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ABSTRACT: This paper, apart from making a brief general reference to vibration problems in pedestrian 
bridges, as well as to the form of modelling of dynamic pedestrian loads,  presents the use of a predictive 
control strategy for the numerical simulation of the dynamic response of actively controlled structures of this 
type. The consideration of this control strategy permitted the development of a computational model, which 
was applied to the study of a pedestrian cable-stayed bridge, in order to show the interest and efficiency of the 
active control technique used. 
 
 
1 VIBRATION PROBLEMS IN PEDESTRIAN 

BRIDGES 
 
Pedestrian bridges tend to become more and more 
light and flexible structures, whose first natural 
frequencies of vibration may fall close to dominant 
frequencies of the dynamic excitation due to walking 
or running, leading to a resonant response 
characterised by high levels of vibration (Bachmann 
& Ammann 1987). Although such vibrations don’t 
cause usually structural problems, they can induce 
some uncomfortable sensation, and so some codes or 
standards establish maximum acceptable values of 
vertical acceleration, normally expressed as function 
of the fundamental frequency of the bridge. 
    It is therefore interesting to develop numerical 
models that enable to appropriately simulate the 
dynamic response of pedestrian bridges under human 
loads when either a passive or an active control 
system is included to attenuate the high level of 
vibrations.  
    In this context, this paper makes a brief description 
of an investigation conducted with the aim of 
applying an active control technique to reduce 
vibrations in pedestrian bridges, presenting the 
details of the predictive control strategy used 
(previously developed and applied by Cascante et al 
1993, in the context of Earthquake Engineering), 
which permitted the development of a computational 
model for the numerical simulation of the dynamic 
response of actively controlled pedestrian bridges. 
This program was applied to the study of a real 
pedestrian cable-stayed bridge, in order to show the 
interest and efficiency of this control technique. 
 

2  DYNAMIC PEDESTRIAN LOADS 

Three different types of human motion are commonly 
considered to model the dynamic loads applied by 
pedestrians (Bachmann et al 1987, 1995), namely 
walking, running and rythmic jumping. The pacing 
rate ( pp Tf /1= ) and the pedestrian forward speed 
( ) are two parameters that play a fundamental role 
in terms of the characterisation of the excitation, the 
corresponding average values being presented in 
Table 1 for walking or running. 
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Table 1.  Average values of   and   pf pv

Type of   Walking  Running 
motion slow normal fast slow fast 

)(Hzf p  1.7 2.0 2.3 2.5 3.2 

)/( smv p  1.1  1.5 2.2 3.3 >5.5 
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Figure 1. Experimental relations between load parameters 
 
Other important quantities directly related with these 
two parameters are the stride length ( )/ ppp fvl = , 
the ground contact duration (  and the load peak 
factor , relating the maximum applied load with 
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the pedestrian weight . Experimental relations 
obtained between these parameters are expressed in 
Figure 1. 
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    The characterisation of the temporal evolution of 
the pedestrian loads can then be performed using 
appropriate load-time functions (Bachmann et al 
1987, 1995), such as:  
 
• Walking 

)2()(
1

i

n

i
pp tifsenGtF φπ −+= ∑

=

               (1)                                             

where 
38.043.01 −= pfα , 1.0125.015.0 ≥−pf ,

1.03 =α , 01 =φ  and 2/3 πφ = ; 
 

• Running (semi-sinusoidal time-load function) 
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where p fK 2/π= ;                                               
 
• Rythmic jumping (triangular time-load function) 
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where K fp p= 2 / .  
 

It’s worth noting however that the periodicity of the 
input also allows alternative Fourier series 
representations.  
 
 
3 ACTIVE CONTROL OF VIBRATIONS USING A 

PREDICTIVE STRATEGY  
 
3.1 State-space formulation 
 
The equation of motion of a MDOF linear system 
submitted to an external excitation )(tf   and to a 
control load )(tf

c
 is  

 
)()()(()( tftftdtdCtdM

c
+=+ &&&        (4) 

 
where M, C, and K  are the mass, damping and 
stiffness matrices, and d, and d&&  are the vectors of 
displacements, velocities and accelerations in 
correspondence with the n degrees of freedom. 

    Introducing a state space representation, this 
equation can be transformed into 2n first order 
differential equations, expressed by 
  

vvxFx c ++=&                           (5)  
 

where the state vector x, the system matrix F and the 
vectors cv and v  are given by 
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    The solution of equation (5), based on a discrete 
time model associated to a time resolution t∆ , can be 
expressed by the relation 
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(7) 
where tk∆  means a generic time instant. 
    Assuming that the control forces are constant 
along the time interval [ , and that the 
external load varies linearly in that same interval, 
equation (7) can be written in the following form, 
introducing the variable 

]tktk ∆+∆ )1(,

τµ −∆+= tk )1(  
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This equation can still be expressed in the simpler 
compact matricial form, omitting the time interval t∆  
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 (9) 

where A (time discrete system matrix),  1P  and 2P  
are the following ( )22 nn ×  matrices 
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Once )1( +kx  is known, the vector of accelerations 
can be obtained using the following numerical 
procedure  
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    The prediction of the temporal evolution of the 
structural response along the interval of time           
[ rnkk ˆ, ++ ]λ , where λ  is a horizon of prediction and 

is the estimate number of periods of time delay of 
the actuators, can be performed on the basis of the 
following model, disregarding the contribute of the 
excitation after the time instant k (simplified 
prediction model)  
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3.2 Predictive model 
 
The dynamic response of a MDOF linear system 
submitted to an external excitation and to a control 
load  can be represented by the following first order 
discrete model, using a state space formulation 
(Cascante et al 1993) 
 

)()()()1( kwnkuBkxAkx r +−+=+           (12) 

 
where  A is the time discrete system matrix and B is 
the time discrete control matrix. x(k) is the state 
vector at the instant k and w(k) is the vector that 
represents the excitation. u(k-nr) is the control vector 
generated at the instant k-nr, where nr characterises 
the time delay of the actuators. 
    The following equivalence can be then established 
between equations (9) and (12) 
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    As )( rnku −  is a vector with a number of 
components equal to the number of actuators, na, and 

)(kvc  is the vector with 2n components defined by 
equation  (6), one can write  
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where J is a matrix , whose elements are 
equal to 1 or 0, depending on the presence of 
actuators in correspondence with the n degrees of 
freedom. Therefore  
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    The structural response, expressed in terms of 
other control variables, y(k), can be obtained on the 
basis of the state vector x(k) using a linear 
transformation  

)()( kxHky =                       (17) 
where H is called output matrix. 
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)|(ˆˆ)|(ˆ kjkxHkjky +=+           (18,19) 
 

where the vectors )|(ˆ kjkx +  and )|(ˆ kjky +  
)ˆ,,1 rn+= λL  are, respectively, the state vector 

and the output vector at the instant k + j, predicted at 
the instant k, and )|ˆ1(ˆ knjku r−−+

rnjk ˆ1 −−+
 is the control 

vector at the instant , predicted at the 
instant k.  Note that the symbol (^) always means an 
estimate. 
    The sequence of control vectors 

)|1(ˆ,),| kkuk −+ λL  can be evaluated using a 
criterion based on the minimisation of the following 
cost function (Cascante et al 1993) 
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where )|( ky

r
⋅  means a sequence of output vectors 

that characterises the desired trajectory of the system, 
starting from its real position at the instant k. 

)ˆ,,1( rnj += λL  and jR )1,,0( −= λLj  are 

symmetric weighting matrices.  
    In order to reduce the number of variables in this 
optimisation problem, two different simplifications 
can be considered: 
(i) To assume that the strategy of control is just based 

on the minimisation of the difference between the 
predicted response  ŷ  and the reference trajectory 

r
y  at the horizon of prediction rnk ˆ++ λ , which 
implies 
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(ii) To consider a sequence of constant vectors of 

control  )|(ˆ ku ⋅  in the time interval [ ]1, −λ+kk  
)|1(ˆ)|1(ˆ)|(ˆ)( kkukkukkuku −+==+== λL  
(22) 



 
    Introducing these simplifications, equation (20) 
takes simply the form 
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    The matrices Q  and R  weight the influence of the 
difference between the predicted and reference 
responses and of the control signal, respectively, in 
the minimisation of  J. Higher coefficients of Q  and 
lower coefficients of R  diminish the differences 
between ŷ  and 

r
ŷ , but involve a more energetic 

control action. Higher coefficients of R  constrain the 
control signal, preventing a very efficient control 
action. 
    An expression for the vector )|ˆ(ˆ knkx r++ λ  can 
be obtained applying equation (18) repeatedly, which 
leads to  
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or in a more compact form 
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The corresponding output vector can then be 
expressed as (see eq. (17)) 

 
 )(ˆˆ)(ˆ)(ˆˆ)|ˆ(ˆ 0 kuZHkHkxTHknky r ++=++ ϕλ     (27) 

The evaluation of the control vector involves the 
minimisation of the cost function J, which implies 
that  
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Taking into account that  
 

[ ]
)(

)|ˆ()(ˆˆ)(ˆ)(ˆˆ

)ˆˆ(
)(

0

0

kuR

knkykuZHkHkxTH

QZH
ku

J

rr

T

+

+++−++⋅

⋅=
∂

∂

λϕ

 (29) 
and that 

RZHQZH
ku

J T +=
∂

∂ )ˆˆ()ˆˆ(
)( 002

2

             (30) 

 
it is possible to conclude that the vector )(ku  that 
minimises J is given by  
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   Once the control vector is obtained, the analysis 
can proceed to the next time instant k+1, following 
the same predictive control strategy. It’s worth 
noting that the evaluation of u(k) involves the 
inversion of the so-called Hessian matrix 
( ) ( ) RZHQZH

T
+00

ˆˆˆˆ , and so matrices Q and R must 
be defined so that the Hessian matrix is definite 
positive.  
 
 
4  SIMULATION OF ACTIVE CONTROL OF A 

CABLE-STAYED PEDESTRIAN BRIDGE 
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Figure 2. Schematic representation of the cable-
stayed pedestrian bridge 
 
    The predictive control strategy previously 
described was applied to the numerical simulation of 
the controlled dynamic response of a pedestrian 
cable-stayed bridge (Figure 2) with the 
characteristics of a bridge existing at Martorell, near 
Barcelona, referred in (Cobo et al 1995).  



Table 2.  Characteristics of the bridge 
Element Area 

(m2) 
Inertia 
(m4) 

Tension 
(kN) 

Mass 
(kg/m) 

Deck 
Tower - legs 
Tower - top 

0.14 
0.11 
0.08 

0.011 
0.016 
0.013 

-- 
-- 
-- 

1950 
850 
600 

Stay cable 1 
Stay cable 2 
Stay cable 3 
Stay cable 4 
Stay cable 5 
Stay cable 6 

0.00442 
0.00442 
0.00196 
0.00196 
0.00442 
0.00442 

-- 
-- 
-- 
-- 
-- 
-- 

675 
675 
305 
244 
526 
854 

46 
46 
34 
34 
53 
53 

 
    The evaluation of the most relevant modal 
characteristics of the bridge was based on the 
development of a 2D finite element model, in which 
the deck and tower were discretised in a set of beam 
elements, according to the schematic representation 
presented in Figure 2, whereas the behaviour of the 
stay cables was idealised using truss elements with 
an equivalent Young Modulus, to take into account 
the sag effect. The values of the first 4 natural 
frequencies, evaluated by a linear dynamic analysis 
performed using the stiffness matrix obtained at the 
end of a previous static analysis under permanent 
loads, considering the geometrical non-linearities, 
were: , ,  and 

.   The corresponding modal shapes are 
represented in Figure 3. The modal damping 
coefficients were assumed as 1%.  

Hzf 705.11 =
Hz649.

Hzf 246.32 = Hzf 835.33 =
f 54 =

 
f1=1.705Hz                         f2=3.246Hz 

f3=3.835Hz                         f4=5.649Hz 

 
Figure 3. Calculated mode shapes 
 
    The values of natural frequencies obtained suggest 
that structural resonance due to pedestrian motions 
may occur, and so the following situations were 
particularly studied (Moutinho 1998): (i) walking 
with ; (ii) running with   or 1ff p = 2ff p = 3ff p = ; 
(iii) jumping  at the section of maximum amplitude 
of the second mode, with 2ff p = . The analysis of 
the structural response was performed in those three 
cases, assuming the values of the several parameters 
involved in the time-load functions  (eq. 1-3) referred 
in Tables 3-5, and applying the Newmark method.  
 

Table 3.  Parameters used in the load modelling (walking)  
G (N) fp (Hz) lp (m) α1 α2 α3 

   0.353 0.131 0.100 
700 1.705 0.60 φ1 φ2 φ3 

   0 π/2 π/2 
 

Table 4. Parameters used in the load modelling (running)  
G (N) fp (Hz) Tp (s) tc (s) Kp lp (m) 
700 3.246 0.308 0.15 3.226 1.75 
700 3.835 0.261 0.11 3.724 1.75 

 
Table 5.  Parameters used in the load modelling (jumping) 

G (N) fp (Hz) Tp (s) tc (s) Kp 

700 3.246 0.308 0.15 4.108 
  

    The corresponding peak values calculated in terms 
of vertical displacements, velocities and 
accelerations at  three control sections A, B and C 
(sections of maximum amplitude of the first three 
mode shapes, respectively) are summarised in Table 
6. 
 
Table 6. Peak values of the response without control  

Peak values Action 
Displ. (m) Veloc. (m/s) Accel.(m/s2)

Walking (fp=f1) 
Running (fp=f2) 
Running (fp=f3) 
Jumping (fp=f2) 

0.00119 
0.00145 
0.00109  
0.00249 

0.0115 
0.0288 
0.0254 
0.0499 

0.124 
0.609 
0.712 
1.054 

 
  Considering, for instance, the maximum limit of 
vibration referred in the canadian standard ONT 83 
(Bachmann et al 1995), defined by the expression 

, the maximum vertical acceleration 
of 0.379m/s

78.0
1max 25.0 fa ≤
2 is not exceeded only in the first 

situation (walking). 
    Therefore, it was assumed the introduction of an 
active control system, based on the use of a force 
actuator placed at an intermediate section of the deck 
between the anchorage points of the stay cables 4 and 
5 (at a distance of 41.65m from the left extremity), so 
as to easily control the first three modal contributes, 
the structural response being measured by three 
sensors located at the sections of maximum 
amplitude of those modes of vibration. 
    The numerical simulation of the dynamic response 
of the actively controlled structure was performed 
applying the predictive control strategy described, 
considering t∆ =0,01s, 3=λ , nr=0 and a null 
reference structural response. The weighting matrix 
Q  was assumed as  
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whereas the matrix R , that takes the form of a simple 
scalar R in this case, was iteratively adjusted in order 
to obtain a maximum vertical acceleration inferior to 
the maximum limit adopted for any of the several 
actions considered. The maximum accelerations 
calculated with and without the inclusion of the 
control system, as well as the maximum values of the 
control forces are summarised in Table 7. The 
temporal evolution of the structural response at 
section C due to the passage of a pedestrian running 
with fp=f3 is illustrated in Figure 4, the evolution of 
the corresponding control force being represented in 
Figure 5. 
 
Table 7. Peak values of acceleration and control 
force 

Maximum accel. 
(m/s2) 

Reduction 
(%) 

 Max. 
control 
force  

Action 

without 
control 

with 
control 

 (N) 

Walking (fp=f1) 
Running (fp=f2) 
Running (fp=f3) 
Jumping (fp=f2) 

0.124 
0.609 
0.695 
1.054 

0.035 
0.178 
0.368 
0.217 

72 
70 
47 
80 

578 
1272 
1372 
1482 

 
 

Figure 4. Vertical accelerations at section C 
(running, fp=f3 ) 
 
 

Figure 5. Control force (running, fp=f3 ) 
 
 
 
 
 

 
 
5  CONCLUSIONS 
 
Human beings, when walking, running or jumping on 
structures can apply dynamic loads that can be 
responsible by excessive levels of vibration, which 
can be attenuated both using passive and active 
control techniques. In this last case, the instantaneous 
definition of an appropriate value of one or more 
control forces involves the use of a suitable control 
strategy. Among several alternative control 
strategies, the predictive control technique used in 
this work seems to be rather general, versatile and 
fairly easily implemented. Moreover, the significant 
reduction of levels of vibration achieved in the 
numerical simulations presented evidence the good 
efficiency attained. Therefore the authors intend to 
give now a new step forward in the present 
investigation, making a real implementation of this 
active control technique, conjugating the present 
control strategy with the use of an active mass 
damper in a pedestrian bridge. 
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