ISSN 1064-2307, Journal of Computer and Systems Sciences International, 2006, Vol. 45, No. 5, pp. 824-830. © Pleiades Publishing, Inc., 2006.

CONTROL SYSTEMS

FOR MOVING OBJECTS

A Set-Valued Framework for Coordinated Motion Control
of Networked Vehicles!
J. B. Sousa and F. L. Pereira

Institute for Systems and Robotics-Porto, Porto, Portugal
Received April 1, 2004; in final form, April 21, 2005

Abstract—A problem of coordinated control for two networked vehicles is presented, formulated, and solved
to illustrate a set-valued framework for the coordinated control of networked vehicles. First, an informal user
specification for the coordinated operation of two vehicles is introduced. Second, a formal representation of the
objects and relations of interest is presented, and the user requirements are mapped onto a formal specification.
Third, the specification is transformed onto a control problem formulation. Finally, the problem is solved using
techniques from dynamic optimization and generalizations of the problem are discussed.

DOI: 10.1134/S1064230706050133

INTRODUCTION

Technological developments and application
requirements are attracting the attention of researchers
in control engineering, computer science, and commu-
nications to the problem of coordinated control of net-
worked vehicles and systems. From control engineer-
ing, this problem motivated research on the stability of
interactions, modes of interaction, etc. From computer
science, the topics of interest are formal specification,
verification, mobility, and reasoning. From communi-
cations, the topics of interest are ad-hoc networking,
route finding, etc.

The interdisciplinary nature of coordination and
control for networked vehicle systems requires a new
description language. In fact, control engineers have
developed a collection of idioms, patterns, and styles of
organization that serves as a shared, semantically rich,
vocabulary among them. However, this shared vocabu-
lary is still deeply rooted in the underlying mathemati-
cal framework—differential equations and dynamic
optimization—and lacks some semantically rich con-
cepts, such as those arising in distributed computing, or
in computer science. The cause may be that experience
and functionality in computing are acquired at a rate
unmatched by the rate of evolution of concepts in con-
trol systems. For example, Systems Engineering manu-
als define two types of requirements: user requirements
and technical requirements. User requirements express
the user expectations about the system behavior. Tech-
nical requirements describe the user requirements in
the technical language describing the operation of the
system, i.e., in terms of components, sub-components,
functionality, performance, etc. The problem in net-
worked vehicle systems is that this technical descrip-

! The text was submitted by the authors in English.

tion language is not available today. This makes the
requirements-design—implementation cycle particu-
larly difficult for these systems.

The paper illustrates, with a simple problem of coor-
dinated control for two vehicles, a framework for the
representation, formal specification, and control syn-
thesis for networked vehicle systems [1, 2]. The frame-
work relies on techniques from set theory and dynamic
optimization.

First, we represent all of the entities, their dynamic
behavior, and the relations among themselves. Rela-
tions of interest for us are (1) services and their compo-
sition; (2) services and their physical implementation;
(3) services and their order relations; (4) entities and
modes of coordination; (5) entities and properties of
their composition; (6) services and service providers;
(7) entities and their control structure; (8) control struc-
tures and services. Some of the relations are static; oth-
ers concern the dynamic behavior of vehicles under
coordination constraints that change with time. In order
to represent the last ones, we use a set-valued descrip-
tion of the dynamic behavior of vehicles and teams. We
use reach sets to describe the evolution of a dynamic
system, invariant sets to describe the locations where
the permanence of an entity within a certain set is
ensured, and solvability sets to describe the locations
from which a system can evolve to reach a given set.
Second, we specify operations on these entities and
express the specification in a formal language. The key
observation is that we can represent the entities, their
relations, and their operations in the language of sets.
This way we are able to represent the world of systems
of networked entities with simple concepts from set
theory. This is why we will be able to formally relate
design and specification. Fourth, we define a planning
procedure that results in a data structure defining all of

824

A SET-VALUED FRAMEWORK FOR COORDINATED MOTION CONTROL 825

the controller specifications that precede controller
design, and where all logical relations are already satis-
fied. Fifth, we use techniques from dynamic optimiza-
tion to synthesize controllers that implement the plan,
or that prove that the plan is not feasible. The consis-
tency of the whole process results from considering a
uniform representation formalism.

The paper is organized as follows. In Section 2, we
informally introduce the requirements for the coordi-
nated operation of two networked vehicles arising in
applications involving air, ground, and underwater
vehicles. In Section 3, we present a formal representa-
tion of this problem domain and transform the informal
requirements onto a formal specification. In Section 4,
we formulate the control problem, and, in Section 5, we
propose a solution methodology. In Section 6, we dis-
cuss an example. In Section 7, we draw some brief con-
clusions, discuss coordination and control problems in
this framework, and relate them to recent developments
in the control of distributed systems, communication,
and computation.

1. PROBLEM DESCRIPTION

We have used examples of the coordinated operation
of autonomous vehicles for underwater—autonomous
underwater vehicles (AUV)—and air—unmanned air
vehicles (UAV)—applications as the motivation for our
example. In the following section, we will see that the
technical requirements for both application domains are
essentially the same in spite of different user specifica-
tions. This is the kind of abstraction we are looking for.

AUVs are an enabling technology for oceano-
graphic field studies [3, 4]. Although the technology is
still maturing, we can anticipate interesting challenges
to the networked operation of multiple AUVSs in ocean-
ographic field studies. These challenges come from the
nature of these field studies, and from the major limita-
tions of AUV technology. Oceanographic field studies
are evolving to the construction of detailed models.
These, in turn, have to be validated with sophisticated
sampling strategies that provide the required spatial and
temporal resolution. The major limitations of AUV
technology are space, power, and communications, to
name just a few. For example, underwater communica-
tions are based on acoustic technology that is severely
constrained in terms of range and rate.

UAVs are in high demand for military, scientific,
and civilian applications [5]. Military operations
present the most challenging scenarios [6]. For military
operations, UAVs are tasked to “dirty,” “dull,” and
“dangerous” operations. “Dirty” refers to reconnoiter-
ing areas that may be contaminated, “dull” applies to
surveillance or sentry duty, while “dangerous” is
related to obvious threats, such as those posed by the
suppression of enemy air defenses (SEAD). In recon-
naissance missions, we have teams implementing
search-based algorithms, with the integration of data

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

from different sensors mounted on different vehicles.
The motivation for our example comes from reconnais-
sance missions. Consider a ground vehicle traveling a
known road to chart the terrain around it, and an UAV
providing air surveillance, i.e., informing the ground
vehicle of the presence of hostile assets. This is basi-
cally the setting of our example.

Consider the following informal user specification.
We keep the description at a high level of abstraction to
show that it may describe problems arising in applica-
tions for sea, land, and air vehicles.

Consider two vehicles, A and B, that coordinate their
motions to execute a “mapping” task. The “mapping”
task consists of having vehicle A following a prescribed
path in the geographic (x, y) plane and taking measure-
ments along that path without colliding with obstacles.
There are no constraints on the z geographic coordinate
except for those arising from unknown obstacles. Vehi-
cle A has a mapping sensor and does not have any sen-
sor for obstacle avoidance. Vehicle B surveys the area in
front of vehicle B to identify the presence of potential
obstacles. B is faster than vehicle A, and communicates
the presence of obstacles to A. To do this, B carries an
obstacle detection sensor.

The problem is to coordinate the motions of the two
vehicles so that, under mild assumptions on the topog-
raphy of the world, the vehicles are able to execute the
mapping task successfully; i.e., vehicle A does not col-
lide with an obstacle before reaching its destination.

Hereafter, and unless stated otherwise, we refer to
this abstract user specification as “our example.”

2. FORMAL REPRESENTATION
AND SPECIFICATION

The world basically consists of regions, physical
objects, teams of physical objects, and networks of
teams. While some objects have a physical existence,
others are brought into existence as software agents.

Regions are subsets . Physical objects are vehi-
cles and devices. Each physical object is located within
at least one region.

A vehicle/device has attributes (e.g., range), it is
capable of delivering atomic services (e.g., sensing), of
executing tasks (e.g., fly a certain path), and of per-
forming actions (e.g., launch a missile). A vehicle is
controlled to move, and to deliver atomic services while
moving. Physical objects have the potential to establish
interactions among themselves. This is done with
atomic links. An atomic link is a relation on the posi-
tions, motions, and atomic services provided by two
physical objects. An atomic configuration is a list of
atomic links connecting a group of vehicles.

We use physical objects as the building blocks of
teams of physical entities and of networks of teams.
Teams and networks of teams are brought into exist-
ence to deliver complex services, and to perform tasks
that cannot be delivered by a single physical object.
Vol. 45

No. 5 2006

826

A complex service is a service that results from the
composition of atomic and complex services and that
cannot be delivered by a single physical object; i.e., it
has to be delivered by the coordinated activities of a
team of vehicles. In order to do this, the vehicles in the
team have to be in a particular atomic configuration. In
practice, complex services emerge from modes of
cooperation among multiple entities, some of which
are physical objects and others of which are software
agents.

A team is a set of vehicles that is able to perform
team missions A team mission consists of team tasks
and of task switching logic (also called a team play). A
team task consists of the delivery of task services and
team motions. A task service consists of complex ser-
vices and modes for the delivery of these services.

A plan is a data structure consisting of team tasks,
controller specifications for each task, ordering con-
straints, variable binding constraints, and causal links.
The plan is refined into team tasks where the issues of
team composition and tasking, resource allocation, path
planning, etc., are addressed.

We use the user requirements from the previous sec-
tion to illustrate the main objects and relations among
those objects in the formal representation of this prob-
lem domain.

In our example the set of Vehicles is

Vehicles =V ={A,B, C,D}.

There are two types of vehicles Mapper and Scout:

Type (A) = Mapper, Type (B) = Scout, Type
(C) = Scout, Type (D) = Mapper.

The function ProvideAtomicService returns the
list of atomic services provided by each vehicle type.
The function AttributeAtomicService returns the
list of attributes of an atomic service and the function
ValueAttribute(q, ¢) returns the value of attribute a
of the type ¢ atomic service.

ProvideAtomicService (Mapper) = {Coms,
MapSensor, Motion},

ProvideAtomicService (Scout) = {Coms,
Obstacle Detections Sensor, Motion},

AttributeAtomicService (Coms = Range,

ValueAttribute (Range, Coms) = Ric,ps

(Range, Coms) = R,,s-
The equations of motion for all vehicles are given by
(0 = fot x,(0,u, (1), u,(t)e U,, ve V.
The function Position(#, v) returns the geo-
graphic position (x, y, z) of vehicle v at time #:
Position(t, v) = [1(x,(¢)),
where I gives the projection of the state of vehicle v

onto the geographical position of the vehicle.

Atomic services are the building blocks of complex
services. This is because some of the atomic services
have the potential to establish interactions among the

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 45

SOUSA, PEREIRA

respective service providers. We call the atoms of these
interactions atomic links: an atomic link is a relation
on the relative motions, positions, and atomic services
provided by two different service providers. The predi-
cate AromicLink (t, v;, v,) represents the fact that vehi-
cles v; and v, are linked with a link of type . The type
defines the role—the atomic services and the list of
commands accepted and issued—of each of the partic-
ipants in the link and the glue—the way the two partic-
ipants interact. The glue is a relation on the relative
positions and motions of both service providers and on
the commands they exchange. The glue is determined

from the attributes of the corresponding atomic ser-

vices.2

We represent the fact that any two vehicles in Vehi-
cles are able to communicate under some well-defined
conditions with the atomic link of type Coms:

AtomicLinks(Coms, v, v,)

Coms € ProvideAtomicService(v) A

> { Coms € ProvideAtomicService(v,) A

OcomsPoOsition(t, v;), Position(t, v,) <1,

where 0, (a, b) : W3 x N3 — N, such that

— d*(a, b .
Scom(a, by = T&2) veing d(a, b) = fla - bll,

Coms

It is convenient to express the function ¢.,,, and
terms of the full state of both vehicles v, and v,

¢C0ms(-xvl9 xvz) = M(H(xvl), ('xvz))'

We model the interactions described in the previous
section between two generic Mapper and Scout vehi-
cles, v;, v, respectively, as the ScoutedMapping
complex service. This service is informally described
as follows. A vehicle of type Scout, v,, evolves in a
vicinity P(Position (¢, v;)) of the current geographic
position of v; and informs v; of the existence of obsta-
cles so that v, can perform obstacle avoidance success-

fully. We assume that P? is given as a set-valued map3
from the current geographic position of v; to a subset

of N3.

P(a):ae N> — P(a) c N°.

% Note that the glue may involve more than one atomic service.
This is the case when commands are exchanged.

3 The derivation of the expression for P is based on the dynamics
of vehicle v and also on assumptions on the world.

No. 5 2006

A SET-VALUED FRAMEWORK FOR COORDINATED MOTION CONTROL

We represent this type of interactions between two
vehicles with the atomic link of type Inside.

AtomicLink(Inside, v, v,)
Type(v,) = Mapper A
= Type(v,) = Scout A

Osusice(Position(t, v,), Position(t, v,)) <1,

where 0,4, : N> x N3 — N such that

Orusize (@ b) = d- (b, P(@)) + 1, d (b, P) = min, pd(s, b).

827

As before, we define ¢4 (X, , X,) as follows:

q)lnside(-xvl’ xvz) = q)lnside(n(-xv]): H(.XVZ)).

The implementation of the service ScoutedMap-
ping also requires both vehicles to communicate. This
means that they have to satisfy a configuration, i.e., a
list of atomic links. We use an atomic configuration
style as a compact representation of a set of atomic con-
figurations sharing a common property. We represent
the configuration style ¢ with a predicate Configura-
tionStyle (t, c), where c is a team of vehicles.

Type(X) = Mapper A
Type(Y) = Scout A

ConfigurationStyle(ScoutMapper,V)== 3X,Ye v :

We use the following predicates and functions to
represent a type s complex service.

RequiredVehicleType(s) returns a list with the types
of vehicles required to implement the service.

RequiredVehicles(s, c, V') returns all the subsets of
V' capable of delivering the complex service of type s
with the value of attributes specified in c.

RequiredConfigurationStyle(c, a) returns the con-
figuration style that each set of vehicles in RequiredVe-
hicles(c, a) must satisfy delivery of the service ¢ with
the value attributes as specified a.

We represent the ScoutedMapping complex ser-
vice as follows.

RequiredvVehicleType (ScoutedMapping) =
{Scout, Mapper},

RequiredvVehicles (ScoutedMapping, nil,
vehicles) = {{A,B},{A,C}, {D,B},{D,C}},

RequiredConfigurationStyle
ping, Vehicles) = ScoutMapper.

Single vehicles and teams of vehicles execute tasks.
A task has a type and is executed by a team of vehicles.

(ScoutedMap-

In our example, we are interested in the Mapping
task. The task is defined as follows.

Task (Mapping, {X, Y}, ScoutedMapping (X, Y),
Path(xg, X5 p, X), O (Position(fy, X), Position(l, ¥)))
where Mapping is the type of the task, {X, Y} is the
team of vehicles executing the task while delivering the
service ScoutedMapping, p = {(x,y) € N?: (x,y) =
p), t € [, 1]}, and Path(x), x5 p, X) and ¢y(Posi-
tion(fy, X), Position(fy, Y)) are defined as follows
(X, Y are vehicle variables)

Vi€ [to, tp} : ® e (1, Position(t, X), p(1) < 1,

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

AtomicLink(Coms, X, Y) A
AtomicLink(Inside, X, Y).

where
O parn (1, @, b) : N WX N — N set,

Oparn (t, a, b) =d*a, b) =8 + 1,
Op(Position(ty, X), Position(t, ¥)) <1,
where 0 is the path-tracking tolerance and the last equa-
tion defines the set of initial positions for vehicles X and
Y, 0(a, b) = d*(a, b) + 1. We define ¢,,,, in the manner
described above:

q)path(t’ xvi ’ b) = % (t’ I_vai ’ b)

The plan specification is a data structure consisting
of tasks and a partial order on these tasks. The user
requirements for our example are mapped onto the fol-
lowing plan specification (which consists of the map-
ping task):

Plan = {Task (Mapping, {X, Y}, ScoutedMap-
ping(X, Y), path((0, 10), (100, 10), p, X), ¢y(Posi-
tion(fy, X), Position(t, Y)))}.

We need to transform this plan specification onto an
implementable plan; i.e., we need a planner. In this
case, the role of the planner consists of selecting two
vehicles from vVehicles such that the initial condi-
tions in the Mapping task are satisfied at time ¢,. This
may require the introduction of additional tasks. In this
paper, we are not concerned with planning procedures
and we assume that the planner produced the following
plan.

Plan = {Task (Mapping, {A,B}, ScoutedMap-
ping(A, B), Path((0, 10),(100, 10), p, A)), dy(Posi-
tion(fy, A), Position(t, B))}.

At this point, the plan consists of control specifica-
tions from which we derive a feasible structure of con-
Vol. 45

No. 5 2006

828

trollers in case it exists. Otherwise the plan is not imple-
mentable with the available assets.

Before we proceed to discuss the control formula-
tion, some remarks are in order. The previous specifica-
tion does not completely specify the role of vehicle B;
i.e., we have a partial plan specification. This means
that the plan may be implementable with different con-
trol structures. Although we haven’t illustrated that fea-
ture, our approach also accommodates task perfor-
mance specifications and design preferences. Plan
parametrization allows one to adjust performance to the
availability of assets to implement the plan.

3. FORMULATION

The control problem formulation arises naturally
from the previous specification and is expressed as fol-
lows.

q)path(t’ xA(t)9 P(t)) S N
' <1
Vte [0’ 1] : ¢Inxtde(xA(l)5 xB(t)) <IA (31)
q)C()mAy('xA(t)’ -xB(t)) <IA

Oo(x4(10), xp(1p)) < 1.

We obtain this formulation from the instantiated
plan, where the variables X and Y are bound to vehicles
A and B. In practice, we extracted the state-constraints
from the configuration style and from the path specifi-
cation.

Since the plan specification does not fully specify
the behavior for vehicle B, we seek the least restrictive
controller for this vehicle.

Informally, the least restrictive controller is a set-
valued map from the current state to subsets of the con-
trol space from which the actual control is selected. It is
the largest of such set-valued maps.

Under some mild assumptions (e.g., the control
range constraint set is convex and has a nonempty inte-
rior), the joint set inclusion constraints on the values of
the control variables induces a natural partial order. The
selection of a value to one of the control variables, say
u,, defines a subset of one dimension lower of the range
control set, say €2, on which the values of the remaining
controls are. For values of u, in certain domains, rela-
tions of the following type may be established:

u} > u% — Ql(ui) c Q(uf).

A controller is said to be least restrictive if it takes a fea-
sible value that yields a constraint set for the remaining
control components which is maximal. In what follows,
we consider the following hypotheses:

H1. The set-valued map P is closed, convex, and
bounded.

H2. The path p is continuous in ¢.
H3. ¢,(x, y) is continuous in both variables.

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 45

SOUSA, PEREIRA

Lemma. Under hypotheses H1 and H2, the func-

tions ¢path(t’ X, y)’_q)lnside(-x’ y)’ and ¢C0ms(x’ y) are contin-
uous and convex in x and y.

Define ¢(t, x,), u, and AU as follows:

q)([’ X, y) = man)pam(l, X, p(t))’ q)lnside(x’ y)’ q)Com.v(-x’
»h

u={uy, ug},

Ou/ = OU/A X OU/B,

f(t’ X4> XB» I/{) = COl(fA(tr XA MA)’fB(tJ XB> uB))

We use the approach from [7] to formulate this con-

trol problem as an invariance problem (see [8-11]). To
do this, we introduce the following value function:

V(t, x4, xp) = min{max{ max ¢(t, x,[T]xp[T]),
u(-) T€ [zo, t]

3.2)
Oo(x4(29), xp(19)) }» xalt] = x4, xp[1] = xp },

where u(-) is a feasible control function (u(1) € U, T €
(2o, 71)-

Now consider the sublevel set of this value function
given by the following equation:

R(t, x5, xp) = {(x4, Xp):V(t, x4, xp) <1} (3.3)
This set gives, for time ¢, the set of all the locations

for both vehicles that satisfy Eq. (3.1).

Note that the set-valued map P is such that it ensures
that A is able to avoid any obstacle by controlling the z
variable only.

4. SOLUTION

In general, the value function V can be calculated
through the generalized Hamilton—Jacobi—Bellman
(HJB) equation. We can only do this if the value func-
tion satisfies the principle of optimality.

Theorem 1. The value function V satisfies the prin-
ciple of optimality.

Using the techniques from [7], we can derive the
HIJB equation for this problem. First we introduce some
notation:

Ht, x, y, V,u) =Vi{t, x, y) + Ve, x, L, x, y, w).
The HJB equation for this problem is given by

V.(t,x,y)+ max (V. (¢, x,y), f(t,x,y,u)) =0,
ue U

when V(z,x,y)20(t, x,y)
max {min(J(¢, x,y, V,u), #(t,x,y,¢,u))} = 0,
ue U

when V((t,x,y),) = 01, x,) “.1)

V(tO’ X, y) = max((b(toa X, y), ¢O(t0a X, ¥)),

where V,, V, represent the corresponding subdifferen-
tials. This results from the fact that the value function is
generally nondifferentiable, and we have to use gener-
alized notions of derivatives.

No. 5 2006

A SET-VALUED FRAMEWORK FOR COORDINATED MOTION CONTROL

Since V is nondifferentiable, the usual notion of solu-
tion of a partial differential equation does not apply. We
consider generalized “viscosity,” or equivalent concepts,
of solutions for this equation (see [12, 13]). The following
theorem asserts that the value function (3.2) satisfies
the conditions for the existence of “viscosity” solu-
tions. The proof technique can be found in [12].

Theorem 2. The value function V is the unique vis-
cosity solution of (4.1).

Given a solution V to the Hamilton—-Jacobi—Bellman
equation, we are able to find the invariant set R. Now
we have all of the ingredients required to synthesize the
controller for our problem (see [13]).

Define U(t, x,, xp) as the set of control values where
the maximum for the Eq. (4.1) is attained when x, and x;
are the values of the state of vehicles A and B at time .

In the interior of R, we can use any feasible control.
On the boundary of R, the control selection is restricted
to the set-valued map U(?, x,, Xp).

5. EXAMPLE

Let us provide a very simple instance of the general
class of coordinated control problems described in the
second section of this article.

Vehicle A, the Mapper, moves in a straight line on
the horizontal plane, say along the x axis, at a constant
speed V4 = 1 and a constant depth. Vehicle B, the Scout,

. T .
moves also at a constant linear speed Vi = 3 While the

dynamics of the mapper are simply given by x =1 and

y = 0, the Scout is a carlike vehicle with dynamics
given by

., T
X = zcos(m)

2
y = gsin(w)
0= o,

T T . - .
where ® € [—5 05] and the initial position and orienta-

tion of the Mapper and of the Scout are, respectively,
given by (0, 0, 0) and by (-1, 0, 0).

The control problem consists in finding a motion con-
trol strategy for the Scout so that constraints (3.1) are sat-
isfied which, in this particular instance, are given by

(p(tv (x7 y)) = (X— t)z + y2 S 1
Let us consider the associated value function as
defined in (3.2) with x, = (x, y, ®) and x; as the given
fixed Mapper trajectory (¢, 0), & = @, and ¢y = —oo.
It is straightforward to conclude that the function w*

undefined by @*(f) = (—1)1"5‘, Vie [2i—1,2i+1],i=

0,1,... is a feasible control policy since the correspond-

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

829
ing trajectory (x*, y*), given by x*(f) = 2i — sin(m (i —
% £) and y*(f) = —cos (gt) , satisfies V(z, x*(), y*(£)) = 1.

Furthermore, V(¢, x, y) = 1 V(x, y) € N2

It is not difficult to see that a feedback form of the
control trajectory obtained by the maximization in (4.1)

is given by w¥(r) = k(x(2), y(r)) where k(x, y) = (1) g
being i € argmin||(2i, 0) — (x, y)|l».

CONCLUSIONS

In this paper, we outline an integrated specification,
planning, and control synthesis framework for net-
worked vehicles systems. One of the main challenges to
Control Theory comes from the distributed nature of
the problem. For example, information and commands
are exchanged among multiple vehicles, and the roles,
relative positions, and dependencies of those vehicles
change during operations. This challenge entails a shift
in the focus of control theory—from prescribing and
commanding the behavior of isolated systems to pre-
scribing and commanding the behavior of interacting
systems [14].

We use a simple motion coordination problem
involving two vehicles to illustrate the framework.

ACKNOWLEDGMENTS

The authors thank Professors Pravin Varaiya and
Alexander Kurzhanski for stimulating discussions and
valuable comments, insights and contributions. The
authors also thank Dr. Raja Sengupta for the motivation
for the UAV example.

The authors gratefully acknowledge a grant of
INVOTAN and support from Fundacdo da Ciéncia e
Tecnologia research project CorDyAL and from
Fundacdo das Universidades Portuguesas research
project COOP.

REFERENCES

1. J. B. Sousa and F. L. Pereira, “Specification and Design
of Coordinated Motions for Autonomous Vehicles,” in
Proceedings of IEEE 2002 Conference on Decision and
Control, Las Vegas, Nevada, USA, 2002.

2. J. B. Sousa, A. Matos, and F. L. Pereira, “Dynamic Opti-
mization in the Coordination and Control of Autono-
mous Underwater Vehicles,” in Proceedings of IEEE
2002 Conference on Decision and Control, Las Vegas,
Nevada, USA, 2002.

3. T. Curtin, J. Bellingham, and D. Webb, et al., “Autono-
mous Ocean Sampling Networks,” Oceanography 6
(1993).

4. J.B. Sousa and A. Gollu, “A Simulation Environment for
the Coordinated Operation of Multiple Autonomous
Underwater Vehicles,” in Proceedings of the 1997 Winter
Simulation Conference, 1997.

Vol. 45

No. 5 2006

830

5.

SOUSA, PEREIRA

B.J. Sousa and R. Sengupta, “CDC Tutorial on Autono-
mous and Semi-Autonomous Networked Multi-Vehicle
Systems,” http://www.fe.up.pt/ Ists/cdctutorial, 2001.

D. Van Cleave, Software-Enabled Control: Information
Technology for Dynamical Systems, Ed. by T. Samad and
G. Balas (Wiley, 2002).

A. B. Kurzhanskii and P. Varaiya, “Optimization Meth-
ods for Target Problems of Control,” in Proceedings of
Mathematical Theory of Networks and Systems Confer-
ence, 2002.

A. B. Kurzhanskn, Advances in Nonlinear Dynamics
and Control: A Report from Russia (Birkhauser, 1993).

A. B. Kurzhanskii, Ellipsoidal Calculus for Estimation
and Control (Birkhauser, 1997).

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 45

10.

11.

12.

13.

14.

J. P. Aubin and H. Frankowska, Set-Valued Analysis
(Birkhauser, 1972).

J. P. Aubin, Viability Theory (Birkhauser, 1991).

L. C. Evans, Partial Differential Equations, Graduate
Studies in Mathematics (American Mathematical Soci-
ety, 1998).

N. N. Krasqvskii and A. I. Subbotin, Game-Theoretical
Control Problems (Springer-Verlag, Berlin, 1998).

T. Simsek, J. B. Sousa J., and P. Varaiya, “Communica-
tion and Control in Hybrid Systems,” in Proceedings of
the American Control Conference, Washington, USA,
2001.

No. 5 2006

