±0.10) K
at z = 0.89, using radio-mm molecular absorption measurements. With the ALMA array [25]
gradually becoming available, the number and quality of these measurements will steadily
increase, although they will be time-consuming and there will be strong competition for
ALMA observing time. Nevertheless this method offers the exciting prospect of a new tool
to map T (z) over a very wide redshift range, potentially up to z = 6.5 (J. Black, private
communication).

One can also check agreement with the Oklo natural nuclear reactor bound (correspond-
ing to an effective redshift z = 0.14), which is

∆α

α
= (0.6± 6.2)× 10−8 (3.14)

according to Petrov et al. [26], or

∆α

α
= (0.7± 1.8)× 10−8 (3.15)

according to Gould et al. [27]; this does happen, but in any case there are several caveats with
interpreting these Oklo analyses. The most obvious one is that the nuclear reactions being
considered are mostly sensitive to the strong nuclear coupling, so assuming that only the fine-
structure constant α varies while the rest of the physics is unchanged is a naive assumption.

– 6 –
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Figure 1. Variation of the temperature (relative to the standard model) as function of redshift in a
BSBM-like class of models, for different values of κ and using T0 = (2.725±0.002) K. Also depicted are
the limits of detection of this difference with CODEX/HIRES, ESPRESSO and Planck clusters [3].
The span of each bar is meant to represent the typical redshift range of each set of measurements.

At higher redshifts, an additional consistency test will be provided by the redshift drift
measurements carried out by high-resolution spectrographs like HIRES [14, 28].

Let us now explore the relation of these measurements with independent determinations
of distance measures, in the context of the varying-α models we are considering. In [3] we
have shown that if the temperature-redshift relation is changed to

T (z) = T0(1 + z)y(z) (3.16)

in models where photon number is not conserved, then the distance duality relation is corre-
spondingly affected:

dL(z) = dA(z)(1 + z)2y(z)3/2 , (3.17)

where dL and dA are the luminosity and angular diameter distance measures respectively.
Therefore for this class of varying-α models we predict that

dL(z) = dA(z)(1 + z)2
(

α(z)

α0

)3/8

∼ dA(z)(1 + z)2
(

1 +
3

8

∆α

α

)

(3.18)

∼ dA(z)(1 + z)2
[

1−
3

2
k ln (1 + z)

]

.

Again, this relation can be tested for both time and/or spatial variations of α; even though
the effect is small, there are hundreds (and in the future there will be thousands) of type
Ia supernova measurements. Recently [29] found a 2σ hint for a ‘supernova dipole’ aligned
with the α dipole. Their analysis does not take into account the effects of varying α on
the supernova brightness (see [30] for a succinct discussion). Such effects are negligible with
current supernova sensitivities but they could soon become relevant as datasets of a few
thousands of supernovae became available. It would be very interesting to include these
effects in a fully consistent analysis.

– 7 –
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There are therefore a number of consistency tests for this class of models, involving
on the one hand astrophysical measurements of T and α, and on the other hand distance
measurements such as dL.

4 Links to dark energy

We now move to studying models in which a scalar (or pseudo-scalar) field is responsible for
dark energy, but also couples to the electromagnetic sector. This can happen for example
through an axion-like “F-F dual” coupling. Unlike the case of varying-α models, where
we found that current constrains on α-variation imply that the scalar-photon coupling has
a negligible effect on current data interpretation (but could soon become significant), in
the case of dark energy we will see that, consistent with current constraints, scalar-photon
couplings can have a major impact on cosmological data determinations and must therefore be
included in data analyses. In particular, the photon-number violation induced by the scalar-
photon interactions can significantly affect luminosity distances and has an important effect
on cosmological analyses that include supernova data. However, independent measurements
of T (z) can be readily used to break this degeneracy.

Let us consider a cosmological model in which a scalar field φ is responsible for dark
energy, but also couples to photons. The coupling involves two photons and a scalar particle
and allows, for example, a scalar particle to convert into a photon in the presence of a
magnetic field. Instead of considering a particular model and studying its equations of
motion, we will describe this effect in a phenomenological way. Our goal is not to study any
given model or exhaust all possibilities, but instead to demonstrate that such couplings can
have a significant effect on cosmology.

The decay of the scalar field can be effectively described in the scalar field fluid equation
through a term proportional to the scalar energy density. We parametrise this as

ρ̇φ + 3H(1 + wφ)ρφ = −3kHρφ , (4.1)

where the parameter k (to be constrained) depends on the intergalactic magnetic field.
For our present purpose we need to adopt a specific dark energy parametrisation, so we

shall take the simple and well-known Chevallier-Polarski-Linder (CPL) one [31]

wφ(a) = w0 + wa(1− a) . (4.2)

Figure 2 shows the behaviour of this equation of state for different values of the parameters
w0 and wa, chosen so as to have an equation of state close to −1 at z = 0 and between 0
and −1 at a redshift of z = 5. More specifically, we have taken w0 = −0.995 ± 0.005 and
wa = 0.6± 0.6.

In this case the scalar field energy density evolves as

ρφ(a) = ρφ0a
−3(1+w0+wa+k) exp [−3wa(1− a)] ; (4.3)

in other words the coupling produces an effective correction to the CPL equation of state

weff(a) = wCPL(a) + k . (4.4)

It follows that within the context of this class of models we can use T (z) measurements
to impose constraints on the dark energy equation of state parameters w0 and wa, as well as

– 8 –
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Figure 2. The equation of state of dark energy as a function of redshift for different values of the
parameters w0 and wa. For each pair of curves the bottom (red) one corresponds to the case w0 = −1
and the top (blue) one to w0 = −0.99.

on the coupling k. This has already been done in two papers by Jetzer & Tortora [32, 33],
although there it was done for a specific and somewhat unrealistic decaying-lambda model.

If the scalar only couples to radiation (couplings to matter are very strongly con-
strained), then energy conservation implies that for the radiation component we have

ρ̇γ + 4Hργ = 3kHρφ . (4.5)

Note that this is of the form (2.3) with Cφ = 3kHρφ. In this case the evolution equation
for the CMB temperature, written in terms of the correction term y defined in (2.7), is as
follows

dy

y
=

3k

4

ρφ
ργ

da

a
. (4.6)

We can then substitute ρφ by the expression above, while for ργ we have ργ ∝ T 4. The
resulting differential equation for y is not in general analytically integrable, but we can write
it as

y4(a) = 1 + 3k
Ωφ0
Ωγ0

∫ a

1
x−3(w0+wa+k) exp [−3wa(1− x)]dx , (4.7)

which may be integrated numerically. Equation (4.7) provides an important observational
link between the dark energy equation of state and the photon temperature evolution.

We can obtain analytic approximations in two useful particular limits. First, for a
constant equation of state (that is, wa = 0) and assuming a small k we have

y4(a) ≃ 1 +
3k

1− 3w0

Ωφ0
Ωγ0

[

a1−3w0 − 1
]

, (4.8)

which corresponds to

T (z) ≃ T0(1 + z)

[

1 +
3k

4(1− 3w0)

Ωφ0
Ωγ0

[

(1 + z)−1+3w0 − 1
]

]

. (4.9)
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Figure 3. Deviation of the temperature relative to the standard model as a function of redshift
for the general equation (left), the constant equation of state limit (middle) and the small redshift
approximation (right) for different values of the parameters w0,wa and k. From top to bottom each
set of curves respectively corresponds to k = −10−7, k = −10−8, k = 10−8 and k = 10−7 respectively;
in each case, the corresponding band spans the range of w0 and wa discussed in the main text. Note
that the small-z approximation is only accurate until about z ∼ 0.05.

The second (and more specific) limiting case corresponds to small redshifts, z ≪ 1; here
it is convenient to first change variables, integrating in redshift rather than the scale factor,
that is

y4(z) = 1− 3k
Ωφ0
Ωγ0

∫ z

0
(1 + x)3(w0+wa+k) exp

[

−3wa
x

1 + x

]

dx

(1 + x)2
. (4.10)

We can now linearise the integral and then integrate, finding

y4(z) ≃ 1− 3k
Ωφ0
Ωγ0

z +O(z2) , (4.11)

which corresponds to

T (z) ≃ T0(1 + z)

(

1−
3k

4

Ωφ0
Ωγ0

z

)

. (4.12)

Interestingly, at first order this just depends on k, and not on w0 (a w0 dependency does
exist at second order).

Figure 3 shows the deviation of the temperature relative to the standard model as a
function of redshift for the general case (left), the constant equation of state case (middle)
and for the small redshift approximation (right). Given the sensitivities discussed in the
previous section, for this parametrisation HIRES will be precise enough to constrain this
type of models.

Notice that for sufficiently large values of k (in absolute value) one must have k negative,
otherwise the sign of the y(z) factor can change. One can thus infer the prior range of k (as
a function of w0) so as to have y(z) non-negative for all redshifts. For the simplest case with
wa = 0 and with typical values of the other relevant parameters, we find the approximate
bound

k < 5h−2 × 10−5 . (4.13)
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In the case of the small redshift approximation (assumed, quite optimistically, to hold up
to redshift z ∼ 1) the temperature evolution does not depend on w0, and one immediately
finds a limiting value of kmax < 10−6. Another way to set a rough prior range for k is
to check whether or not the temperature reaches 3000K in the modified equations. These
considerations place k at values too small to make a significant contribution on the effective
equation of state of dark energy in equation (4.4). However, the effect of k on the temperature
evolution, equation (4.7), can be large as it is enhanced by the factor Ωφ0/Ωγ0. As we will
see in the next section, the corresponding effect on luminosity distances for values of k at
this level can be very large.

As before, it is useful to get an intuitive idea for the sensitivity of T (z) measurements on
the dark energy equation of state in this class of scalar field models. Assuming that wa = 0
and the present matter density of the universe is known, we find that a set of ESPRESSO
T (z) measurements could on its own constrain w0 to a precision δw0 ∼ 0.4, while a HIRES-
like spectrograph can reach δw0 ∼ 0.15; these numbers apply for an optimistic choice of
fiducial model with k ∼ −10−5. (Note that these constraints are weaker than those found
by [32, 33], but that’s due to the fact that these authors are assuming a specific model were
w0 and k are not independent, i.e. they have a single free parameter to constrain.) On the
other hand, the analysis does not include T (z) measurements from clusters or from ALMA,
which will be discussed in more detail elsewhere.

As a final comment we point out that the same methods can be applied to constrain a
wide range of phenomenological models of the form (2.3), (2.13). As an example, take

ρ̇φ + 3H(1 + wφ)ρφ = −4βHργ , (4.14)

which is the particular case of Bassett and Kunz [11] for λ = 1, cf. eq. (2.14). In this case
the evolution of the radiation density and its temperature are trivially

T (z) = T0(1 + z)1−β (4.15)

ργ ∝ T 4 ∝ (1 + z)4(1−β) ∝ a−4(1−β) , (4.16)

as before, but we have more complex evolution for the dark energy density: the dark energy
equation of state effectively gets a β-correction, and therefore a constraint on β may be
inferred, for example, from combining type Ia supernova measurements with other distance
measure determinations probing the cosmic expansion history.

5 Constraints from current data

Before discussing in more detail some prospects for the next generation of relevant observa-
tional facilities, we study the constraints that can be obtained from current data. These are
already useful, even for the general case given by equations (4.3), (4.7) and (3.16).

The evolution of the dark energy density (4.3) affects cosmic expansion (predominantly
at smaller redshifts z . 1 when dark energy starts to dominate) so all distance measures
depend explicitly3 on w0 and wa. We can use, for example, type Ia Supernova measurements
(giving dL(z)), BAO (yielding H(z) and dA(z)), galaxy ageing (providing independent mea-
surements of H(z)) and H0 determinations. On the other hand, equations (4.7) and (3.16)

3Recall that the dependence on k is negligible, as this is allowed to be at most ∼ 10−5, while w0 and wa

range over intervals of order unity.

– 11 –



J
C
A
P
0
6
(
2
0
1
4
)
0
6
2

have a strong dependence on k and a different dependence on w0, wa, allowing degeneracies
to be broken.

As was pointed out above, in the models we are considering, in which the deviation from
the standard T (z) relation is due to a coupling of CMB photons with the dark energy scalar
field, one generally expects that the same field also couples to optical photons, thus affecting
luminosity distances, as discussed in [3]. Within a given model, one can then translate T (z)
deviations to violations of the distance duality relation (3.17). Note that on general grounds,
the coupling is expected to be weaker for lower photon frequencies, so assuming a frequency-
independent coupling should yield conservative bounds on T (z) violations from SN (or other
optical) data.

We use the Union2.1 SNIa compilation [34] and a number of different determinations of
H(z): cosmic chronometers [35–37] (11 data points in the redshift range 0.1 < z < 1.75) and
the more recent [38] (8 data points at 0.17 < z < 1.1), BAO combined with Alcock-Paczynski
(AP) distortions to separate the radial component in the WiggleZ Dark Energy Survey [39]
(3 data points at z = 0.44, 0.6 and 0.73), the SDSS DR7 BAO measurement [40] at z = 0.35,
the BOSS BAO+AP measurement [41] at z = 0.57, and the recent H(z) determination at
z=2.3 from BAO in the Lyα forest of BOSS quasars [42]. This gives 25 data points in the
range 0.1 < z < 2.3.

We start with a conservative choice of (flat) priors, namely Ωm ∈ [0, 1], w0 ∈ [−2.2, 0.4],
wa ∈ [−5, 5] and k ∈ [−5, 5]× 10−5. For our H(z) analysis, we marginalise over H0 assuming
a Gaussian prior based on the Riess et al. [43] determination H0 = 73.8 ± 2.4 km/s/Mpc,
while in our SN likelihoods we effectively marginalise over H0 by marginalising over intrinsic
SN brightnesses. Figure 4 shows current constraints from combining the above luminosity
distance and radial distance data on our (flat) CPL-CDM models, allowing for a non-zero k
in equation (4.5). The top left panel of figure 4 shows 2-parameter joint constraints (68%
and 95%, having marginalised over k and Ωm) for the SN (blue filled contours), H(z) (dashed
lines) and combined SN+H(z) data (solid line contours). Having allowed for violation of
photon number conservation through the parameter k, the SN constraints on the dark energy
equation of state are weak, but the constraints improve dramatically with the inclusion of
H(z) data that are not affected by k. The region near w0 = 0, favoured (at the 1σ level)
by the SN data, corresponds to negative values of k (i.e. photon dimming due to decay to
scalar particles) as is evident from the top right panel of figure 4. The bottom left panel
then shows that corresponds to large values of Ωm, so low values for the dark energy density
parameter. This is the well-known degeneracy between dark energy and photon number
non-conservation, which gets broken by including the H(z) data favouring Ωm near 0.25. For
comparison, in the bottom right panel we show the corresponding constraint on the w0 −wa
plane but now assuming that photon-number is conserved, k = 0.

In figure 5 we show constraints on the dark energy equation of state w for flat wCDM
models, again allowing for k ∈ [−5, 5] × 10−5 (left), and enforcing photon number conser-
vation, k = 0 (right). This again highlights the dramatic effect of k on constraints derived
from the SN data. On the contrary, the effect of k for the H(z) data is insignificant; that is,
H(z) alone does not significantly constrain k as mentioned above — refer to equation (4.3)
and the ranges of w0 and k.

The important effect of photon-number violation on weakening SN constraints, shown
in figures 4–5, makes clear that, in order to efficiently exploit current and future SN data
for dark energy parameter determinations, one must independently constrain photon-number
violations, which can be done through independent T (z) determinations [3, 6, 10], as discussed
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Figure 4. Current constraints on flat CPL-CDM models, allowing for violation of photon number
conservation, parameterised by k. Top Left: 2-parameter joint constraints (68% and 95%, having
marginalised over k and Ωm) for the SN (blue filled contours), H(z) (dashed lines) and combined
SN+H(z) data (solid line contours). Having allowed for photon number non-conservation, the SN
data alone do not strongly constrain dark energy (and favour w0 ∼ 0 at the 1σ level), but the
inclusion of the H(z) data strongly improves dark energy constraints. Top Right-Bottom Left: the SN
data favoured region w0 ∼ 0 corresponds to negative k (photon dimming) and large Ωm, exemplifying
the well-known dark energy-photon dimming degeneracy. This gets broken by using the H(z) data
which favour Ωm ≃ 0.25. Bottom Right: as in top left plot but now assuming that photon-number is
conserved k = 0. Note the dramatic effect of k on SN constraints (blue filled contours).

above. Alternatively, one may try to shrink the SN contours by including information from
other cosmological observations as priors in the marginalised parameters. Let us for example
take the WMAP9+ACT+SPT+BAO+H0 result Ωm = 0.263 ± 0.015 for the CPL-CDM
model (waCDM in the WMAP data tables). We repeat our analysis with Ωm still in the
interval [0, 1] but this time assuming a Gaussian prior (centred at 0.263 and with standard
deviation 0.015) when marginalising over Ωm. In this case, we also remove the corresponding
BAO datapoints from our H(z) sample (the 3 WiggleZ datapoints at z = 0.44, 0.60 and 0.73).
The resulting constraint on the w0−wa plane is shown in figure 6. The stronger prior on Ωm
now disfavours the region with large Ωm and negative k, thus leading to an extension of the
68% SN contour towards the region with {w0∼−1,Ωm∼ 0.3, k∼ 0} (also refer to figure 4).
However, the degeneracy is not broken, and the region around w0 ∼ 0 is still allowed by the
SN data. The overall constraint on w0 is still controlled by the H(z) data, even though the
bound on wa is now much stronger.
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Figure 5. Left: current constraints for flat wCDM models, allowing for violation of photon number
conservation, k 6= 0. Right: current constraints for flat wCDM models conserving photon-number,
k = 0.

In the same figure, we also show the corresponding SN contours that one would obtain
if k was constrained at the 10−5 level (dotted lines). The SN contours shrink a little, but
w0 ∼ 0 is still allowed, and the total constraint is again controlled by the H(z) data. For the
Union2.1 SN dataset to become competitive with the current H(z) determinations, k must
be independently constrained at the ∼ 10−6 level, resulting in a SN contour similar to that
of figure 4, bottom right. This is at a level attainable using current Sunyaev-Zel’dovich T(z)
measurements: namely the stacked Planck SZ clusters of [44] and the constraints from SPT
clusters [45]. We will present a detailed T(z) analysis based both on SZ clusters and on
atomic and molecular absorption lines in a follow-up publication. Such T(z) constraints will
therefore provide an independent means of breaking the degeneracy between dark energy
parameters and photon number non-conservation, subject to completely different system-
atics. Currently, this degeneracy can only be broken by combining SN constraints with a
k-independent dataset like H(z), as we have demonstrated, and it is important to be able to
also break the degeneracy by directly constraining the photon violation parameter k. Sim-
ilarly, if one is instead interested in constraining photon-number violations in the context
of evolving dark energy cosmologies (rather than constraining dark energy in a way that
accounts for photon-number violations), then T(z) measurements offer a more direct way,
complementary to standard (but indirect) distance duality analyses. Further, expected im-
provements in SN and H(z)/BAO data in the next decade or so may not be able to reach the
desired δk .10−6 level in the context of evolving dark energy models using distance-duality
methods, as we discuss in the next section.

6 Constraints from future datasets

Let us now proceed to present forecasts for future datasets. We will be particularly interested
in studying the impact of the Euclid mission, and will start by considering one of its probes,
BAO from the Euclid wide survey, which is expected to cover ∼15000 deg2 of extragalactic
sky down to a redshift of order 2. Assuming the same conservative priors as in figure 4,
we repeat the above analysis with simulated data for Euclid BAO and a SNAP-like SN
mission. BAO radial distance errors have been estimated using the code developed by Seo
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Figure 6. SN+H(z) constraints (solid line contours) on flat CPL-CDM models with a prior on
Ωm from WMAP9+ACT+SPT+BAO+H0. Blue solid contours show 68% and 95% confidence levels
corresponding to the SN data, assuming a flat prior on k in the range k ∈ [−5, 5] × 10−5. For
comparison, dotted line transparent contours show the corresponding constraint assuming a Gaussian
prior on k centred at k = 0 and with δk = 10−5. The dashed line contours are for H(z) data and are
practically unaffected by the prior on k. For the SN-only constraints to become comparable to H(z),
photon number violations must be constrained at a level δk ∼ 10−6.

& Eisenstein [46] adapted for Euclid estimated parameters [15]. For SN we follow [47] for a
Dark Energy Task Force Stage IV SN mission.

The relevant constraints are shown in figure 7. As before, we show 68% and 95% like-
lihood contours for the SN data in blue (filled contours), while the transparent dashed line
contours are for BAO H(z) data. The combined constraints are shown as solid line, trans-
parent contours. Note in figure 7 that the constraint on wa starts to become interesting with
Euclid BAO+SNAP-like SN, even allowing for photon number non-conservation. However,
in the absence of an independent constraint on k, much of the observed SN dimming can be
explained by photon conversion to scalar particles, so the SN contours grow (compared to
the case k = 0) and the total constraint is dominated by H(z).

To highlight this point, we also show in the middle and bottom left panels (dotted,
transparent contours) the SN constraints achievable if the photon number violation param-
eter, k, could be constrained at the level 10−6. This can be seen to have an important effect
on the joint contours, as the SN-only constraints become competitive to the H(z)-only ones.
Note, in particular, that the horizontal band around w & 0 (bottom left plot) for the SN data
disappears, as it corresponds to a region with k ≃ −10−5 (cf. top plots). The main message
arising from this analysis is that constraining k at a level . 10−6 will rule out this region,
shrinking the SN contours by a factor of a few and improving the joint SN+H(z) constraint
by a factor of ∼ 2 in the context of CPL-CDM models (figure 7, middle left plot). We will
discuss current and future constraints on k from T(z) measurements, and their quantitative
effect on dark energy parameter bounds, in a follow-up publication. In the rest of this section
we will examine the ability of future BAO and SN surveys to jointly constrain dark energy
parameters and k in the absence of such an independent bound on k.

It has been proposed that Euclid carries out a dedicated SN survey, which could yield
up to a few thousand SNeIa up to redshift 1.5 [48]. This makes Euclid an ideal instrument
to constrain the models we are studying, capable of delivering both radial/angular diameter
distance measurements and luminosity distances, and thus minimising systematics. Based on
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Figure 7. Forecast 68% and 95% likelihood contours for SN (filled blue), H(z) (dashed line transpar-
ent) and combined SN+H(z) (solid line transparent), considering Euclid BAO and a SNAP-like SN
mission. The dotted transparent contours show the corresponding SN likelihood contours, assuming
k can be constrained at the 10−6 level. Top and Middle Panels: forecasts for flat CPL-CDM models,
for the conservative priors of figure 4. Bottom Panel: for comparison we show the corresponding
constraints for a wCDM model for k ∈ [−5, 5] × 10−5 (left) and for k = 0 (right). On the left plot,
note that the horizontal band around w & 0 for the SN data corresponds to a region with k ≃ −10−5

(cf. top plots), and it disappears when k is constrained at the 10−6 level.
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the recently studied 6-month ‘AAA’ Euclid survey [49], one can expect more than 1700 SNe
Ia in the redshift range 0.75 < z < 1.55. We adopt the assumptions in this study and repeat
our forecast analysis, now using only Euclid for both BAO and Supernovae. (We neglect the
correlation between errors in different redshift bins; the effects of doing this are expected
to be relatively small, given the other approximations we are also making.) Our results are
shown in figure 8 showing that Euclid can, even on its own, provide useful constraints on
Dark Energy allowing for photon number non-conservation, especially for wCDM models.
Note however, that the SN-only constraints (blue filled contours) are weak and the joint
constraint is dominated by the BAO H(z). Further, photon-number violations, parametrised
by k, cannot be constrained in this prior range by Euclid alone. Naturally, these constraints
become much stronger by combining the Euclid SN with a low-redshift sample, e.g. from a
SNAP-like mission (figure 9).

Supernova measurements with Euclid (or SNAP), can only reach a maximum redshift
of around z ∼ 1.7. However, the next generation of ground and space-based optical-IR
telescopes will significantly extend this redshift range, which will bring about significant
improvements in terms of dark energy constraints. Specifically, JWST (through NIRcam
imaging), should find about 50 supernovae and measure their light curves [50], and with
E-ELT spectroscopy provided by HARMONI [51] the redshift and supernova type can be
confirmed. The redshift range of this high-z sample is expected to be 1 < z < 5. The
redshift distribution of these supernovae is not easy to extrapolate, since even the most
detailed current studies such as those of the SNLS team [52] only reach out to z ∼ 1. In the
absence of a specific redshift distribution, we will simply assume it to be uniform in the above
range. With these assumptions, our forecasts are shown in figure 10. For comparison, we also
consider the alternative case of the TMT (also with JWST support) [53], which expects to
find about 250 supernovae in the range 1 < z < 3; this is shown in figure 11. We empahsise
that the numbers we use for the E-ELT and the TMT come from assumptions made in Phase
A studies of their relevant instruments; the amounts of telescope time required for gathering
each dataset are not necessarily comparable.

We can see that these high-redshift supernovae lead to significantly improved con-
straints, compared to the previous Euclid+SNAP case. On the other hand, the constraints
from the E-ELT and the TMT are comparable, indicating that the larger redshift lever arm
partially compensates the smaller number of supernovae. Note, however, that these im-
provements on SN constraints from the inclusion of high-redshift supernovae, will only have
a moderate effect on the joint BAO+SN result, unless k is independently constrained as
discussed above. Table 1 provides a comparison of the uncertainties in the various model
parameters obtainable in each case. Our joint analysis of future BAO+SN constraints for
the various cases shows that k will only be probed at the level of ∼ 10−5 (at 95% confi-
dence), which is below what is currently achievable using T(z) measurements.4 This also
demonstrates the need to obtain independent determinations of T(z), which will break the
degeneracy with k, having an important effect on improving the joint constraints on dark
energy parameters. We will study this in detail in a follow-up publication.

4Note that the likelihood function for k has two local maxima, one at k ≃−10−5 and one at k = 0, so we
do not show 1-σ errors for k in table 1.
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Figure 8. Forecasts for Euclid BAO (wide survey) + Euclid AAA SN survey. The plots shown are as
in figure 7. While Euclid alone cannot strongly constrain k (violations of photon number conservation)
it will still provide useful constraints on dark energy parameters, especially within the wCDM model.
However, the joint constraints (solid transparent contours) are determined predominantly by the
BAO data (dashed transparent contours), while the SN-only bounds (blue filled contours) are weak.
Therefore, these constraints become much stronger when a low-redshift SN sample is a also included,
cf. figure 9.
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Figure 9. Forecast for Euclid (SN+BAO) combined with a low-redshift, SNAP-like sample. The
combined SN constraints are now stronger (cf. figure 8), improving significantly the joint constraints.

7 Conclusions

We have studied two typical classes of phenomenological scenarios involving scalar fields
coupled to radiation, specifically considering their effects on the redshift evolution of the
cosmic microwave background temperature. In the first of these a BSBM-type field provides
a time variation of the fine-structure constant α, while in the other the dynamical scalar field
is responsible for the recent acceleration of the universe.

Our analysis shows that the effects of the coupling of scalar fields to photons, which
include effects on luminosity distances, dramatically weaken current and future constraints
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Figure 10. As above, but now showing forecasts for E-ELT combined with a SNAP-like SN mission
and Euclid BAO. The additional ∼ 50 SN in the range 1 < z < 5 can lead to a significant improvement
of the SN constraints.

on cosmological parameters. In particular, our results strongly suggest that in order to fully
exploit forthcoming SN data one must also independently constrain photon-number non-
conservation arising from the possible coupling of SN photons to the dark energy scalar field.
In this context, direct measurements of the background temperature at different redshifts
(such as those provided by ALMA and HIRES) can be used in combination with distance
measures to break parameter degeneracies and significantly improve constraints on physical
processes in the early universe.
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Figure 11. As above but for TMT combined with a SNAP-like SN mission and Euclid BAO. Again,
the additional ∼ 250 SN in the range 1 < z < 3 would lead to a significant improvement of the SN
and joint constraints.

Nevertheless, our analysis demonstrates that Euclid can, even on its own, provide useful
dark energy constraints while allowing for the possibility of photon number non-conservation.
Naturally, stronger constraints can be obtained in combination with other probes. In this
context its worth emphasising that the only Euclid probes we considered are BAO and the
proposed SN survey. The Euclid mission includes further probes which can be used to tighten
the constraints. In this sense our results are conservative (but an analysis of this more general
case is left for future work).
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Dataset δw0 δwa δΩm δk (2-σ)

Current (weak) 0.25 1.3 0.06 10−5

Current (strong) 0.22 0.65 0.06 10−5

Euclid(BAO)+SNAP 0.15(0.35) 0.4(1.6) 0.03 1.1×10−5

Euclid only (BAO+SN) 0.15(0.35) 0.6(1.6) 0.03 −

Euclid(BAO+SN)+SNAP 0.14(0.35) 0.4(1.5) 0.025 9×10−6

Euclid(BAO)+SNAP+E-ELT 0.13(0.3) 0.4(1.45) 0.023 8×10−6

Euclid(BAO)+SNAP+TMT 0.13(0.25) 0.4(1.3) 0.024 8×10−6

Table 1. 1-σ (2-σ) uncertainty in the relevant model parameters, marginalising over the others, for the
various datasets discussed. The uncertainty quoted for the photon-number violation parameter, δk, is
at 2-σ. These constraints on dark energy parameters will become much stronger if k is independently
constrained by an external dataset, e.g. from T (z) determinations.

We have also considered the role of the increased redshift lever arm provided by type
Ia supernovae at high redshift (z > 2), such as can be found by JWST and ground-based
extremely large telescopes. Specifically, we have considered two different samples which are
meant to be representative of the E-ELT and TMT, with the former going deeper into the
matter era while the latter has five times more supernovae. The constrains from both datasets
(in combination with lower-redshift measurements) are quite comparable: the E-ELT provides
a better constraint on the matter density (for which the increased redshift lever arm is the
dominant factor) while the TMT provides better constraints on the dark energy parameters
w0 and wa (since, at least in the models we considered, dark energy is negligible at the higher
redshifts, the larger number of supernovae provides the dominant effect).

Finally, let us point out that HIRES exquisite precision and stability will give it two
other abilities of note: it will be able to make the first measurements of the cosmological
redshift drift and also to map out the behaviour of fundamental couplings from about z ∼ 0.5
to z ∼ 4 and possibly well beyond. As discussed in [14, 54, 55], both of these will provide
further constraints on dynamical dark energy as well as key consistency tests of many of
these scenarios. Thus the combination of Euclid and the E-ELT offers us the prospect of a
complete mapping of the dynamics of the dark sector of the universe all the way up to redshift
z ∼ 4, and our work highlights the point that mapping the bright sector of the universe —
through T (z) measurements — also plays a role in this endeavour.
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