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A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH
STATE AND MIXED CONSTRAINTS ∗

Md. Haider Ali Biswas1 and Maria do Rosario de Pinho2

Abstract. Here we derive a variant of the nonsmooth maximum principle for optimal control problems
with both pure state and mixed state and control constraints. Our necessary conditions include a
Weierstrass condition together with an Euler adjoint inclusion involving the joint subdifferentials with
respect to both state and control, generalizing previous results in [16]. A notable feature is that our main
results are derived combining old techniques with recent results. We use a well known penalization
technique for state constrained problem together with an appeal to a recent nonsmooth maximum
principle for problems with mixed constraints.
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Introduction

The birth of optimal control theory, commonly associated with the publication of the seminal book [28],
cannot be separated from the statement and proof of the Pontryagin maximum principle (PMP), first proved by
Pontryagin and collaborators in 1956 (we refer the reader to the survey [27] for an interesting historic account
of the pioneering results).

Generalizations of the Pontryagin maximum principle for problems with nonsmooth data appeared in the
1970’s. In this respect the work of F. Clarke was of special relevance (see, for example, [8]). Initial versions
of the nonsmooth maximum principle (NMP) were extended and refined by a number of authors (see, for
example, [9, 10,26,31] and references therein).

Necessary optimality conditions similar to the NMP were proposed in [14]. Such conditions featured a coupled
adjoint inclusion involving subdifferentials with respect to the state and control jointly and, when specialized to
normal linear convex problems, they are also sufficient conditions, a feature that the PMP had whereas earlier
versions of the NMP did not have. Extensions of the optimality conditions developed in [14] to cover state
constrained problems were first derived in [15] for problems with convex velocity sets and later extended to the
nonconvex case in [16]. However, the maximization condition or Weierstrass condition was not presented in
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such conditions, a feature remedied in [11] (see also Theorem 3.1 in [12]). For results similar to those in [14],
see also [1], where a nonsmooth maximum principle is derived using “compatible” feedback controls.

The literature on state constrained optimal control problems is quite rich. NMP for these problems have
been the focus of extended research since the publication of the seminal paper [30]. Recently, special attention
has also been paid to phenomena associated with such problems like nondegeneracy, normality and regularity of
minimizers; see, for example [2], [4], [21], [22], [23], to name but a few. There is also a vast literature on smooth
maximum principles for mixed constrained problems; see, for example [2], [3], [18], [19], [20], and references
within. Probably the most successful attempt to cover nonsmooth mixed constrained problems appeared recently
in [12] (see also the accompanying paper [13]). However, the literature on nonsmooth problems with both mixed
and pure state constraints is sparse.

In this paper we concentrate on problems with state and mixed constraints. We apply “old” techniques
developed in [30] and a recent result obtained in [12] to derive nonsmooth necessary conditions for our problem
of interest. In so doing we obtain a new NMP for state and mixed constrained problems inheriting from [12] the
special feature of being a sufficient condition for normal, linear convex problems. Our approach can be viewed
as an extension of [15] and [16]. Preliminary results, similar to the present work but in the absence of mixed
constraints, has been announced in [6].

Bringing together “old” techniques and new results comes with a price: our nonsmooth maximum principle,
when applied to mixed constrained problems, does not retain all the generality of [12] since it holds under
stronger conditions. However, it still covers a large class of problems appearing in applications. An alternative
approach, and possibly covering more general cases, could follow the lines of [5].

This paper is organized in the following way. In the last part of this introduction we give a brief summary
of the notation used in this paper. In the next section we describe the problem of interest and present our
assumptions. For the sake of completeness we present a simplified version of Theorem 7.1 in [12] in section 2.
Section 3 contains the statement and discussion of our main results. The proofs of our main result, Theorem 2
below, appear in section 5.

Notation: If g ∈ Rm, the inequality g ≤ 0 is interpreted component-wise. We write g ∈ Rn+ (or g ∈ Rn−),
if g ≥ 0 (or g ≤ 0). We will denote by B the closed unit ball centered at the origin regardless of the dimension
of the underlying space. Also | · | is the Euclidean norm or the induced matrix norm on Rp×q.

Take any A ⊂ Rn. Then ΨA is the indicator function of A and the Euclidean distance function with respect
to A is defined as

dA : Rk → R, y → dA(y) = inf {|y − x| : x ∈ A} .
If Ω ⊂ Rp and F : Ω→ Rq is a multifunction, then the graph of F is defined as

Gr F := {(x, y) ∈ Ω× Rq : y ∈ F (x)} .

We say that a set S ⊂ R×Rn×Rm is L×B -measurable when we refer to measurability relative to the σ-field
generated by the products of Lebesgue measurable subsets in R and Borel measurable subsets in Rn × Rm.

Consider now a function h : [t0, t1] → Rp. We say that h ∈ W 1,1([t0, t1];Rp) if and only if h is absolutely
continuous; that h ∈ L1([t0, t1];Rp) iff h is integrable; and that h ∈ L∞([t0, t1];Rp) iff h is essentially bounded.
The norm of L1([t0, t1];Rp) is denoted by ‖ · ‖1 and the norm of L∞([t0, t1];Rp) is ‖ · ‖∞. Let C∗([t0, t1];R) be
the dual space of the continuous functions defined from [t0, t1] to R, denoted by C([t0, t1];R), with supremum
norm. The norm of C∗([t0, t1];R) is denoted by ‖µ‖TV . The set of elements in C∗([t0, t1];R) which takes
nonnegative values on nonnegative valued functions in C([t0, t1];R) is C⊕([t0, t1];R). For µ ∈ C⊕([t0, t1];R),
we have ‖µ‖TV =

∫
[t0,t1]

µ(dt).
As it is clear from the introduction we shall make use of standard concepts from nonsmooth analysis. The

basic concepts of nonsmooth analysis are well known so we refrain from stating them here. Instead we refer the
reader to [8], [9], [26], [29] and [31], for example. Concerning nonsmooth analysis we use the following notation.
For a closed set A ⊂ Rn and x∗ ∈ A, the limiting normal cone to A at x∗ (also known as Mordukhovich normal
cone) is denoted by NL

A(x∗) while the Clarke normal cone is NC
A (x∗).



TITLE WILL BE SET BY THE PUBLISHER 3

If f : Rk → R ∪ {+∞} is a lower semicontinuous function and x∗ ∈ Rk a point such that f(x∗) < +∞, the
limiting subdifferential of f at x∗ is denoted by ∂Lf(∗). Recall that when the function f is Lipschitz continuous
near x, the convex hull of the limiting subdifferential, co ∂Lf(x), coincides with the (Clarke) subdifferential,
denoted here by ∂Cf(x). If, however, f : Rk → Rp, then ∂Cf(x) denotes the generalized Jacobian of f (for the
definition see [8]).

1. Problem and Assumptions

Consider the problem (P ) of minimizing the cost function

l(x(t0), x(t1)) +

∫ t1

t0

L(t, x(t), u(t)) dt

subject to the differential equation
ẋ(t) = f(t, x(t), u(t)) a.e.,

the state constraints
h(t, x(t)) ≤ 0 for all t ∈ [t0, t1],

the mixed state-control constraints in equality and inequality form

b(t, x(t), u(t)) = 0, g(t, x(t), u(t)) ≤ 0 a.e.,

the control constraints
u(t) ∈ U a.e.,

and the boundary conditions
(x(t0), x(t1)) ∈ E.

Here the interval [t0, t1] is fixed, x(t) ∈ Rn and u(t) ∈ Rk. The function f describing the dynamics is
f : [t0, t1]×Rn×Rk → Rn and the functions describing the mixed constraints are b : [t0, t1]×Rn×Rk → Rmb and
g : [t0, t1]×Rn×Rk → Rmg . Moreover h and L are scalar functions h : [t0, t1]×Rn → R, L : [t0, t1]×Rn×Rk → R,
U is a compact set and E ⊂ Rn × Rn.

Problem (P ) reduces to a standard optimal control problem whenever the state and mixed constraints are
absent and we will denote such problem by (S). If, however, the state constraint is absent (so only mixed
constraints are imposed), then (P ) will be denoted by (PM ).

For (P ) (or (S) or (PM )) a pair (x, u) comprising an absolutely continuous function x (state or trajectory)
and a measurable function u (control), is called an admissible process if it satisfies all the constraints. In this
paper, the pair (x∗, u∗) always denotes the solution of the optimal control problem under consideration.

Definition 1. We call an admissible process (x∗, u∗) a strong local minimum of (P ) if (x∗, u∗) minimizes the
cost over all admissible processes (x, u) such that

|x(t)− x∗(t)| ≤ ε for all t ∈ [t0, t1], (1)

for some ε > 0. The process (x∗, u∗) is called a local W 1,1-minimum if (x∗, u∗) minimizes the cost over all
admissible processes (x, u) satisfying (1) and∫ t1

t0

|ẋ(t)− ẋ∗(t)| dt ≤ ε.
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To simplify the notation we set

Xε(t) = {x ∈ Rn : |x− x∗(t)| ≤ ε} .

The following basic assumptions are in force throughout:
• (t, (x, u))→ (L(t, (x, u)), f(t, (x, u)), b(t, (x, u)), g(t, (x, u)) is L × B-measurable,
• the set E is closed,
• l is locally Lipschitz.

Before stating our additional assumptions we write

S := {(t, x, u) ∈ [t0, t1]× Rn × U : b(t, x, u) = 0, g(t, x, u) ≤ 0} , (2)

S(t) := {(x, u) ∈ Rn × U : (t, x, u) ∈ S} , (3)

S(t, x) := {u ∈ U : (t, x, u) ∈ S} , (4)

S∗ε (t) := {(x, u) ∈ S(t) : x ∈ Xε(t)} . (5)

We are now in position to state our main assumptions.
[H1] For φ = f, g, b and L, there exist integrable functions kφx and kφu with the following property: For

almost every t ∈ [t0, t1], every (xi, ui) for which xi ∈ Xε(t) (i = 1, 2), ui ∈ U we have

|φ(t, x1, u1)− φ(t, x2, u2)| ≤ kφx(t)|x1 − x2|+ kφu(t)|u1 − u2|.

[H2] The set U ⊂ Rk is compact.
[H3] There exists an integrable function M such that, for almost every t, all (x, u) ∈ S∗ε (t), γb ∈ Rmb ,

γg ∈ Rmg

+ , 〈γ, g(t, x, u)〉 = 0 and η ∈ NL
U (u):

(α, β − η) ∈ ∂Lx,u
{
〈γb, b(t, x, u)〉+ 〈γg, g(t, x, u)〉

}
=⇒ |(γb, γg)| ≤M(t)|β|.

[N] For each t ∈ [t0, t1] and x ∈ Rn, there exists u ∈ U such that b(t, x, u) = 0 and g(t, x, u) ≤ 0.

Assumption [H2] may be seen as quite strong. Although it could be weakened, we opt to keep it since it
simplifies the proofs of the forthcoming results when limits of sequence of controls are taken. On the other
hand, many problems of interest in engineering and other areas of application satisfy [H2].

Assumption [H3] is a Mangasarian Fromowitz type condition. Its smooth version (when continuous differ-
entiability of (x, u) → (b(t, x, u), g(t, x, u)) is assumed) is equivalent to well known regularity assumptions on
the mixed constraints under which Maximum Principles for mixed constrained problems were proved. Those
include linearly independence of the gradients ∇ubi(t, x, u) and linear positively independence of the gradients
∇ugj(t, x, u) (see for example [19]). [H3] implies, in our case, the bounded slope condition for S(t) (see [12] for
such a discussion) and it plays an important role in our setting. As for [N], it guarantees that S(t, x) 6= ∅ for
each (t, x) ∈ [t0, t1]× Rn.

For future use, observe that the assumptions imply the existence of an integral function kf such that:

|f(t, x, u)| ≤ kf (t) for all x ∈ Xε(t) and all u ∈ U a.e.. (6)

Since (x∗, u∗) solves (P ), the function t → L(t, x∗(t), u∗(t)) is integrable. Thus a condition analogous to (6)
holds for L: there exists an integrable function kL such that

|L(t, x, u)| ≤ kL(t) for all x ∈ Xε(t) and all u ∈ U a.e.. (7)
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Moreover, it is a simple matter to see that the sets

f(t, x, U), b(t, x, U), g(t, x, U) and L(t, x, U) are compact for all x ∈ Xε(t). (8)

2. Auxiliary Results

In this section we consider the problem (P ) above when the state constraint is absent, i.e., we consider
problem (PM ) defined above. The focus is on an adaptation of Theorem 7.1 in [12] that will be essential to our
analysis. We call it “an adaptation” because it is stated under stronger assumptions than those in [12].

Theorem 1. Let (x∗, u∗) be a local W 1,1 minimum for problem (PM ) ((P ) in the absence of state constraints).
Assume that the basic assumptions as well as [H2] and [H3] hold and that f , g and L satisfy [H1]. Assume also
that the function M(kbx + kgx)(kfu + kLu ) is integrable. Then, there exist p ∈W 1,1([t0, t1];Rn) and a scalar λ0 ≥ 0
satisfying the nontriviality condition:

||p||∞ + λ0 > 0, (9)

the Euler adjoint inclusion:

(−ṗ(t), 0) ∈

∂Cx,u

(
〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t))−K(t)|(p(t), λ0)|dS(t)(x

∗(t), u∗(t))
)
a.e., (10)

the global Weierstrass condition: for all u ∈ S(t, x∗(t)),

〈p(t), f(t, x∗(t), u)〉 − λ0L(t, x∗(t), u) ≤ 〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t)) a.e., (11)

and the transversality condition:

(p(t0),−p(t1)) ∈ NL
E (x∗(t0), x∗(t1)) + λ0∂

Ll(x∗(t0), x∗(t1)). (12)

Above K is an integrable function defined in terms of the Lipschitz parameters and M in [H3].

Remark 1. Before proceeding it is important to note that although Theorem 7.1 in [12] holds with the Euler
ajoint inclusion written as in (10), it is nevertheless stated with (10) replaced

(−ṗ(t), 0) ∈ ∂Cx,u
(
〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t))

)
−NC

S(t)(x
∗(t), u∗(t)). (13)

Observe that, appealing to the calculus rules of subdifferentials (see [31]), we deduce from (10) that

(−ṗ(t), 0) ∈

∂Cx,u

(
〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t))

)
− ∂Cx,uK(t)|(p(t), λ0)|dS(t)(x

∗(t), u∗(t)) a.e.. (14)

This, together with the fact that ∂Cx,udS(t) ⊂ NC
S(t), leads to (13) (see also remark on page 4522 in [12]). Here,

and for reasons that will be clear later on, we use the above sharper version of the Euler adjoint inclusion (10).
Finally, it is worth to mention that when L = 0, the term |(p(t), λ0)| in (10) is reduced to |p(t)|.

A remarkable feature of Theorem 7.1 in [12] is the Euler Inclusion (10). Hypothesis [H1] is essential for the
establishment of (10). To the best of our knowledge such Euler- Lagrange inclusion (with the joint subdifferen-
tials with respect to both the state and control) was first introduced for nonsmooth problems in [14]. A main
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setback of the necessary conditions in [14] dwells in the fact that (10) is not coupled with (11), a situation later
remedied in [11]. Observe that in the classical NMP the inclusion

−ṗ(t) ∈ ∂Cx
(
〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t))

)
,

holds instead of (10).

3. Nonsmooth Maximum Principles for (P )

We now turn to problem (P ) in its full generality and we assume the following assumption on the function
h describing the state constraint:
[H4] For all x ∈ Xε(t) the function t → h(t, x) is continuous. Furthermore, there exists a constant kh > 0

such that the function x→ h(t, x) is Lipschitz of rank kh for all t ∈ [t0, t1].
The need to impose continuity of t→ h instead of merely upper semicontinuity is discussed in [15].

We also consider the subdifferential ∂>x h defined as

∂>x h(t, x) := co {ξ : ∃(ti, xi)
h−→ (t, x) : h(ti, xi) > 0 ∀i, ∂xh(ti, xi)→ ξ}. (15)

Theorem 2. Let (x∗, u∗) be a strong local minimum for problem (P ). Assume that f , L b and g satisfy [H1], h
satisfies [H4] and that [H2], [H3] and [N], as well as the basic assumptions, hold. Suppose also that the functions

M(kbx + kgx) and M(kbx + kgx)(max{kfu, kf}+ max{kLu , kL}),

where kf and kL are as in (6) and (7), are integrable.
Then there exist p ∈ W 1,1([t0, t1];Rn), γ ∈ L1([t0, t1];R), a measure µ ∈ C⊕([t0, t1];R) and a scalar λ0 ≥ 0

satisfying

(i) µ{[t0, t1]}+ ||p||∞ + λ0 > 0;

(ii) (−ṗ(t), 0) ∈ ∂Cx,u
(
〈q(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t))

)
−NC

S(t)(x
∗(t), u∗(t)) a.e.;

(iii) ∀ u ∈ S(t, x∗(t)),

〈q(t), f(t, x∗(t), u)〉 − λ0L(t, x∗(t), u) ≤ 〈q(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t)) a.e.;

(iv) (p(t0),−q(t1)) ∈ NL
E (x∗(t0), x∗(t1)) + λ0∂

Ll(x∗(t0), x∗(t1));

(v) γ(t) ∈ ∂>h(t, x∗(t)) µ-a.e.;

(vi) supp{µ} ⊂ {t ∈ [t0, t1] : h(t, x∗(t)) = 0} .

Here

q(t) =

 p(t) +
∫

[t0,t)
γ(s)µ(ds) t ∈ [t0, t1),

p(t) +
∫

[t0,t1]
γ(s)µ(ds) t = t1,

(16)

where K is a constant defined in terms of the Lipschitz constants and M in [H3].
If, furthermore, the functions (x, u)→ b(t, x, u) and (x, u)→ g(t, x, u) are strictly differentiable at (x∗(t), u∗(t))

a.e., then there exist measurable functions

γb : [t0, t1]→ Rmb , γg : [t0, t1]→ Rmg

+ with 〈γg(t), g(t, x∗(t), u∗(t))〉 = 0 a.e.

and
|γb(t), γg(t)| ≤M(t)

{
|p(t)|kfu(t) + λ0k

L
u (t)

}
a.e.,
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such that the inclusion (ii) above is expressible in the explicit multiplier form

(p(t), ν(t)) ∈

∂Cx,u {〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t))}−

∇x,u
{
〈γb(t), b(t, x∗(t), u∗(t))〉 − 〈γg(t), g(t, x∗(t), u∗(t))〉

}
a.e.,

where ν is a measurable function satisfying ν(t) ∈ NC
U (u∗(t)) a.e..

The integrability of the functions M(kbx + kgx) and M(kbx + kgx)(max{kfu, kf} + max{kLu , kL}), is assumed in
Theorem 2 in contrast with Theorem 1 where merely integrability of M(kbx + kgx)(kfu + kLu ) is imposed. The
reason for strengthening such assumptions will be clear in the proof of Proposition 4 in section 4.

Theorem 2 can also be extended to deal with a local W 1,1-minimum for (P ). This is accomplished as in the
last steps of the proof of Lemma 9.4.1 in [31]. We omit the proof but for the sake of completeness state the
result.

Theorem 3. Let (x∗, u∗) be merely a local W 1,1-minimum for problem (P ). Then the conclusions of Theorem
2 hold.

Imposing Lipschitz continuity with respect to the control (which can be partially relaxed as discussed in [12])
contrasts with the usual hypothesis of measurability. This may be seen as a disadvantage. However, (10) is valid
because [H1] and (10) is responsible for the very fact that this variant of the nonsmooth Maximum Principle is
also sufficient for linear-convex problems. In this respect, the nonsmoothness is essential. Let us consider the
following linear convex problem with mixed and state constraints:

(LC)



Minimize l(x(t0), x(t1)) +

∫ t1

t0

L(t, x(t), u(t)) dt

subject to
ẋ(t) = A1(t)x(t) +B1(t)u(t) a.e.

0 = A2(t)x(t) +B2(t)u(t) a.e.
0 ≥ A3(t)x(t) +B3(t)u(t) a.e.

u(t) ∈ U a.e.
D(t)x(t) ≤ 0 for all t ∈ [t0, t1]

(x(t0), x(t1)) ∈ E,

Here we assume that U and E are convex sets, (x, u) → L(t, x, u) convex, A1 : [t0, t1] → Rn×n and B1 :
[t0, t1] → Rn×k integrable, A2 : [t0, t1] → Rmb×n, A3 : [t0, t1] → Rmg×n, B2 : [t0, t1] → Rmb×k and B3 :
[t0, t1] → Rmg×k measurable and D : [t0, t1] → R1×n continuous. If the conclusions of Theorem 2 hold, then
subdifferentials and normal cones reduce to those of convex analysis.

Proposition 1. Suppose that (x∗, u∗) is an admissible process for (LC) and that the conclusions of Theorem 2
hold for (x∗, u∗) with λ = 1. Then (x∗, u∗) is a local minimizer.

Here we do not present the proof of the above Proposition since it is a simple adaptation of the proof of
Proposition 4.1 in [15].

4. Proof of Theorem 2

We now dedicate this section to the proof of Theorem 2. We first prove it in the case where L ≡ 0.
Thus, the assumption that M(kbx + kgx)(max{kfu, kf} + max{kLu , kL}) is integrable reduces to the integrability
of M(kbx + kgx) max{kfu, kf}.

Before engaging in the proof, however, we introduce a multifunction F− related to our problem and we state
some well known properties of F− that will be of importance in the forthcoming analysis. We then prove the
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first part of the Theorem assuming convexity of the velocity set. Such requirement will be removed next. In the
last stage of the proof we consider a nonzero L and the case in which (x, u)→ b(t, x, u) and (x, u)→ g(t, x, u)
are strictly differentiable. The proof is built up in several steps, summarized as lemmas or propositions.

We consider the multifunction F− : [t0, t1]× Rn → Rn, defined as

F−(t, x) := {f(t, x, u) : u ∈ S(t, x)} , (17)

Proposition 2. Assume that our basic assumptions as well as [H1]–[H3] and [N] hold. Then
a) the multifunctions (t, x)→ S(t, x), F−(t, x) are non-empty and compact valued;
b) the multifunction F− is L × B measurable;
c) there exists an integrable function c such that, for almost every t ∈ [t0, t1], we have |γ| ≤ c(t) for all

x ∈ Xε(t) and γ ∈ F−(t, x);
d) there exist a scalar ρ > 0 and an integrable function KF such that, for almost every t ∈ [a, b], we have

F−(t, x) ⊂ F−(t, x′) +KF (t)|x− x′|B

for all x, x′ ∈ {x : |x− x∗(t)| ≤ ρ}.

For a discussion and proof of this Proposition we refer the reader to [25].

Set ε̄ = min{ε, ρ}, where ρ is as defined in Proposition 2. There is no loss of generality in assuming that
from now on the parameter defining the sets Xε(t) and S∗ε (t) is ε̄. However, and to simplify the notation, we
do not redesignate those sets in what follows.

Now we consider is a special case of (P ) in the form

(Q)



Minimize l(x(t0), x(t1))
subject to

ẋ(t) = f(t, x(t), u(t)) a.e.
0 = b(t, x(t), u(t)) a.e.
0 ≥ g(t, x(t), u(t)) a.e.

u(t) ∈ U a.e.
h(t, x(t)) ≤ 0 for all t ∈ [t0, t1]

(x(t0), x(t1)) ∈ E0 × Rn,

when the velocity set is convex and the necessary conditions are expressed in terms of a (possibly) larger
subdifferential of x→ h(t, x) than ∂>x h:

∂̄xh(t, x) := co {lim ξi : ξi ∈ ∂xh(ti, xi), (ti, xi)→ (t, x)}. (18)

Observe that (Q) differs from (P ) (recall we are assuming here that L ≡ 0)) since E = E0 × Rn. Here we
assume that E0 ⊂ Rn is closed.

Proposition 3. We position the hypotheses of Theorem 3 and [C] below.
[C] For all (t, x) ∈ [t0, t1]× Rn, the set F−(t, x) is convex.

Then all the conclusions (i)–(vi) of Theorem 2 hold with ∂̄xh(t, x) replacing ∂>x h, (ii) and (iv) expressible in
the form

(−ṗ(t), 0) ∈ ∂Cx,u
(
〈q(t), f(t, x∗(t), u∗(t))〉 −K(t)|(q(t), λ0)|dS(t)(x

∗(t), u∗(t))
)

(p(t0),−q(t1)) ∈ NL
E0

(x∗(t0))× {0}+ λ0∂
Ll(x∗(t0), x∗(t1))
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Proof. The main stages of the proof consist on simple adaptation of previous work (see [30] and [15]). Thus,
we refrain from presenting all the details A complete report can be found in [7].

Set h+(t, x) := max{0, h(t, x)} and define a sequence of problems, called (Qi), where the cost is

l(x(t0), x(t1)) + i

∫ t1

t0

h+(t, x(t)) dt,

subject to the constraints

ẋ(t) = f(t, x(t), u(t)), b(t, x(t), u(t)) = 0, g(t, x(t), u(t)) ≤ 0, u(t) ∈ U, a.e.

and (x(t0), x(t1)) ∈ E0 × Rn. Assume that the following interim hypothesis holds:
[IH] lim

i→∞
inf{Qi} = inf{Q}.

In the final step of the proof we show that [C] implies [IH].
We now define W to be the set of pairs (u, s), where u : [t0, t1]→ Rk is a measurable function, such that

W :=
{

(u, s) : ∃ x ∈W 1,1([t0, t1];Rn) such that
ẋ(t) = f(t, x(t), u(t)), b(t, x(t), u(t)) = 0, g(t, x(t), u(t)) ≤ 0, u(t) ∈ U a.e.

x(t) ∈ Xε(t) for all t ∈ [t0, t1], x(t0) = s, s ∈ E0} .

Equip W with the metric

δ((u, s), (v, s′)) :=

∫ t1

t0

|u(t)− v(t)| dt+ |s− s′|

and set

Ji(u, s) := l(x(t0), x(t1)) + i

∫ t1

t0

h+(t, x(t)) dt,

where x is the trajectory corresponding to (u, s). Under our assumptions, the set (W, δ) is a complete metric
space and Ji : W → R is continuous.

Denote by (Oi) the problem
Min {Ji(u, s) : (u, s) ∈ W} .

For any i, (u∗, x∗(t0)) is an admissible solution of (Oi) with

Ji(u
∗, x∗(t0)) = l(x∗(t0), x∗(t1)) = inf Q.

Set ρi := Ji(u
∗, x∗(t0))− inf Qi. Since Ji(u∗, x∗(t0)) ≥ inf Qi we have ρi ≥ 0. By IH, we have lim

i→∞
ρi = 0.

Ekeland’s Theorem (see [31]) applies to (Oi). Following the approach in [15] (see also [30]) we deduce the
existence of a sequence (ui, si) ∈ W such that∫ t1

t0

|ui(t)− u∗(t)| dt+ |si − x∗(t0)| ≤ √ρi.

Let xi be the trajectory associated with ui. It follows from the above that ui converges strongly to u∗. Then
there exists a subsequence {ui} (we do not relabel) converging to u∗ for almost every t ∈ [t0, t1]. Along the
corresponding subsequence, xi converges uniformly to x∗. Discarding initial terms of this sequence, if necessary,
we guarantee that xi(t) ∈ Xε/2(t) for all t ∈ [t0, t1]. In control terms, we have that, for each i, (xi, ui) solves
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the problem:

(P̄i)



Minimize l(x(t0), x(t1)) + i

∫ t1

t0

h+(t, x(t)) dt+
√
ρi

∫ t1

t0

|u(t)− ui(t)| dt

subject to ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [t0, t1],

b(t, x(t), u(t)) = 0 a.e. t ∈ [t0, t1],

g(t, x(t), u(t)) ≤ 0 a.e. t ∈ [t0, t1],

u(t) ∈ U a.e. t ∈ [t0, t1],

x(t0) ∈ E0.

Here the integrand cost is Li(t, x, u) = ih+(t, x) +
√
ρi |u− ui(t)|. Under our conditions, this function is

Lipschitz with Lipschitz rank kLi
u =

√
ρi. The integrability of M(kbx + kgx) and M(kbx + kgx) max{kfu, kf} implies

that M(kbx + kgx)kfu and M(kbx + kgx)(kfu + kLi
u ) are integrable functions. We are in position to apply Theorem 1

to (P̄i). This yields the existence of an absolutely continuous function pi and a scalar λi ≥ 0 such that

(pi(t), λi) 6= 0 for all t, (19)

(−ṗi(t), 0) ∈ ∂Cx,uĤλ(t, xi(t), pi(t), ui(t)), (20)

(xi(t), u) ∈ S(t) =⇒ 〈pi(t), f(t, xi(t), u)〉 − √ρiλi |u− ui(t)| ≤ 〈pi(t), f(t, xi(t), ui(t))〉 a.e., (21)

(pi(t0),−pi(t1)) ∈ NL
E0

(xi(t0))× {0}+ λi∂
Ll(xi(t0), xi(t1)), (22)

where
Ĥλ(t, x, p, u) = 〈p, f(t, x, u)〉 − iλh+(t, x)− λ√ρi|u− ui| −K(t)|(p, λ)|dS(t)(x, u).

Appealing to the sum rule of subdifferentials (see [8] or [31]), we have

∂Cx,uĤλ(t, x, p, u) ⊂
∂Cx,uHλ(t, x, p, u)− iλ∂Cx,uh+(t, x)− λ√ρi∂Cx,u|u− ui| −K(t)|(p, λ)|∂Cx,udS(t)(x, u),

By the max rule (Proposition 2.3.12 in [8]) we have

∂Cx,uh
+(t, s) ⊂

{ {
σΓ : σ ∈ [0, 1], Γ = (γ, 0) ∈ ∂Cx,uh(t, s)

}
if h(t, s) = 0,

{0} otherwise.

We also have
∂Cx,u|u− ui| ⊂ {(0, e) : e ∈ B}

and, by Theorem 2.6.2 in [8],
∂Cx,u〈p, f(t, x, u)〉 ⊂ p∂Cx,uf(t, x, u)

where ∂Cx,uf(t, x, u) is the generalized gradient of f .
Set β = (Φ,Γ, σ, e,∆) and define the multifunctions

Σi(t) =

{
[0, 1] if h(t, xi(t)) = 0,

{0} otherwise,

Gi(t, β) = pi(t)Φ− iλiσΓ− i√ρie−K(t)|(pi(t), λi)|∆
and

Ωi(t) = ∂Cx,uf(t, xi(t), ui(t))× ∂Cx,uh(t, xi(t))× Σi(t)× ∂Cx,udS(t)(xi(t), ui(t)).
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We can now rewrite (20) as (−ṗi(t), 0) ∈ {Gi(t, β) : β ∈ Ωi(t)} . For each i, Gi is measurable in t and continuous
in β. Appealing to properties of subdifferentials and generalized Jacobians, it is straightforward to verify that
Ωi is compact valued and measurable. It follows from Theorem 2.3.11 in [31] that there exists a measurable
function βi = (Φi,Γi, σi, ei, δi) such that βi(t) ∈ Ωi(t) a.e. and

(−ṗi(t), 0) ∈ Gi(t, βi(t)) a.e.. (23)

Observe that, for almost every t ∈ [t0, t1], we have

Φi(t) = (φ1
i (t), φ

2
i (t) ∈ ∂Cx,uf(t, xi(t), ui(t)), Γi(t) = (γi(t), 0) ∈ ∂Cx,uh(t, xi(t)), σi(t) ∈ Σi(t),

ei(t) ∈ B, ∆i(t) = (δ1
i (t), δ2

i (t)) ∈ ∂Cx,udS(t)(xi(t), ui(t)).

We now introduce the measure µi ∈ C⊕([t0, t1];R) such that, for any Borel set B ⊂ [t0, t1],∫
B
dµi(t) =

∫
B
iλiσi(t)dt.

Then ∫
[t0,t)

iλiγi(t)σi(t)d(t) =

∫
[t0,t)

γi(t)dµi(t).

Define the measure πi ∈ C∗([t0, t1];Rn) by dπi(t) = ṗi(t)dt. Let bi ∈ Rn. Now (19)–(22) can be expressed as

pi(t) = bi +

∫
[t0,t)

dπi(t) for all t ∈ [t0, t1],∫
[t0,t)

dπi(t) =

∫
[t0,t)

(
pi(t)φ

1
i (t)−K(t)|(pi(t), λi)|δ1

i (t)
)
dt−

∫
[t0,t)

γi(t)dµi(t) for all t ∈ [t0, t1],

0 =

∫
[t0,t)

(
pi(t)φ

2
i (t)−K(t)|(pi(t), λi)|δ2

i (t)
)
dt− λi

√
ρiei(t)

)
dt for all t ∈ [t0, t1],

(bi,−bi−
∫

[t0,t1]

dπi(t)) ∈ NE0
(xi(t0))× {0}+ λi∂

Ll(xi(t0), xi(t1)),

(xi(t), u) ∈ S(t) =⇒ 〈pi(t), f(t, xi(t), u)〉 − √ρiλi |u− ui(t)| ≤ 〈pi(t), f(t, xi(t), ui(t))〉 a.e.,
|bi|+ |λi|+ |µi| = 1.

We normalise the multipliers to get the last equality.
Up to now we have worked with a fix i. Next, we take limits obtaining the conclusions of Proposition 3. This

is done following the steps of the proof of Theorem 3.1 in [15]. We omit the details.

Finally, we claim that [C] implies [IH]. The proof of our claim, presented next, follows closely the approach
used in the end step of the proof of Theorem 3.1 in [15].

For each i, choose a feasible process (xi, ui) for problem (Qi) such that xi(t) ∈ Xε(t) and

l(xi(t0), xi(t1)) + i

∫ t1

t0

h+(t, xi(t))dt ≤ inf(Qi) +
1

i
. (24)

Recall the definition of F− in (17). Taking into account that F− is convex valued by [C] and the properties of
F− stated in Lemma 2, we invoke Theorem 2.5.3 in [31] to deduce that xi → x uniformly for some x ∈ W 1,1

such that x(t) ∈ Xε(t) and {
ẋ(t) ∈ F−(t, x(t)),
x(t0) ∈ E0.
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By Theorem 2.3.11 in [31] there exists a measurable function u such that
ẋ(t) = f(t, x(t), u(t)),

0 = b(t, x(t), u(t)),
0 ≥ g(t, x(t), u(t)),
u ∈ U,

x(t0) ∈ E0.

Since l(xi(t0), xi(t1)) + i

∫ t1

t0

h+(t, xi(t))dt is bounded by (24) and t→ h+(t, x(t)) is continuous, we get

lim
i→∞

∫ t1

t0

h+(t, xi(t))dt =

∫ t1

t0

h+(t, x(t))dt.

Continuity of t→ h∗(t, x(t)) allow us to conclude that h(t, x(t)) ≤ 0 for all t ∈ [t0, t1] (see the proof of Theorem
3.1 in [15] for details). It follows that (x, u) is admissible for (Q). Since (x∗, u∗) is optimal for (Q), we have

l(x∗(t0), x∗(t1)) ≤ l(x(t0), x(t1)). (25)

On the other hand, by (24) we have

l(x(t0), x(t1)) = lim
i→∞

l(xi(t0), xi(t1)) + i

∫ t1

t0

h+(t, xi(t))dt ≤ lim inf
i→∞

(Qi).

This, together with (25), yields

l(x∗(t0), x∗(t1)) = inf(Q) ≤ l(x(t0), x(t1)) ≤ inf(Qi),

that is, inf(Q) ≤ lim inf
i→∞

(Qi). Since we also know that (x∗, u∗) is admissible for each (Qi), we conclude that

inf(Q) ≥ lim inf
i→∞

(Qi). Thus inf(Q) = lim inf
i→∞

(Qi), completing our proof. �

Our next task is to cover problems with non-convex velocity sets. We start by validating the conclusions of
Theorem 2 for a mini-max optimal control problem with E = E0 × Rn (here we follow an approach developed
in Chapter 9 of [31]).

(R̃)



Minimize l̃(x(t0), x(t1),maxt∈[t0,t1] h(t, x(t))),
over x ∈W 1,1 and measurable functions u satisfying
ẋ(t) = f(t, x(t), u(t)) a.e.,
b(t, x(t), u(t)) = 0 a.e.,
g(t, x(t), u(t)) ≥ 0 a.e.,
u(t) ∈ U a.e.,
x(t0) ∈ E0.

where l̃ : Rn × Rn × R→ R is a given function and E0 ⊂ Rn is a given closed set.

Proposition 4. Suppose that (x∗, u∗) is a strong local minimum for problem (R̃). Assume that the data of
problem (R̃) satisfy the assumptions of Theorem 2 and [H5] below.
[H5] The function l̃ is Lipschitz continuous on a neighbourhood of (x∗(t0), x∗(t1),maxt∈[t0,t1] h(t, x∗(t))) and

if z′ ≥ z, then we have l̃(y, x, z′) ≥ l̃(y, x, z), for all (y, x) ∈ Rn × Rn.
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Then there exist an absolutely continuous function p : [t0, t1]→ Rn, an integrable function γ : [t0, t1]→ Rn and
a measure µ ∈ C⊕([t0, t1];R), such that

(−ṗ(t), 0) ∈ ∂Cx,u〈q(t), f(t, x∗(t), u∗(t))〉 −K(t)|(q(t), 1)|∂Cx,udS(t)(x
∗(t), u∗(t)) a.e. (26)

(p(t0),−q(t1),

∫
[t0,t1)

µ(ds)) ∈ NL
E0

(x∗(t0))× {0, 0}+ ∂L l̃(x∗(t0), x∗(t1), max
t∈[t0,t1]

h(t, x∗(t))), (27)

γ(t) ∈ ∂̄h(t, x∗(t)) µ-a.e., (28)

∀ u ∈ S(t, x∗(t)), 〈q(t), f(t, x∗(t), u)〉 ≤ 〈q(t), f(t, x∗(t), u∗(t))〉 a.e., (29)

supp{µ} ⊂
{
t ∈ [t0, t1] : h(t, x∗(t)) = max

s∈[t0,t1]
h(s, x∗(s))

}
, (30)

where q is defined as in (16).

Remark 2. Before presenting the proof, a remark on (27) is called for. This inclusion is not as sharp as the
Euler adjoint inclusion in Theorem 1 (in this regard see Remark 1). However, (27) is enough for our purpose.

Proof. The proof is an adaptation of an approach in [31] (pages 352-353) and so we keep the details to the
essential.

Adjusting ε, if necessary, it is a simple task to see that x∗ minimizes

l̃(x(t0), x(t1), max
t∈[t0,t1]

h(t, x(t)))

over all the trajectories of the differential inclusion ẋ(t) ∈ F−(t, x(t)) such that x(t0) ∈ E0 and x ∈ Xε(t). Now,
Theorem 2.7.2 in [31] guarantees that, for any trajectory x satisfying

ẋ(t) ∈ co F−(t, x(t)) a.e., x(t0) ∈ E0, x(t) ∈ Xε(t), (31)

there exists a F− trajectory w such that w(t0) = x(t0) and w(t) ∈ Xε(t). In view of Proposition 2 and the
continuity of l̃, Theorem 2.7.3 in [31] asserts that x∗ minimizes also l̃(x(t0), x(t1),maxt∈[t0,t1] h(t, x(t))) over all
x ∈W 1,1 satisfying (31).

Let x ∈ W 1,1 be such that ẋ(t) ∈ co F−(t, x(t)) a.e.. Then, by Proposition 2 and Carathéodory’s Theorem,
there exist (u1(t), u2(t), . . . , un+1(t)) and (λ1(t), . . . , λn+1(t)) ∈ Λ, where ui(t) ∈ U for i = 1, . . . , n + 1, such
that

(x, (u1(t), u2(t), . . . , un+1(t)), (λ1(t), . . . , λn+1(t)))

is a solution to the system



ẋ(t) =

n+1∑
i=1

λi(t)f(t, x(t), ui(t)), a.e.,

b(t, x(t), ui(t)) = 0, i = 1, . . . , n+ 1, a.e.,
g(t, x(t), ui(t)) ≤ 0, i = 1, . . . , n+ 1, a.e.,
(λ1(t), . . . , λn+1(t)) ∈ Λ, a.e.,
ui(t) ∈ U, a.e. for i = 1, . . . , n+ 1,

(32)

where

Λ := {λ′ ∈ Rn+1 : λ′ ≥ 0 and
n+1∑
i=1

λ′i = 1}.
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For a discussion on relaxation of F− see [25] or [24].
Set v(t) = (u1(t), u2(t), . . . , un+1(t)), V = U × . . .× U ,

f̃(t, x, v, λ) =

n+1∑
i=1

λif(t, x, ui), b̃(t, x, v, λ) = (b(t, x, u1), . . . , b(t, x, un+1)),

h̃(t, x, y, z) = h(t, x)− z, g̃(t, x, v, λ) = (g(t, x, u1), . . . , g(t, x, un+1))

and

S̃(t) =
{

(x, v, λ) ∈ Rn × V × Λ : b̃(t, x, v, λ) = 0, g̃(t, x, v, λ) ≤ 0
}
.

Write y∗ = l̃(x∗(t0), x∗(t1), z∗) and z∗ = maxt∈[t0,t1] h(t, x∗(t)). Proposition 2 , Theorem 2.3.13 in [31],
Carathéodory’s Theorem and [H5] allow us to deduce that

{x∗, y∗, z∗, (u∗1, . . . , u∗n+1) ≡ (u∗, . . . , u∗), (λ∗1, λ
∗
2, . . . , λ

∗
n+1) ≡ (1, 0, . . . , 0)}

is a strong minimizer for the optimal control problem

(O)



Minimize y(t1)
over x ∈W 1,1 and measurable functions u1, . . . , un+1, λ1, . . . , λn+1 satisfying

ẋ(t) = f̃(t, x(t), v(t), λ(t)), ẏ(t) = 0, ż(t) = 0 a.e.,

b̃(t, x(t), v(t), λ(t)) = 0 a.e.,
g̃(t, x(t), v(t), λ(t)) ≤ 0 a.e.,
(v(t), λ(t)) ∈ V × Λ a.e.,

h̃(t, x(t), y(t), z(t)) ≤ 0 for all t ∈ [t0, t1],

(x(t0), x(t1), y(t0), z(t0)) ∈ epi{l̃ + ΨE0×Rn×R}.

Here (λ1, . . . , λn+1), (u1, . . . , un+1) are regarded as control variables.

We now show that the conditions under which Proposition 3 holds are satisfied by the date of (O). Since
this is a problem with convex velocity set, [C] holds. Hypothesis [H2] also holds since the set V ×Λ is compact.
It is a simple matter to see that h̃ satisfies [H4]. Since b and g satisfy [N], we know that, for each t and each
x ∈ Rn, there exists a û ∈ U such that b(t, x, û) = 0 and g(t, x, û) ≤ 0. Take v̂ = (û, û, . . . , û). Then we have
b̃(t, x, v̂, λ̂) = 0 and g̃(t, x, v̂, λ̂) ≤ 0, i.e., the data of (O) satisfy [N]. We now need to prove that f̃ , b̃ and g̃
satisfy [H1] and that [H3] hold. Starting with [H1], take any x, x′ ∈ Xε(t), v, v′ ∈ V and λ, λ′ ∈ Λ. Since f
satisfies [H1] and (6), we have

|f̃(t, x, v, λ)− f̃(t, x′, v′, λ′)| =
∣∣∣ n+1∑
i=1

λif(t, x, ui)−
n+1∑
i=1

λ′if(t, x′, u′i)
∣∣∣

≤
∣∣∣ n+1∑
i=1

λif(t, x, ui)−
n+1∑
i=1

λif(t, x′, u′i)
∣∣∣+
∣∣∣ n+1∑
i=1

λif(t, x′, u′i)−
n+1∑
i=1

λ′if(t, x′, u′i)
∣∣∣

≤ kfx(t)

n+1∑
i=1

λi|x− x′|+ kfu(t)

n+1∑
i=1

λi|u− u′i|+ kf (t)

n+1∑
i=1

|λi − λ′i|

≤ kfx(t)|x− x′|+ kfu(t)(n+ 1)|v − v′|+ kf (t)(n+ 1)|λ− λ′|

≤ kfx(t)|x− x′|+ 2 max{kfu(t), kf (t)}(n+ 1)|(v, λ)− (v′, λ′)|.
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Here we use the fact that
m∑
i=1

|xi| ≤ m|(x1, . . . , xm)|. We get analogous relations for b̃ and g̃. Summarizing, we

have
[HS1] For almost every t ∈ [a, b], for all x, x ∈ Xε(t), v, v′ ∈ V and λ, λ′ ∈ Λ we have

|f̃(t, x, v, λ)− f̃(t, x′, v′, λ′)| ≤ kfx(t)|x− x′|+ 2 max{kfu(t), kf (t)}(n+ 1)|(v, λ)− (v′, λ′)|,

|b̃(t, x, v, λ)− g̃(t, x′, v′, λ′)| ≤ kbx(t)(n+ 1)|x− x′|+ kbu(t)(n+ 1)|(v, λ)− (v′, λ′)|,

|g̃(t, x, v, λ)− g̃(t, x′, v′, λ′)| ≤ kgx(t)(n+ 1)|x− x′|+ kgu(t)(n+ 1)|(v, λ)− (v′, λ′)|.

This means that f̃ , b̃ and g̃ satisfy [H1].
Next we explore the consequences of [H3] to our new data. Consider any x ∈ Xε(t), (v, λ) such that

(x, v, λ) ∈ S̃(t) and (η, ξ) = (η1, . . . , ηn+1, ξ) ∈ NL
V×Λ(v, λ). Then, we have

(x, ui) ∈ S(t), ηi ∈ NL
U (ui) for i = 1, . . . , n+ 1 and ξ = (ξ1, . . . , ξn+1) ∈ NL

Λ (λ).

Take
γ̃b = (γb1, . . . , γ

b
n+1), γbi ∈ Rmb , γ̃g = (γg1 , . . . , γ

g
n+1), γgi ∈ Rmg

+

such that 〈γ̃g, g̃(t, x, v, λ)〉 = 0. Since 〈γ̃g, g̃(t, x, v, λ)〉 =

n+1∑
i=1

〈γ̃gi , g(t, x, ui)〉 = 0 and 〈γ̃gi , g(t, x, ui)〉 ≤ 0 , we

deduce that 〈γ̃gi , g(t, x, ui)〉 = 0 for i = 1, . . . , n+ 1.

By the sum rule (see [31]), we have the following estimate for ∂Lx,v,λ
{
〈γ̃b, b̃〉+ 〈γ̃g, g̃〉

}
:

∂Lx,v,λ

{
〈γ̃b, b̃(t, x, v, λ)〉+ 〈γ̃g, g̃(t, x, v, λ)〉

}
⊂{

(

n+1∑
i=1

αi, β1 − η1, . . . , βn+1 − ηn+1, 0) : (αi, βi − ηi) ∈ ∂Lx,ui

{
〈γbi , b(t, x, ui)〉+ 〈γgi , g(t, x, ui)〉

}}
.

Suppose now that
(α, β − η, χ− ξ) ∈ ∂Lx,v,λ

{
〈γ̃b, b̃(t, x, v, λ)〉+ 〈γ̃g, g̃(t, x, v, λ)〉

}
.

Then, for each i = 1, . . . , n+ 1, there exists (αi, βi − ηi) ∈ ∂Lx,ui

{
〈γbi , b(t, x, ui)〉+ 〈γgi , g(t, x, ui)〉

}
such that

(α, β − η, χ− ξ) = (

n+1∑
i=1

αi, β1 − η1, . . . , βn+1 − ηn+1, 0).

Since, by [H3], we have |(γbi , γ
g
i )| ≤M(t)|βi| for each i = 1, . . . , n+ 1, we deduce that

|(γ̃b, γ̃g)| ≤
n+1∑
i=1

|(γbi , γ
g
i )| ≤M(t)

n+1∑
i=1

|βi| ≤M(t)

n+1∑
i=1

|(βi, ξi)| ≤M(t)(n+ 1)|(β, ξ)|.

Thus the following condition is satisfied:
[HS3] For almost every t ∈ [a, b], all x ∈ Xε(t) and all (v, λ) such that (x, v, λ) ∈ S̃(t), (η, ξ) ∈ NL

V×Λ(v, λ)

and any γ̃ ∈ Rm×(n+1)
+ such that 〈γ̃, g̃(t, x, v, λ)〉 = 0 we have

(α, β − η, χ− ξ) ∈ ∂Lx,v,λ
{
〈γ̃b, b̃(t, x, v, λ)〉+ 〈γ̃g, g̃(t, x, v, λ)〉

}
=⇒ |(γ̃b, γ̃g)| ≤ (n+ 1)M(t)|(β, η)|.
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Finally, observe that the function M̃(kb̃x + kg̃x)kf̃u, where M̃ = M(n + 1), kb̃x = kbx(n + 1), kg̃x = kgx(n + 1) and
kf̃u = 2 max{kfu, kf}(n+ 1), is integrable. This is because

M̃(kb̃x + kg̃x)kf̃u = 2(n+ 1)3M(kbx + kgx) max{kfu, kf}

and we are working under the assumption that M(kbx + kgx) max{kfu, kf} is integrable.
We are now in position to apply Proposition 3 to (O). We also show that the conclusions of Proposition 3

hold with λ0 = 1. This is done mimicking the proof of Proposition 9.5.4 in [31]. Details are omitted. Putting
together all our findings, we obtain the required conditions. �

We now prove the main result for (P ) Here we follow closely the proof of Proposition 9.5.5 in [31] and so,
once again, we keep the details to a minimum. Observe that we now work with a general endpoint constraint
(x(t0), x(t1)) ∈ E.

Recall that (6), (7) and (8) hold. Consider the set V of all (x, u, e), where x ∈ W 1,1, u is a measurable
function and e ∈ Rn, satisfying x ∈ Xε(t), ẋ(t) = f(t, x(t), u(t)), (x(t), u(t)) ∈ S(t) for a.e. t ∈ [t0, t1] and
(x(t0), e) ∈ E. Define now the function dV : V × V → R by

dV ((x, u, e), (x′, u′, e′)) = |x(t0)− x′(t0)|+ |e− e′|+
∫ t1

t0

|u(t)− u′(t)|dt

For all i, we choose δi ↓ 0 and set

l̃i(x, y, x
′, y′, z) := max{l(x, y)− l(x∗(t0), x∗(t1)) + δ2

i , z, |x′ − y′|}.

The set V is nonempty since (x∗, u∗, x∗(t1)) ∈ V . It is straightforward to verify that dV defines a metric on V ,
(V, dV ) is a complete metric space,

(x, u, e)→ l̃i(x(t0), e, x(t1), e, max
t∈[t0,t1]

h(t, x(t)))

is continuous on (V, dV ) and

(xi, ui, ei)→ (x, u, e) ∈ (V, dV ) =⇒ ‖xi − x‖L∞ → 0.

We refer the reader to [7] for a complete proof of these facts. We also remark that

l̃i(x
∗(t0), x∗(t1), x∗(t1), x∗(t1), max

t∈[t0,t1]
h(t, x∗(t))) = δ2

i . (33)

Consider now the optimization problem

Minimize {l̃i(x(t0), e, x(t1), e, max
t∈[t0,t1]

h(t, x(t))) : (x, u, e) ∈ V }.

Since l̃i is non-negative, it follows from (33) that (x∗, u∗, x∗(t1)) is an δ2
i -minimizer for the above problem.

Ekeland’s variational principle (Theorem 3.3.1 in [31]) applies. It asserts the existence of a sequence {(xi, ui, ei)}
in V such that for each i

l̃i(xi(t0), ei, xi(t1), ei,maxt∈[t0,t1] h(t, xi(t))) ≤
l̃i(x(t0), e, x(t1), e,maxt∈[t0,t1] h(t, x(t))) + δidV ((x, u, e), (xi, ui, ei))

(34)

for all (x, u, e) ∈ V and
dV ((xi, ui, ei), (x

∗, u∗, x∗(t1))) ≤ δi. (35)
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The inequality (35) implies that ei → x∗(t1) and ui → u∗ strongly in L1. Then there exists a subsequence
(we do not relabel) such that ui → u∗ almost everywhere and xi → x∗ uniformly. Define the arc yi ≡ ei. We
have yi → x∗(t1) uniformly. By (34) we can now conclude that (xi, yi, wi ≡ 0, ui) is a strong local minimum for
the optimal control problem with mixed constraints

(R̃i)



Minimize l̃i(x(t0), y(t0), x(t1), y(t1),maxt∈[t0,t1] h(t, x(t)))
+δi[|x(t0)− xi(t0)|+ |y(t0)− yi(t0)|+ w(t1)]
over x, y, w ∈W 1,1 and measurable functions u satisfying
ẋ(t) = f(t, x(t), u(t)), ẏ(t) = 0, ẇ(t) = |u(t)− ui(t)| a.e.,
(x(t), y(t), w(t)), u(t)) ∈ Ŝ(t) a.e.,
(x(t0), y(t0), w(t0)) ∈ E × {0},

where

Ŝ(t) = {(x, y, w, u) ∈ Rn × Rn × R× U : b(t, x, u) = 0, g(t, x, u) ≤ 0} .

Observe that

(x, y, w, u) ∈ Ŝ(t)⇐⇒ (x, u) ∈ S(t),

where S(t) is defined in (3). The data of (R̃i) satisfies all the assumptions of the Proposition 4. Applying it
we deduce the existence of absolutely continuous functions pxi , p

y
i , p

w
i ∈ W 1,1, an integrable function γi and a

non-negative measure µi ∈ C⊕([t0, t1];R) satisfying

(a) (−ṗxi (t),−ṗyi (t),−ṗwi (t), 0) ∈ ∂Cx,u〈qxi (t), f(t, xi(t), ui(t))〉+ pwi (t)|ui(t)− ui(t)|
)

−K(t)|((qxi (t), pyi (t), pwi (t)), λi)|∂Cx,u|dŜ(t)(xi(t), ui(t)) a.e.,

(b) ∀ u ∈ S(t, xi(t)), 〈qi(t), f(t, xi(t), u)〉+ pwi (t)|u− ui(t)|) ≤ 〈qi(t), f(t, xi(t), ui(t))〉 a.e.,

(c) (pxi (t0), pyi (t0), pwi (t0),−qi(t1),−pyi (t1),−pwi (t1),
∫

[t0,t1]
µi(dt)) ∈

NL
E×0(xi(t0), yi(t0), wi(t0))× {0, 0, 0, 0}+ ∂L{l̃i(xi(t0), yi(t0), xi(t1), yi(t1),maxt∈[t0,t1] h(t, xi(t)))

+δi[|xi(t0)− xi(t0)|+ |yi(t0)− yi(t0)|+ wi(t1)]},

(d) γi(t) ∈ ∂̄xh(t, xi(t)) µ-a.e.,

(e) supp{µi} ⊂
{
t : h(t, xi(t)) = maxs∈[t0,t1] h(s, xi(s))

}
.

where

qi(t) :=

{
pxi (t) +

∫
[t0,t)

γi(s)µi(ds) if t < t1,

pxi (t1) +
∫

[t0,t1]
γi(s)µi(ds) if t = t1,

in the above relations.

A straightforward verification shows that

NC
Ŝ(t)

(xi(t), yi(t), 0, ui(t)) =
{

(ηi, 0, 0, ξi) : (ηi, ξi) ∈ NC
S(t)(xi(t), ui(t))

}
.

This, together with (a) above and the subdifferential Sum Rule in [8], asserts that ṗyi = 0 and ṗwi = 0. Thus
pyi (t) = pyi and pwi (t) = pwi . It follows that (a) leads to

(−ṗi(t), 0) ∈ ∂C〈qi(t), f(t, xi(t), ui(t))〉+ (0, pwi βi(t))−NC
S(t)(xi(t), ui(t)) (36)
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with βi ∈ Rk and ‖βi(t)‖ ≤ 1. From (c), we now get qwi = −δi and

(pxi (t0), pyi ,−qi(t1),−pyi ,
∫

[t0,t1]

µi(dt)) ∈ NL
E (xi(t0), yi(t0))× {(0, 0, 0)}+

∂L l̃i(xi(t0), yi(t0), xi(t1), yi(t1),max{h(t, xi(t))}) + δi(B ×B)× {(0, 0, 0)}.
(37)

From (37), we conclude that {‖µi‖TV }, {pyi } and {pi(t1)} are all bounded sequences. Then from (36) we
conclude that {pi} is uniformly bounded and {ṗi} is uniformly integrably bounded. Following subsequence
extraction we get

pi → p uniformly, pyi → py,

and
µi → µ, γiµi(dt)→ γµ(dt) weakly∗,

for some p ∈ W 1,1, py ∈ Rn, µ ∈ C⊕ and some Borel measurable function γ. It is then a simple matter to see
that supp{µ} is a subset of

{
t : h(t, x∗(t)) = maxs∈[t0,t1] h(s, x∗(s))

}
and that γ(t) ∈ ∂̄xh(t, x∗(t)) µ-a.e..

We now introduce q := p +
∫
γµ(ds). A convergence analysis along the lines of the proof of Theorem 3.1

in [15] and an appeal to the upper semi continuity properties of limiting subdifferentials and normal cones allow
us to pass to the limit in relationships (36) and (c) leading to

(−ṗ(t), 0) ∈ ∂C
(
〈q(t), f(t, x∗(t), u∗(t))〉 −K(t)|(q(t), py)|dS(t)(x

∗(t), u∗(t))
)
a.e. t ∈ [t0, t1]. (38)

From (b), we also deduce that

∀ u ∈ S(t, x∗(t)), 〈q(t), f(t, x∗(t), u)〉 ≤ 〈q(t), f(t, x∗(t), u∗(t))〉 a.e..

We now turn to (37). Simple calculations lead us to conclude that

l̃i(xi(t0), yi(t0), xi(t1), yi(t1), max
s∈[t0,t1]

h(s, x(s))) > 0. (39)

for all sufficiently large i (for details, see the proof of Proposition 9.5.5 in [31]).
Set zi = maxs∈[t0,t1] h(s, xi(s)). Following the steps in the proof of Proposition 9.5.5 in [31], we deduce that

∂L l̃i(xi(t0), yi(t0), xi(t1), yi(t1), zi) ⊂

{(a, b, e,−e, c) ∈ Rn × Rn × Rn × Rn × R :

∃ λ̃ ≥ 0, λ̃+ |e| = 1 and (a, b, c) ∈ λ̃∂L max{l(x, y)− l(xi(t0), yi(t0)) + δ2
i , z}|(xi(t0),yi(t0),zi)}.

(40)

This estimation of the limiting subdifferential of l̃, together with (37), yields
pyi = −qi(t1)

λ̃i + |qi(t1)| = 1

‖µi‖TV = c = λ̃i(1− αi)
(pi(t0),−qi(t1)) ∈ NL

E (xi(t0), yi(t0)) + αiλ̃i∂
Ll(xi(t0), yi(t0)) + δi(b1, b2)

Also, by (37), we have µi = 0 if zi ≤ 0. This is because zi ≤ 0 implies

l̃i(x, y, x
′, y′, z) := max{l(x, y)− l(x∗(t0), x∗(t1)) + δ2

i , |x′ − y′|}

for (x, y, x′, y′, z) near (xi(t0), yi(t0), xi(t1), yi(t1), zi), which, in turn, implies αi = 1.
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Set λi = αiλ̃i. Then ‖µi‖TV = λ̃i(1− αi) = 1− |qi(t1)| − λi, and this gives

λi + ‖µi‖TV + |qi(t1)| = 1.

For a subsequence, we have λi → λ, for some λ ≥ 0. Taking limits as i→∞ we obtain

(p(t0),−q(t1)) ∈ λ∂Ll(x∗(t0), x∗(t1)) +NL
E (x∗(t0), x∗(t1))

and
λ+ ‖µ‖TV + |q(t1)| = 1.

It remains to prove that ∂̄xh will be replaced by ∂>x h. This is done along the lines of the proof of Proposition
9.5.5 in [31] (we omit the details).

Theorem 2 is now proved in the case L ≡ 0. The case in which L is nonzero is reducible to the previous one
by adding a state y with dynamics ẏ(t) = L(t, x(t), u(t)), an additional initial condition y(0) = 0, and replacing
the integral cost by y(t1). Applying Theorem 2 to this problem we get the required conditions.

It remains to prove the last assertion of Theorem 2. This covers the case when b and g are strictly differentiable
along the optimal solution. This is done appealing to Proposition 4.1 in [12] (see also the proof of Theorem 4.3
in [12]). The proof is now complete.
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