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“Remember to look up at the stars and not down at your feet. Try to make 

sense of what you see and wonder about what makes the universe exist. Be 

curious. And however difficult life may seem, there is always something you 

can do and succeed at. It matters that you don’t just give up.”  

Stephen Hawking  
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Dedico esta tese aos meus pais. 
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Resumo 
 

A União Europeia (UE) apresenta, de alguns anos a esta parte, um défice em proteína 

vegetal de aproximadamente 70%. Um do setores mais afetados por esta situação é a 

indústria dos alimentos compostos para animais que se desenvolve anualmente à custa da 

importação, da Argentina e Brasil, de mais de 20 milhões de toneladas de bagaços de 

oleaginosas, em particular bagaço de soja (BS). O BS é a fonte proteica de excelência em 

alimentos compostos para suínos, aves, bovinos e também peixes (em substituição da 

farinha de peixe) pela riqueza em proteína de elevada digestibilidade e pela composição em 

aminoácidos. Uma vez que a dependência externa da UE por fontes proteicas vegetais torna 

a produção animal vulnerável à volatilidade dos preços e a distorções comerciais, 

influenciando negativamente a balança comercial dos países Europeus, é agora prioridade 

da Comissão Europeia reverter a situação, estimulando a produção local de culturas ricas 

em proteína, dando enfâse às leguminosas-grão (LG). As LG são cultivadas pelos seus 

grãos, ricos em proteína, colhidos à maturidade e comercializados como produtos secos 

para consumo humano e animal. Apesar de apresentarem boa adaptação às condições 

edafoclimáticas da UE, a área destinada a estas culturas é atualmente reduzida (1.2 milhões 

de hectares em 2014), muito devido aos baixos rendimentos, sendo a sua produção (2.7 

milhões de toneladas em 2014) maioritariamente destinada à alimentação animal. Um dos 

grandes desafios que a UE enfrenta ao incentivar a produção local de LG tem que ver com a 

falta de investigação, investimento e formação relativamente a práticas culturais e 

agronómicas, melhoramento genético e valor nutritivo destas sementes por forma a valorizá-

las na alimentação não só animal mas também humana.   

Neste sentido, este trabalho teve como objetivo inicial passar em revisão o estado da 

arte sobre a produção de LG em Portugal, uma vez que este país, a par de outros Europeus, 

também se apoia em elevadas quantidades de BS como fonte proteica em alimentos 

compostos para animais. Adicionalmente, por forma a aumentar o conhecimento sobre o 

valor nutritivo e composição fitoquímica de variedades Europeias de LG, foram recolhidas 51 

variedades de semente com origem em diferentes países Europeus. Estas variedades, 

listadas no catálogo Europeu de variedades e, por isso, facilmente comercializáveis entre 

diferentes países, incluíram sementes de grão-de-bico (Cicer arietinum, do tipo Desi e 

Kabuli), ervilha forrageira (Pisum sativum), faveta (Vicia faba var. minor), tremoço branco e 

de folhas estreitas e tremocilha (Lupinus albus, L. angustifolius, e L. luteus, respetivamente), 

ervilhaca vulgar (Vicia sativa) e chícharo (Lathyrus cicera), que foram posteriormente 

analisadas para a composição química e perfil em ácidos gordos, carotenoides, ácidos 

orgânicos, compostos fenólicos e alcaloides (apenas em tremoços) usando métodos de 
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rotina e as técnicas de cromatografia mais indicadas. Por fim, a potencialidade de incluir 

variedades de LG Portuguesas em dietas de duas importantes espécies de aquacultura, 

nomeadamente truta arco-irís (Oncorhynchus mykiss) e tilápia do Nilo (Oreochromis 

niloticus), foi avaliada através de um estudo de digestibilidade usando o método de 

substituição da dieta e empregando o sistema de Choubert para a coleta de fezes. 

Estudos nacionais apontam para a existência de diversas variedades de LG capazes 

de se desenvolverem sob condições de sequeiro em Portugal (sementeira de Outono) com 

rendimentos razoáveis (2-4 t/ha em grão-de-bico, 2-6 t/ha em ervilha e 4 t/ha em favetas) e 

maior peso de semente e altura da planta do que na estação de regadio (sementeira de 

Primavera), permitindo a colheita mecânica do grão. Trabalhos Portugueses reportando ao 

uso de LG como ingredientes proteicos em alimentos compostos para animais sugerem 

estas sementes como válidas substitutas de BS e farinha de peixe.  

Relativamente às variedades Europeias estudadas, o teor médio em proteína bruta 

variou entre os 22 e 40 g/100 g matéria seca (MS) em sementes tanto de chícharo como do 

grão-de-bico do tipo Desi e tremocilha, respetivamente. O teor médio em amido variou entre 

27 a 40 g/100 g MS em grão-de-bico do tipo Desi e ervilhaca vulgar, respetivamente. Não foi 

detetado amido nas variedades de tremoço que apresentaram, ao invés, teores mais 

elevados de componentes da parede celular do que as outras espécies de LG estudadas. 

Com a exceção das variedades de tremoço branco, para as quais o ácido oleico (C18:1c9) 

predominou entre os ácidos gordos detetados (em média 51 g/100 g ácidos gordos totais), 

todas as restantes variedades apresentaram o ácido linoleico (C18:2n6) como ácido gordo 

maioritário (em média 42-54 g/100 g ácidos gordos totais). Todas as variedades parecem 

ser boas fontes de ácido cítrico, em especial o tremoço branco (em média 385 mg/100 g 

MS). O grão-de-bico do tipo Desi sobressaiu relativamente às outras variedades pelo teor 

mais elevado de carotenoides na semente, em particular zeaxantina. Em relação ao perfil 

em compostos fenólicos, foram conseguidos neste trabalho importantes avanços para as 

LG. De facto, o perfil fenólico de sementes maduras e inteiras foi aqui caracterizado pela 

primeira vez para sementes de grão-de-bico do tipo Desi, ervilha forrageira e ervilhaca 

vulgar através de cromatografia líquida de alta eficiência com detetor de arranjo de díodos. 

Como sementes do género Lathyrus não dispunham até à data de uma caracterização 

detalhada do perfil fenólico, determinou-se neste trabalho o perfil qualitativo de uma 

variedade Portuguesa de chícharo através de cromatografia líquida de alta eficiência com 

detetor de díodos e espectrometria de massa com ionização por electrospray, tendo-se 

revelado a presença de 37 flavonoides glicosilados, a maioria do tipo kamferol. Por outro 

lado, para variedades de grão-de-bico do tipo Kabuli, favetas e tremoços, resultados mais 

aprofundados relativos ao perfil fenólico foram conseguidos para todos os genótipos em 

estudo. Em relação aos alcaloides de tremoço, foi também possível estabelecer pela 
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primeira vez o seu perfil para algumas variedades. Tendo conhecimento prévio de que 

extratos de tremoço ricos em alcaloides apresentam elevada atividade biológica com 

interesse farmacológico, determinou-se aqui, pela primeira vez, a atividade anti-inflamatória 

e antioxidante de extratos ricos em alcaloides de algumas variedades de tremoço, 

perspetivando-se atribuir maior valor e interesse a estas sementes. Os resultados 

mostraram que os extratos de tremoço em estudo apresentam moderada atividade anti-

inflamatória, explicada parcialmente pela composição em alcaloides, mas baixa atividade 

antioxidante.  

Finalmente, este trabalho aponta para o interesse de variedades Portuguesas de LG 

em dietas de truta arco-íris e tilápia do Nilo no que respeita à sua digestibilidade, havendo a 

necessidade de processamento prévio das sementes (como forma de aumentar a 

digestibilidade geral) em poucas situações. Sementes da espécie Lathyrus cicera (chícharo) 

foram aqui estudadas pela primeira vez em dietas para peixes, surgindo como ingredientes 

promissores.  

De uma forma geral, os resultados apresentados nesta tese contribuem para aumentar 

o conhecimento sobre o perfil em nutrientes e em alguns fitoquímicos de variedades 

Europeias de LG. Adicionalmente, como primeira revisão sobre o estado da arte da 

produção de LG em Portugal, este trabalho poderá ser útil para os produtores nacionais e 

entidades com papel ativo nesta área no objetivo final de aumentar a produção de proteína 

vegetal e diminuir a dependência externa em BS. Finalmente, este trabalho poderá contribuir 

para o crescente interesse em LG no setor da aquacultura, em particular de variedades 

Portuguesas. Os resultados obtidos nos diferentes trabalhos contribuem, assim, para a 

valorização das LG para uso animal e também humano. 
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Abstract 
 

The European Union (EU) shows, for several years now, a deficit in vegetable protein 

sources of approximately 70%. One of the sectors most affected by this situation is the 

compound feed industry which is annually developed at the expense of more than 20 million 

tonnes (mio. t) of imported oilseed meals, in particular soybean meal (SBM), from Argentina 

and Brazil. Soybean meal is the protein source of excellence in compound feedstuffs for 

swine, poultry, cattle and fish (in replacement of fishmeal) because of the high protein 

content (also highly digestible) and of the amino acids profile. As the EU’s external 

dependence on plant protein sources turns animal production systems vulnerable to price 

volatility and trade distortions, negatively impacting the trade balance of European countries, 

it is now a priority of the European Commission to reverse the situation by stimulating the 

local production of protein-rich crops, with emphasis on grain legumes (GL). Grain legumes 

are grown for their rich-protein grains which are harvested at maturity and marketed as dry 

products for human and animal consumption. Despite well adapted to the EU's 

edaphoclimatic conditions, the area devoted to GL crops is currently very low (1.2 mio. ha in 

2014), largely due to low yields, their production (2.7 mio. t in 2014) being mostly targeted to 

the animal feeding. One of the major challenges the EU faces while encouraging GL local 

production relates to the lack of research, investment and training on cultural and agronomic 

practices, breeding and nutritive value of these seeds in order to value them for feed and 

also food purposes. 

In this context, this work aimed firstly at reviewing the state of the art on the production 

of GL in Portugal, since this country, along with other European countries, also relies on high 

amounts of SBM in compound feedstuffs. In addition, to improve the knowledge on the 

nutritive value and phytochemical composition of European varieties of GL, 51 seed varieties 

from different European countries were collected. These varieties, listed in the European 

Plant Variety Database, and therefore easily marketable between different countries, 

included chickpea (Cicer arietinum, Desi and Kabuli types), field pea (Pisum sativum), faba 

bean (Vicia faba var. minor), white, narrow-leafed and yellow lupins (Lupinus albus, L. 

angustifolius, and L. luteus, respectively), common vetch (Vicia sativa) and chickling vetch 

(Lathyrus cicera), and were analyzed for proximate composition and profiles in fatty acids, 

carotenoids, organic acids, phenolic compounds and alkaloids (in the case of lupins), using 

routine methods and the most advisable chromatographic techniques. Finally, the potential of 

including Portuguese GL varieties in the diet of two important aquaculture species, namely 

rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus), was evaluated 
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in a digestibility experiment using the diet replacement method and Choubert system for 

faeces collection. 

National studies pointed out for the existence of several GL varieties capable of 

growing under rainfed conditions in Portugal (Autumn sowing) with reasonable yields (2-4 

t/ha in chickpeas, 2-6 t/ha in field peas and 4 t/ha in faba beans) and higher seed weight and 

plant height than in the irrigation season (Spring sowing), allowing the mechanical harvesting 

of the grain. Portuguese studies reporting the use of GL as protein ingredients in feedstuffs 

suggest these seeds as valid replacers for SBM and fishmeal. 

Regarding the European varieties studied, the crude protein content varied, in average, 

between 22 and 40 g/100 g dry matter (DM) in both chickling vetch and chickpea type Desi 

and yellow lupin, respectively. The starch content ranged from 27 to 40 g/100 g DM in 

chickpea type Desi and common vetch, respectively. No starch was detected in lupin 

varieties, which showed, in turn, higher levels of cell-wall components than the other GL 

species studied. Except for white lupin varieties, for which oleic acid (C18:1c9) predominated 

among the fatty acids detected (in average 51 g/100 g total fatty acids), all the other varieties 

showed linoleic acid (C18:2n6) as the major fatty acid (in average 42-54 g/100 g total fatty 

acids). All varieties appear to be good sources of citric acid, especially white lupin (in 

average 385 mg/100 g DM). Chickpea type Desi stood out in relation to the other GL 

varieties in terms of carotenoids content, in particular zeaxanthin. In relation to the phenolic 

compounds profile, important advances were herein achieved for GL. In fact, the phenolic 

profile of mature whole seeds was characterized for the first time for chickpea type Desi, field 

pea and common vetch by high-performance liquid chromatography coupled to diode array 

detection. As seeds of the genus Lathyrus were until date not characterized in detail for 

phenolic compounds, the qualitative profile of a Portuguese variety of chickling vetch was 

determined by high-performance liquid chromatography coupled to photodiode-array 

detection and electrospray ionization/ion trap mass spectrometry, revealing the presence of 

37 glycosylated flavonoids, mainly kaempferol glycosides. On the other hand, for the 

varieties of chickpea type Kabuli, faba bean and lupin, a more in-depth phenolic profile 

characterization was obtained for all genotypes under study. In relation to lupins’ alkaloids, it 

was also possible to establish for the first time their profile for some varieties. Knowing that 

lupin rich-alkaloid extracts present high biological activity with pharmacological interest, the 

anti-inflammatory and antioxidant activity of rich-alkaloid extracts of some lupin varieties was 

herein determined for the first time, with the aim of assigning more value on these seeds. 

The results showed that the rich-alkaloid lupin extracts present moderate anti-inflammatory 

activity, partially explained by the alkaloid composition, but low antioxidant activity. 
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Finally, this work points out to the potential of including Portuguese GL in the diets of 

rainbow trout and Nile tilapia, at least in what respects to their digestibility. Previous seed 

processing (as a way to increase overall digestibility) only seems necessary in few situations. 

Seeds of the species Lathyrus cicera (chickling vetch) were herein studied for the first time in 

farmed fish diets appearing to be promising ingredients. 

In general, the results presented in this thesis contribute to increase the knowledge on 

the nutritive value and phytochemical composition of European varieties of GL. In addition, 

as a first review on the state of the art on GL production in Portugal, this work may be useful 

for national producers and entities with an active role in this area aiming to increase the 

production of vegetable protein and reduce the external dependence on SBM. Finally, this 

work may contribute to the growing interest in GL for the aquaculture industry, particularly of 

Portuguese varieties. Overall results obtained in the different works contribute, therefore, to 

the valorization of GL for animal and human purposes. 
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1.1. BACKGROUND 
 

1.1.1. Europe Union’s dependence on imported protein-rich feedstuffs 

1.1.1.1. Compound feed industry 

 

Animal products are of major importance for the protein supply to the Europe Union 

(EU) citizens [Figure 1; 1]. In 50 years (1961-2011), the EU annual production of bovine, pig 

and poultry meat increased, in a total, from ca. 18 to 44 million tons (mio. t), particularly pig 

and poultry meat production (Figure 1). Milk production also increased in this period from ca. 

121 to 156 mio. t/year [2]. No different from any other terrestrial farming activity, aquaculture 

production also grew in the last decades. According to the Food and Agriculture Organization 

[FAO; 3], aquaculture in Europe accounts nowadays for ca. 18% of its total fish production 

whereas in 1985 it accounted for 10%. In 2014, approximately 3 mio. t of fish were produced 

from coastal, marine and inland aquaculture for human consumption [3]. Particularly in the 

EU, the production of fish from aquaculture is of about 1.3 mio.t live weight equivalent/year, 

expected to increase 9% by 2025 [3]. 

 

 

Figure 1. Evolution (1961-2011) of daily supply of protein from animal and vegetal products and 

of eggs and bovine, pig and poultry meat production in the EU [1, 2]. 

 

The growing global demand for animal proteins is expected to continue [4], driven by 

human population growth likely to achieve 9 billion people by 2050. The EU is self-sufficient 

on animal-derived products [5] but the challenge for the animal production industry is to 
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benefit from this human population growth while remaining competitive and sustainable on 

the global market [4].  

Feedstuffs are the main input in animal production systems, therefore representing the 

most important production cost factor. Within the EU, about 480 mio. t of feedstuffs are 

consumed by animals each year [6]. Cattle (dairy and beef cattle and buffaloes) make use of 

the largest share (> 50%) while poultry, small ruminants (sheep and goats) and swine use, 

each, approximately 10% of the annually consumed feedstuffs [7]. Among feedstuffs 

consumed, ca. 49% correspond to roughages grown and used on the farm of origin, ca. 11% 

are cereals grown and used on the farm of origin and the remaining include feed purchased 

by producers to supplement their own feed resources, either feed materials (ca. 10%) or 

industrial compound feedstuffs [CF, ca. 30%; 6]. While cattle are responsible for most of the 

grass and annual forages consumption, swine and poultry make the greatest use of cereals 

in their diets [53% and 21%, respectively, vs. 14% in the case of dairy cows; 7]. 

Compound feedstuffs are in fact crucial when it comes to intensive animal production 

systems as they are a balanced source of essential nutrients required for body growth, 

maintenance, production and reproduction. The evolution of CF production in the EU and 

consumption by different animal species is shown in Figure 2. In 2016, the industrial CF 

production was of 155 mio. t, ca. 15% of the world production, of which 35% were consumed 

by poultry (broilers and layers), 32% by swine (piglets, pigs for fattening and breeding pigs) 

and 27% by cattle [fattening, dairy cows and calves; 6]. The aquaculture industry makes use 

of a small share of overall CF production [< 6%; 6]. 

 

 

Figure 2. Evolution (1996-2016) of compound feedstuffs production and consumption per 

animal category in the EU [6, 8]. 
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The CF consumed in the EU comprise a wide range of feed materials [9, 10], the most 

representative ones being cereals and oilseed meals which actually (2016) constitute 50 and 

27%, respectively, of total CF raw materials (Figure 3). Tapioca, grain legumes (GL; so-

called pulses), animal meals or dried forage have, in turn, decreased in expression over the 

years (Figure 3). 

 

 

Figure 3. Consumption of raw materials in compound feedstuffs in the EU in 1990, 2005 and 

2016 [6, 10]. 

 

The fact is that nearly 30% of the total raw materials annually consumed in the EU are 

imported, corresponding to more than 40 mio. t/year [Table 1;  9]. Oilseed meals are 

responsible for the largest share of annual imports (ca. 60%) in the industry of CF, followed 

by cereals (20-30%). Among the oilseed meals imported, soybean meal (SBM) leads the 

ranking with about 20 mio. t/year supplied mostly by Argentina and Brazil [11]. Additionally, 

the EU imports from Brazil and the United States (US) around 13 mio. t of soybean seeds 

[Glycine max L.; 11], a very high percentage (ca. 90%) being crushed to provide soybean oil 

and meal [12]. These import values associated to soybeans and SBM result from the low 

self-sufficiency of this protein-rich feed material in the EU, which is of only 2% [Table 2; 9]. 

As observed in Table 2, the overall self-sufficiency of the EU regarding protein-rich 

feed materials is as low as 30%, which means that the EU supplies only 30% of the protein 

consumed as animal feed. 
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Table 1. EU imports (mio. t) of raw materials for animal compound feedstuffs [9]. 

Raw materials 2008 2011 2014 

Oilseed meals 27.3 26.1 23.8 

Feed cereals 10.0 8.4 11.5 

Molasses 2.7 1.9 1.8 

Corn gluten feed 0.2 1.0 0.7 

Dried distillers grains with solubles 0.2 0.7 0.6 

Dried beet pulp 0.4 0.7 0.7 

Citrus pulp 1.3 0.7 0.5 

Fishmeal 0.5 0.4 0.3 

Grain legumes 0.1 0.3 0.2 

Tapioca 1.3 0.0 0.0 

Miscellaneous 1.3 1.6 1.9 

Total imports 45.4 41.7 43.0 

Compound feedstuffs consumption 153.3 151.9 154.2 

Feed import/feed consumption (%) 29.6 27.5 27.9 

 

 

Table 2. EU self-sufficiency (%) on protein-rich raw materials in 2012 [9]. 

Protein-rich feed materials Self-sufficiency 

Dried forage 106 

Grain legumes 94 

Rapeseed and sunflower seed / meal 74 

Fishmeal 67 

Miscellaneous 56 

Soybeans / soybean meal 2 

Total 31 

 

The EU protein deficit is not something new. It has been fluctuating between 80 and 

70% in the last years [Figure 4; 9]. The import of large quantities of soybeans and by-

products and the dominance of cereals in the European arable systems (section 1.1.2) has 

enabled the EU to be self-sufficient in animal-derived products [13]. 
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Figure 4. Evolution of EU’s self-sufficiency (and deficit) in protein sources [9]. 

 

1.1.1.2. Soybean meal – the vegetable protein source of excellence 

 

The statistical importance of SBM results from its value to the animal feed industry. In 

fact, this is considered an excellent source of protein to supplement animals’ diets. Known by 

its high and consistent quality, SBM, to which other animal and vegetable protein sources are 

often compared [14, 15], consists of a highly palatable feedstuff, with crude protein (CP) 

levels above 400 g/kg dry matter [DM; 16, 17]. The proximate composition and the amino 

acid profile of SBM 44 (conventionally used in feed formulations) are presented in Table 3.  

 

Table 3. Proximate composition and amino acid profile of SBM 44. 

Proximate composition [17] g/kg Amino acid profile [18] g/kg CP 

Ash 62 Arginine 73.8 

Crude protein 440 Histidine 27.7 

Ether extract 19 Isoleucine 45.6 

Crude fibre 41 Leucine 78.1 

Neutral detergent fibre 91 Lysine 62.8 

Acid detergent fibre 54 Methionine 14.5 

Acid detergent lignin 3 Cysteine 15.2 

Total sugars 70 Phenilalanine 52.6 

Starch 5 Threonine 39.8 

  Tryptophan 12.7 

  Valine 46.9 

  Total essential amino acids 454.3 
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Soybean meal is indeed a rich source of CP but provides low contents of starch, fibre 

and fat (Table 3). Its protein is highly digestible [84, 85, 87 and 90% in rabbit, swine, poultry 

and ruminants, respectively; 17] and well balanced in terms of amino acids (Table 3) being 

therefore a good complement to the amino acids present in cereals such as maize [Zea 

mays L.; 16, 19]. Typical of legume seeds, amino acids in deficit in SBM are methionine and 

cysteine [Table 3; 16, 17]. 

Considering the presence of antinutritional factors, they are lowered when soybean 

seeds are processed to obtain SBM, in particular protease inhibitors (4-8 g/kg CP in SBM) 

and the antigenic proteins glycinin (40-70 g/kg in SBM) and β-conglycin [10-40 g/kg in SBM; 

20]. 

Soybean meal is used relatively more in some types of CF than in others. van Gelder 

et al. [21] estimated that 41, 32, 13 and 10% of the SBM processed in the EU are used in 

diets for swine, broilers, cattle and layers, respectively, underlining the larger dependency of 

monogastrics on SBM comparing to ruminants. In aquafeeds, SBM also plays an important 

role as this is the most commonly used vegetable ingredient to replace fishmeal given its 

high CP content and low levels of carbohydrates, ideal for carnivorous fish [22]. 

 

1.1.2. Protein crops in the European Union 

  

1.1.2.1. Evolution of production and harvested area 

 

Protein crops belong to the Fabaceae family and include, beyond forage legumes like 

clovers (Trifolium spp). and alfalfa (Medicago sativa L.), GL and soybeans [13]. Grain 

legumes, cultivated primarily for their rich-protein grains, are harvested at maturity, traded as 

dry products and consumed by humans and animals [23]. 

The evolution of the harvested area, production and yield of different protein crops 

[soybeans, lupins (Lupinus spp.), common bean (Phaseolus vulgaris L.), broad beans (Vicia 

faba L.), field peas (Pisum sativum L.), chickpeas (Cicer arietinum L.), lentils (Lens lens L.) 

and vetches (Vicia spp. or Lathyrus spp.)] in a 40-year period (1974-2014) in the EU is 

presented in Figure 5. In 1974, protein crops occupied an area of 3.3 mio. ha (Figure 5a) –  

of which more than half was intended for common bean for human consumption – producing 

about 2.5 mio. t (Figure 5b). In the 1980s, the areas devoted to soybean and field pea started 

increasing, having resulted in a combined average production of 6.3 mio. t/year that lasted 

until the year of 2000, being, however, nowadays of about 2.5 mio. t (Figure 5b). The other 

GL crops, namely, broad beans, lupins, chickpeas, lentils and vetches, have always 

occupied a small area in the EU (≤ 1.0 mio. ha when combined; Figure 5a); as there were  
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Figure 5. Evolution (1974-2014) of the area harvested (a), production (b) and yield (c) of protein 

crops in the EU [2]. 
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no yield improvements (Figure 5c), the combined production of these GL remains, for 40 

years, of only 1.1 mio. t/year (Figure 5b).  

Overall, in a 40-year period, the harvested area of protein crops decreased by half (3.3 

vs. 1.7 mio ha; Figure 5a), meaning that these crops are now (2014) occupying only about 

2.3% of EU’s arable land, which is of 72 mio. ha [12]. On the other hand, protein crops 

production almost doubled in this same period (2.5 vs. 4.5 mio. t; Figure 5b) meaning that 

yield improvements were achieved. In fact, yields increased mainly for common beans, broad 

beans and soybeans which are now (2014) of 2.1, 3.0 and 3.2 t/ha, respectively (Figure 5c).  

Different from protein crops, cereals dominate the EU annual cropping. In fact, of the 

EU’s arable land, cereals occupy about 58 mio. ha, this is, 80% of it [2]. Cereals production 

has been increasing over the years, driven by wheat’s (Triticum aestivum L.) production 

increase. Together with wheat, maize and barley (Hordeum vulgare L.) are the most 

cultivated cereals in the EU [12]. 

 

1.1.2.2. Causes for the vegetable protein deficit 

 

The drivers behind the EU protein deficit are based on several economic and policy 

factors and are a reflex of imbalances in the European agricultural and food systems. 

Trade agreements between the EU and the US, such as the General Agreement on 

Tariffs and Trade in 1947 and the Blair House Agreement in 1992, are reported to be on the 

base of EU’s protein deficit. They allowed the EU to protect its cereal production and to duty-

free import protein crops and oilseeds [24, 25]. 

The Common Agricultural Policy (CAP) also did not encourage from the beginning the 

production of protein crops in the EU. In fact, the support for legumes began only in the 

1970s, after the US placing an embargo on soybean exports due to production shortages 

and overall high global commodity prices [13]. This situation stimulated a price support for 

soybean, pea, lupins and faba beans and area payments for other GL in 1989, therefore 

resulting in increased harvested areas for such crops, especially field pea and soybean (as 

observed in Figure 5a). In 1992, within the MacSharry Reform, the price support was 

replaced by area-related direct payments and caused payments for pea, faba bean and 

lupins to be higher than for soybean thus decreasing soybean areas (Figure 5a). However, in 

2000 (Agenda 2000 Reform), the basic amount paid per ton of protein crops was reduced 

[26]. In 2003, the CAP reform introduced the “decoupling system”, replacing direct payments 

by an EU wide uniform single payment scheme not linked to production. This reform focused 

on cross-compliance conditions for the beneficiaries and called for more sustainable 

practices in the context of rural development by the member states [26]. Nonetheless, 
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“decoupling” end up contributing to the decline of protein crops production. In 2005, a protein 

crop premium was attributed for pea, faba bean and lupins, though completely decoupled in 

2012 and integrated into the single payment scheme. The aim was to turn the sector more 

market oriented. 

The lower production of protein crops comparing to cereals over the last decades in the 

EU is also largely attributable to the comparative yield advantage of cereals over protein 

crops [13, 25], making these latter less protected from international competition [4, 27]. Since 

protein crops are rich in protein, and in some species also in oil, they are attractive to 

diseases and insects, negatively impacting crops’ yields. The maintenance of high quality 

seed stocks thus become more difficult and leads to a comparatively short storage life of 

seeds [28]. For example, the yield of wheat [5.6 t/ha; 2] is about twice that of protein crops 

(Figure 5c). The variability of GL’s yields across Europe was recently reviewed by Cernay et 

al. [25]. With cereals and protein crops competing for the same land, arable crop farmers 

base their decision on the economic output they can get from each crop, logically preferring 

to grow cereals in the farm rotations [4]. Grown as cash crops with immediate income, 

cereals expanded during decades in production and yield mainly due to available low-cost 

nitrogen (N) fertilizers, investment in plant breeding and in a wide range of pesticides [13, 

28]. 

The decline in the direct human consumption of GL is another reason given for the 

reduction in the area of protein crops [27]. For example, GL crops used exclusively for 

human consumption, namely common bean, chickpea, lentil and broad bean, occupied the 

EU cropping in 1974 with 2.7 mio. ha; currently (2014), the area devoted to those GL is 

approximately 5-fold smaller [Figure 5a; 2]. According to Bues et al. [13], GL in humans diets 

have been replaced by meat. Apparently, the area of protein crops in some Mediterranean 

countries declined less than in other EU regions because of the prominent role of legumes in 

the regional diet [13]. 

Training and acquisition of practical experience in domestic protein crop production 

were also neglected over the years, leading to a low level of innovation on protein crops seed 

production in the EU [24]. Meanwhile, significant progresses were accomplished outside the 

EU on the efficiency of protein crop production and on the use of new technologies, leading 

to a competitive disadvantage for EU farmers who take protein crops production as 

economically unattractive. 

Finally, the ban on the feeding of meat and bone meals to cattle, sheep and goats in 

2001 further worsened the EU protein dependency by 4% [4]. The EU restricted the use of 

processed animal meals in CF in 2001 due to the arise of bovine spongiform encephalopathy 

in ruminants [29]. Animal meals, which comprised nearly 7% of CF in the 1990s, experienced 

a sharp drop in its rate of incorporation in the 2000s; this is evident from Figure 3. Meat and 
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bone meals present an average CP content of 550-600 g/kg DM [30] and therefore the 

highest protein levels among major feed ingredients. For example, field peas, faba beans 

and lupins present a CP content of about 210, 260 and 350 g/kg DM, respectively. Field pea 

was widely used in the past combined with meat and bone meals to obtain a product with an 

average CP content high enough to be attractive for swine and poultry feed [26]. However, 

the exclusion of meat and bone meals from CF also reduced the appeal for field peas; the 

subsequent decline in GL use in CF is also evident from Figure 3. 

 

1.1.2.3. Consequences of the protein deficit 

 

The low self-sufficiency on protein crops exposes the EU to possible dubious trade 

practices and to scarcity and price volatility of soybean on the global market. The price of 

SBM has been irregularly increasing over the years, recently achieving historical prices, for 

example 472€/t in august 2012 [31]. The price of non-genetically modified (GM) SBM is even 

higher [32]. Cost and availability of SBM are strongly correlated with the price of agricultural 

commodities, which is, in turn, influenced by population and economic growth, changes in 

the consumer’s product preferences and weather conditions [15]. In addition, any problem in 

one of the main soybean producer countries, this is, US, Argentina and Brazil, will have 

immediate consequences on the global market and especially on the SBM prices [4]. 

Moreover, with China for five years now as the main soybean buyer, the EU faces a reduced 

control over soybeans supply and also an insecure position regarding the unpredictability of 

soybean prices in the global market [27]. 

The use of GM plants as food or feed is also a particularly controversial issue. In fact, 

GM varieties are widely adopted in the main soybean export countries with more than 90% of 

the globally traded soybeans estimated to be GM. Only less than 15% of the ca. 30 mio. t of 

soybeans and derived products annually imported to the EU are identity-preserved certified 

GM-free [33]. No detrimental effects of GM compared to non-GM feedstuffs appear to exist 

[34] and there is large market acceptance of GM crops in animal feed. However, there is still 

a small sector of the market requiring certified GM-free feeds [33]. Noting, the EU has a very 

stringent regulatory framework for GM crop import for food and feed use [35] which may lead 

to an asynchronous approval between the EU and non-EU countries and induce soybean 

trade disruptions [36]. 

From another perspective, social, economic and environmental consequences derive 

from the lack of protein crops in the EU cropping systems. In what respects to the EU, the 

specialization and intensification of cereals production during the second half of the 20th 

century was highly dependent on external inputs (pesticides, fertilizers) and mechanization, 
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leading to low proportion of permanent grasslands in the landscape and overall simplified 

crop rotations [37]. Mainly in western Europe, mixed livestock and arable farms reduced in 

number while farm size increased [37]. Farming systems became quite homogenous [13], 

with further impacts on agricultural ecosystems and on their sustainability [37]. Indeed, this 

arable management impacted plant and animal communities, soil characteristics and water 

and air quality [37, 38] with widespread decline of farmland biodiversity, necessary to the 

ecological requirements of many species [13, 37, 39]. This agricultural intensification 

predominated in the north. In eastern Europe, the extensive systems rapidly moved towards 

intensification and abandonment in the 1990s leading to the emigration of rural people and 

loss of traditional farm buildings [37]. 

 

1.1.3. European Commission alert on the protein deficit 

 

With the protein deficit in the EU being a long-standing problem (Figure 4), the EU 

Parliament set up a motion in 2011 [24] that called for putting more effort in breeding, 

research and development to increase the EU’s own production of protein-rich materials. 

This topic deserves to be assessed with accuracy and thus considered a relevant objective. 

Therefore, some opportunities and challenges to the production of protein crops in the EU 

are described below. 

 

1.1.3.1. Opportunities for protein crops production 

 

A dedicated policy is an essential element to stimulate the European production of 

protein crops. Since 2013, promoting protein crops has become a priority of the CAP, with 

the focus being on pea, faba and broad beans, chickpea, lupin and soybean [27]. Measures 

under the new CAP reform for the period 2014-2020 that most stimulate the production of 

protein crops relate to greening measures and voluntary direct supports [40]. Concerning to 

greening measures, producers shall dedicate 5% of their land to areas of ecological interest, 

with legumes, as N-fixing crops, being highly valued in this regard, and cultivate two different 

cultures in farms with more than 10 ha and three crops in farms with more than 30 ha, to 

promote crop diversification [13]. Under the new CAP, and in line with the EU 2020 Strategy, 

a group of the Agriculture European Innovation Partnership is only dedicated to protein 

crops, aiming to investigate their potential in the EU crop rotations and to make suggestions 

on how to increase their productivity and seeds protein content [4, 41]. 

Increasing the cultivation of protein crops would be an important contribution to the 

sustainable development of EU agriculture and food systems [27]. Indeed, crops from the 
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Fabaceae family, while able to fix N from the air and to store it in root nodules, reduce the 

need for synthetic fertilizers, further decreasing N losses, pollutant emissions and the use of 

fossil energy [27, 42, 43]. These crops are also effective in recovering unavailable forms of 

soil phosphorus (P), an expensive and often limiting resource in many cropping systems [27, 

28]. The plant residues, rich in N, when left on the soil help to reduce the need of the next 

crops for fertilizers. On the other hand, the presence of protein crops in cropping systems, for 

instance in rotation with cereals, increases biodiversity, improves soil fertility and lowers the 

incidence of weeds, diseases and pests [27, 42]. 

The increased prices also of synthetic fertilizers constitute another opportunity for 

protein crops’ production in the EU. As abovementioned, legume crops can replace this 

major input in agriculture becoming more attractive for farmers and occupying a more 

competitive position than before [13]. 

Another opportunity to produce protein crops in the EU relates to the increased 

demand by the population on more information about the background of food products. 

Indeed, people are concerned about products quality, their social/historical aspects and the 

ethics with which they are produced, processed and traded. This means that consumers’ 

awareness in relation to health, social responsibility and authenticity is increasing. If on the 

one hand most of the SBM imported is from GM cultivars and a GM-free supply chain for 

EU’s animal feed industry would come closer to the cultural values of its citizens, on the 

other, there is increasing interest on local food systems [32]. In addition, organic farming 

systems do not accept GM ingredients and oilseed products subjected to solvent extraction 

processes [15]. 

During the past two decades, considerable research on protein crops has been 

developed in Europe [41]. Examples of projects in execution in 2017 on this topic are 

Eurolegume and LEGATO (on legumes; 2014-2017) and PEAMUST (on pea; 2012-2019) 

[41]. Given the importance GL is reaching, the 68th United Nations General Assembly 

declared 2016 as the International Year of Pulses [44] aiming to develop worldwide the 

consumption of GL through increased publicity, promotion of health benefits and product 

innovation. 

 

1.1.3.2. Challenges to the production of protein crops 

 

If the EU is willing to increase its area and production on protein crops, the major 

challenge to be faced relates to the improvement of their productivity/yields [32]. According to 

Roman et al. [27], soybean and GL (field peas and faba beans) should increase their yields 

in 30 and 69-76%, respectively, in order to be competitive with wheat, and in 63 and 112-
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120%, respectively, in order to be competitive with maize. To achieve this goal, technical 

innovations on breeding and agronomy are needed. Breeding of protein crops is mostly 

restricted to the public or semipublic sectors because of the relatively small market for these 

crops in the EU at the moment, one of the challenges being the involvement also of the 

private breeding industry [32]. Also necessary for the implementation of these crops in the 

EU is the agronomic research on cultivation and rotational aspects. In fact, it is important to 

know more about variety choice, fertilization, disease control, water use, crop mixtures and 

environmental benefits [32]. 

The EU farmers risk aversion for growing legume species has to decrease [25]. It urges 

to train farmers about protein crops: their agronomic features, benefits when in rotation with 

other crops and savings on the use of chemical inputs such as fertilizers and pesticides. It is 

crucial to provide them information on the most advantageous varieties in terms of yield and 

productivity, as well as, in relation to mechanical harvesting facility (whenever this is 

feasible). 

 

1.1.3.3. Focus on grain legumes and thesis layout 

 

As mentioned above, the emphasis on the European production of protein crops to 

overcome the shortage in vegetable protein relies on soybeans and GL. Comparing to GL, 

soybeans present some disadvantages, as follows. As a tropical crop, soybeans require 

specific climatic conditions to growth, namely four months of warm and rainy conditions to 

reach maturity [23]. Additionally, most soybeans, even those produced in the EU, are GM. 

This constitute a major limitation for soybeans because the EU legislation on GM ingredients 

is very rigid and also because the public opinion, i.e. consumers, are increasingly opting for 

more organic food products not including GM’s in their diets. Moreover, soybeans always 

require the processing of seeds oil extraction to obtain the meal. In turn, GL cultivated in 

Europe (Figure 6) are Mediterranean crops easily adapted to most of EU’s edaphoclimatic 

conditions. Besides that, they are non-GM and may be used without processing, depending 

mainly on the level of antinutritional factors. In Europe, animal feeding is the principal outlet 

for GL [19].  
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Figure 6. Examples of grain legumes produced in the EU. 

 

Getting advantage of this, the interest on GL for animal feeding has increased and this 

is easily observed through recent publications on the topic reviewing the potential of these 

ingredients in animal nutrition [15, 19, 45-47], namely of pigs, farmed fish or cattle. However, 

as previously shown in Figure 3, this recent interest in GL is not yet reflected in an increased 

use of these ingredients in animal CF. 

In Portugal, the animal feed industry is one of the most important sectors in the national 

agri-food context following meat and dairy industries [48]. Along with other EU countries, it 

also relies on impressive amounts of oilseed meals in animal CF, particularly SBM [almost 

0.5 mio. t in 2015; 49]. In 2015, Portugal imported ca. 0.8 mio. t of soybean seeds from Brazil 

(a part being further processed into meal) and 0.1 mio. t of SBM from the US [48]. In 

contrast, only approximately 1000 t of GL were used in national CF, namely, field pea, faba 

bean and sweet lupin, this latter re-introduced in 2015 after 11 years of total absence in 

feedstuffs [48]. As, according to Häusling [24], several GL crops are adapted to the 

European climatic conditions, for example faba beans, field peas, lentils, lupins, chickpeas, 

Chapter 2 of the present dissertation, entitled "Grain legumes production under rainfed 

Portuguese conditions for animal feeding: A review ", includes a manuscript, to be improved 

for publication, on the state of the art of GL production in Portugal and on their use in animal 

feedstuffs. 

Cicer arietinum L. 

Chickpea type Kabuli

Pisum sativum L.

Field pea

Lupinus albus L.

White lupin

Vicia faba L.

Faba bean
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If locally-grown GL are intended to increase in animal CF as protein-rich ingredients, 

more research is needed on the chemical profile of available marketable varieties. It is 

important to improve knowledge on seeds not only for proximate composition but also for the 

presence of secondary metabolites, in that benefits or drawbacks may arise thereof. In this 

sense, a further insight on the chemical characterization of particular European varieties of 

GL (from Portugal, Spain, France, Italy and Poland) was envisaged, focusing on seeds 

nutrients and non-nutrients. Therefore, Chapter 3 of the present dissertation, entitled 

“Proximate and phytochemical composition of European varieties of grain legumes”, presents 

the chemical characterization of European varieties of GL regarding proximate composition 

and profiles on fatty acids, carotenoids and organic acids. 

One of the most relevant classes of phytochemicals in crops in general respect to 

phenolic compounds. Besides contributing to growth, reproduction and defense of plants and 

to the seeds sensory characteristics, they display several biological activities, their main one 

being the antioxidant activity, to which most health benefits have been attributed to [50]. This 

makes it essential to study the phenolic profile of GL seeds and, in this sense, some work 

has already been done for some species on immature grains considered vegetables for 

human consumption [e.g.; 51, 52, 53]. However, regarding raw seeds harvested as mature 

and whose main target is the animal feed industry little data is available. Chapter 4 of the 

present dissertation includes, therefore, an already published paper in Food Chemistry 

journal entitled "European marketable grain legumes seeds: Further insight into phenolic 

compounds profiles" which reports the qualitative and quantitative profiles in phenolic 

compounds of several varieties of GL seeds. Among GL, it was noticed that chickling vetch 

seeds (Lathyrus cicera L.) had never been studied before for their phenolics composition, 

despite their interest in food and feed, high crop resilience and already existing low 

neurotoxin 3-(-N-oxalyl)-L-2,3-diamino propionic acid lines [54]. Hence, Chapter 5, includes 

an already published paper in Food Chemistry journal entitled “HPLC-DAD-ESI/MSn profiling 

of phenolic compounds from Lathyrus cicera L. seeds” reporting the qualitative phenolics’ 

profile a Portuguese variety of chickling vetch. 

Within different species of GL, lupin seeds present the advantage of containing greater 

CP values (ca. 30-40 g/100 g DM) being therefore highly valued when it comes to replace 

high protein ingredients such as SBM or fishmeal in animals’ diets [e.g.; 14, 55]. 

Nonetheless, the main limitation of lupin seeds, in what concerns to secondary metabolites, 

are the alkaloids, mainly the quinolizidine alkaloids [56]. When ingested by humans, acute 

toxicity of these metabolites can cause neurological, cardiovascular and gastrointestinal 

disturbances; in feedstuffs, while conferring a bitter taste to the diet, alkaloids may decrease 

its palatability, decreasing feed intake and affecting animals’ body weight gain [56]. If on the 

one hand, alkaloids may be toxic when ingested at high concentrations, on the other, several 
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biological properties were already described for rich-alkaloid lupin extracts and which end up 

contributing to the valorization of this crop for other purposes rather than for food or feed. In 

this regard, Chapter 6 of the present dissertation includes a published paper in Industrial 

Crops and Products journal entitled “Alkaloids in the valorization of European Lupinus spp. 

seeds crop” reporting the qualitative and quantitative profile in alkaloids of several European 

lupin seed varieties as well as the pharmacological potential of lupin rich-alkaloid extracts by 

the determination of their antioxidant and anti-inflammatory activities. 

Production of aquatic animals from aquaculture has shown in the last decades an 

impressive growth in the supply of fish for human consumption being considered the world’s 

fastest growing food production sector [3]. Fishmeal and fish oil are still considered the most 

nutritious and digestible ingredients for aquafeeds, however, their incorporation in CF has 

been showing a clear downward trend given the high historical prices these raw materials are 

achieving and the increasing awareness on more sustainable practices along the food chain 

[3]. Instead, fishmeal and fish oil are now being selected as strategic ingredients for specific 

stages of production (hatchery, broodstock and finishing diets) and used at lower dietary 

concentrations. Following this, efforts have been made by industry and academia towards 

finding alternatives to fishmeal and fish oil in aquafeeds. In this sense, GL could function as 

total or partial replacers of fishmeal given their low price and flexibility in providing both 

protein and energy to diets. Chapter 7 of the present dissertation includes therefore a 

published paper in Aquaculture Nutrition journal entitled “Apparent digestibility coefficients of 

European grain legumes in rainbow trout (Oncorhynchus mykiss) and Nile tilapia 

(Oreochromis niloticus)” reporting the apparent digestibility of six Portuguese GL varieties in 

the diet of two important freshwater fish species in aquaculture. 

An overall discussion of the works presented along this dissertation can be found in 

Chapter 8, entitled “General discussion, conclusions and future perspectives”. It also 

includes the major conclusions of the studies carried out as well as some future perspectives 

regarding the use of grain legumes in animal feeding. 
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1.2. AIMS OF THE STUDY 

 

In line with the actual promotion of GL production in Europe as a way of decreasing the 

animal feed industry external dependence on protein-rich raw materials such as soybeans 

and SBM, the general objectives of this dissertation were to understand the specific situation 

of Portugal regarding protein crops production for animal feedstuffs, to unveil the nutritive 

value and phytochemical profiles of European marketable varieties of GL and, finally, to 

evaluate the potential of GL in the diet of important fish species for the aquaculture industry. 

As so, the specific purposed aims were as follows: 

❖ To review the state of the art on GL production in Portugal both from agricultural and 

animal feeding points of view; 

❖ To gather, from European seed companies, varieties of different GL species, namely of 

chickpeas (Cicer arietinum L.), field peas (Pisum sativum L.), faba beans (Vicia faba L. 

var. minor), white lupins (Lupinus albus L.), narrow-leafed lupins (L. angustifolius L.), 

yellow lupins (L. luteus L.), common vetches (V. sativa L.) and chickling vetches 

(Lathyrus cicera L.), focusing on seeds belonging to the European Plant Variety 

Database [57] given their ease of commercialization; 

❖ To determine varieties proximate composition; 

❖ To characterize varieties fatty acids profile; 

❖ To establish varieties phytochemical profiles regarding phenolic compounds, 

carotenoids and organic acids as well as alkaloids in the case of lupins; 

❖ To evaluate the apparent digestibility coefficients of GL varieties in the diet of rainbow 

trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus).
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Abstract  

 

In a European scenario of external dependence on protein crops for the animal 

industry, grain legumes (GL) production in Portugal arises as an opportunity to equilibrate the 

country’s trade balance. Chickpea (Cicer arietinum L.), field pea (Pisum sativum L.), faba 

bean (Vicia faba L.) and lupins (Lupinus spp. L.) are important GL in Mediterranean farming 

systems, with some tradition in Portugal. The present work aimed at reviewing the state of 

knowledge on the Portuguese production of such GL as well as on their nutritive value for 

animal feeding. National studies clearly show the existence of GL varieties capable of 

growing under Portuguese rainfed conditions (Autumn sowing) with reasonable grain 

production (ca. 2000-4000 kg/ha for chickpeas, 2000-6000 kg/ha for field peas and 4000 

kg/ha for faba beans) and with higher seeds weight and plant height than in the irrigated 

season (Spring sowing), ultimately allowing mechanical harvesting. These parameters are 

easily improved through irrigation two to three times at the end of the culture. Portuguese 

works reporting the use of GL as protein ingredients for feedstuffs suggest these seeds as 

valid replacers of other protein sources commonly used. However, the present study appeals 

for the need of more exhaustive work assessing GL chemical composition, use extent and 

impact on animal growth and performance. 

 

KEYWORDS: animal feeding, legumes-based rotations, grain legumes, sowing date, 

vegetable protein sources 
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1. Introduction 
 

The European Union is deficient in vegetable protein sources, one of the most affected 

sectors being the animal feed industry, as the massive production of meat, milk and/or eggs 

requires a large contribution of compound feedstuffs. In Portugal, of the total raw materials 

used in animal feedstuffs, 23% corresponds to oilseed meals with soybean meal (SBM; 

Glycine max L.) representing about 70% of that value [1]. However, soybean production in 

Portugal is limited due to climatic and market constraints. Rapeseed (Brassica napus L.) is 

also produced, but in slight amounts despite its recognized potential at least in the inland 

North [2]. Hence, one alternative to import oilseeds (or their meals) could be the national 

production of grain legumes (GL), as stated by the European guidelines [3]. 

Chickpea (Cicer arietinum L.) is cultivated in Portugal since ancient times [4]. 

Conversely, field pea (Pisum sativum L.) has only developed at an industrial scale in 1986, 

expecting to occupy a large area, which was not observed [5] mainly due to the huge 

competition by other crops adapted to regions of Atlantic influence. Portugal is considered 

one of the main faba bean (Vicia faba L.) producers in Europe [6]. It is grown throughout the 

country, with some agronomic and economic importance in the South [7]. Within lupins, 

yellow lupin (Lupinus luteus L.) is the one with the longest tradition given its tolerance to 

acidic and low fertile soils [8]. Its production is mainly targeted to animal feeding either as 

grain or forage. White (Lupinus albus L.) and narrow-leafed (Lupinus angustifolius L.) lupins 

are also cultivated [9]. However, as most white lupin varieties are sweet, this is, with low 

levels of alkaloids, they are mainly consumed by humans, being considered of greater 

economic importance than the other lupin species [10]. Green manure is another priority 

associated with the cultivation of yellow and narrow-leafed lupins [10]. 

Despite the suggested potential of Portugal to produce GL [11], the actual area 

occupied by these cultures is limited [12]. Several Portuguese authors have referred the first 

Common Agricultural Policy measures as responsible for the focus of agriculture production 

on Winter cereals, and not including legume crops in rotations [13]. The use of inadequate 

varieties and agronomic criteria that have led to low yields [< 1000 kg/ha per year; 12] and 

compromise economic return, can comprise another argument for farmers’ disinterest [14]. 

The objective of this work was to review the production of GL in Portugal focusing on 

varieties of field peas, chickpeas, faba beans and lupins. These species are relevant in 

Mediterranean farming systems [15] and of interest, among others, to the animal feed 

industry and to the on-farm dietary supplementation. The eventual increase on GL production 

could have a substantial impact on improving the country’s trade balance. 
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2. Grain legumes under rainfed Portuguese conditions 
 

2.1. Edaphoclimatic conditions 
 

Portugal is a country with Mediterranean influence, with wide precipitation variability 

(most of it occurring between Autumn and Spring, this is, from October to March), periodic 

droughts and sudden and intensive downpours. The different agricultural regions that 

compose mainland Portugal are presented in Figure 1 and the descriptive statistic of each 

weather conditions is detailed in Table 1. In almost all the west coast of mainland Portugal 

and in numerous mountainous regions prevail a temperate climate with dry warm Summer 

(Csb, according to Köppen-Geiger climate system classification), whereas in the majority of 

the southern central plateau regions and in the Mediterranean coastal regions prevail a 

temperate climate with dry hot Summer (Csa, according to the same climate system 

classification). In a small region of Baixo Alentejo, namely in the district of Beja, a cold 

steppe climate can also be observed [BSk according to the same climate system 

classification; 16]. 

 

Figure 1. Agricultural regions of mainland Portugal. 

 

Approximately 96% of the soils directed to agricultural production present medium to 

low cation exchange capacity (< 20 meq/100 g soil) and 88% a pH below that considered 

optimal for plant growth [< 6.5; 17]. Indeed, acidic soils prevail all around the country except 

for some regions in the coastal centre and south. Moreover, around 70% of the soils contain 

low levels (ca. 1%) of organic matter [OM; 17]. Only the regions of Entre-Douro e Minho, 

Beira Litoral and the alluvial zones of Ribatejo (Figure 1) present soils with medium-high OM 
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levels, which are allocated to more intensive agricultural systems. In some regions with steep 

slopes, soils are highly vulnerable to erosion through precipitation. 

Table 1. Descriptive statistic of the characteristics of the weather conditions of mainland Portugal’s 

agricultural regions, for the period 1971–2000 [16]. 

 Minimum1 Maximum2 Mean3 SD 

Minimum temperature in the coldest month (°C) 

Entre-Douro e Minho 0.2 5.5 3.7 0.97 

Beira Litoral 0.8 6.6 3.6 0.96 

Trás-os-Montes -1.5 3.8 0.8 0.80 

Beira Interior -1.0 4.9 2.2 1.17 

Estremadura e Ribatejo 2.4 9.8 4.8 1.25 

Alentejo 2.8 9.2 4.8 0.64 

Algarve 5.1 9.5 6.7 0.93 

Maximum temperature in the hottest month (°C) 

Entre-Douro e Minho 18.5 31.8 26.1 1.92 

Beira Litoral 20.5 31.6 27.0 1.83 

Trás-os-Montes 18.6 33.8 28.3 2.18 

Beira Interior 16.9 35.5 29.5 2.52 

Estremadura e Ribatejo 19.1 32.6 28.5 2.59 

Alentejo 21.7 35.9 31.6 1.93 

Algarve 22.2 32.7 28.5 1.68 

Precipitation in the month with the lowest monthly total precipitation (mm) 

Entre-Douro e Minho 9 69 29 8.3 

Beira Litoral 5 43 15 5.6 

Trás-os-Montes 5 60 17 7.2 

Beira Interior 1 44 10 4.5 

Estremadura e Ribatejo 1 20 7 2.1 

Alentejo 1 20 4 2.1 

Algarve 1 19 2 1.6 

Precipitation in the month with the highest monthly total precipitation (mm) 

Entre-Douro e Minho 132 571 281 66.8 

Beira Litoral 74 436 181 52.2 

Trás-os-Montes 68 512 140 72.3 

Beira Interior 68 447 129 50.7 

Estremadura e Ribatejo 68 281 121 22.5 

Alentejo 68 227 99 18.3 

Algarve 68 291 137 29.1 

Number of days with precipitation < 0.1mm annual4 

Entre-Douro e Minho 218 255 235 7.2 

Beira Litoral 233 267 251 7.3 

Trás-os-Montes 230 282 262 10.6 

Beira Interior 239 298 270 12.6 

Estremadura e Ribatejo 243 284 268 8.8 

Alentejo 260 304 285 8.7 

Algarve 278 310 293 9.0 

Values were calculated from the grids of the Climatic Atlas of Portugal, obtained by interpolation of the 

mean values, for the period 1971–2000. SD, standard deviation.  
1 Location with the lowest value for the indicated climatic parameter (except for the number of days 

with precipitation < 0.1 mm annual). 2 Location with the highest value for the indicated climatic 

parameter (except for the number of days with precipitation < 0.1 mm annual). 3 Average value of the 
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indicated climatic parameter. 4 Year with the lowest (minimum) and highest (maximum) number of 

days with precipitation < 0.1 mm. 

 

2.2. Nitrogen fixation 
 

Grain legumes, as all legumes, have a distinctive feature that allows them to establish 

a symbiotic relationship with bacteria of the genus Rhizobium, being able to fix nitrogen (N) 

and to store it in root nodules. Carranca et al. [15] reported, in a Portuguese Haplic Luvisol, 

annual N fixation values, under regular rainfall, from 76 to 125 kg/ha for faba bean and from 

31 to 107 kg/ha for field pea. High amounts of fixed N by faba bean were also reported on a 

Vertisol, in Spain [18, 19]. In South Australia, 81 kg fixed N/ha/year by field pea were 

recorded [20]. Regarding lupins, Carranca et al. [21] found, in a Haplic Podzol in Portugal, 

above 100 kg fixed N/ha/year by white lupin, and Castro [22], in a Cambisol, 89 kg/ha/year of 

fixed N by yellow lupin. Comparatively to field pea, faba bean and lupins, chickpea usually 

fixes less N [19]. Indeed, according to Kumar and Abbo [23], chickpea can fix up to 140 kg 

N/ha/year, but is more usual to find values ranging from 20 to 60 kg N/ha/year. Beyond 

symbiotic N fixation, lupins are also able to use insoluble forms of phosphorus from the soil 

[24], thus resulting agronomic, environmental and economic advantages. 

 

2.3. Sowing season 
 

In Mediterranean conditions, faba bean, field pea, and lupins, as rainfed crops, can be 

sown in Autumn/Winter [25, 26]. Conversely, chickpea was traditionally sown in Spring in 

Portugal and in other Mediterranean countries, as the varieties normally used present no 

resistance to low Winter temperatures and to a fungal disease caused by Ascochyta rabiei 

(Pass.) Lab. [27]. This infection develops in cool and wet weather [27] like occur in our 

Winter. However, this constraint has been solved by the selection of Ascochyta blight tolerant 

and resistant varieties in the National Institute of Agriculture and Veterinary Research (INIAV, 

I.P., Portugal), by combining local with exotic material [28], that allow the anticipation of the 

sowing date. However, the main actual constraint is the lack of sufficient amount of seeds for 

the development of the culture. Among chickpeas, distinction must be made between Kabuli 

and Desi types; the former represents Mediterranean, large, white to cream seeds, usually 

intended for human’s diets while the latter represents Indian, small and dark seeds 

commonly used in animal feeding [29, 30] and in coffee manufacturing. Figure 2 presents the 

effects of sowing season of chickpeas and field peas (included or not in the National Catalog 

of Varieties [CNV; 31]; Table 2) on grain yield (kg/ha), plant habit (cm) and 100 seeds weight 

(g) observed in Portuguese studies. Noting, varieties included in the CNV are considered 
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along this work in separate from those not included in the CNV because the formers, while 

registered in the European Plant Variety Database [32], can be easily traded between 

European countries. 

 

 

Figure 2. Effect of sowing season on (a) grain yield (kg/ha) of chickpeas [33, 34], (b) grain yield 

(kg/ha) of field peas [5, 34], (c) plant habit (cm) of chickpeas [34], (d) plant habit (cm) of field 

peas [34], (e) 100 seeds weight of chickpeas [34] and (f) 100 seeds weight of field peas [34]. ◊, 
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Portuguese chickpea Kabuli type varieties [31]; , Portuguese chickpea Desi type varieties 

[31]; , other varieties (foreign and Portuguese not included in the CNV [31]). 

Under these experimental conditions and comparing to Spring, Autumn sowing 

promotes higher chickpea grain yield, from an average of 1827 (± 307.2) kg/ha in Spring to 

2698 (± 699.8) kg/ha in Autumn, representing a yield increase of 48% (Figure 2a). These 

results agree with those found in other Mediterranean countries. For instance, grain yield 

increases of 70% in Syria [35], between 23 and 188% in Greece [36] and and more than 

50% in Spain [37] were reported. 

The same trend was observed for field pea (Figure 2b), with an increase of 39% in 

grain yield (averaging 2748 ± 814.1 kg/ha in Spring and 3822 ± 1155.4 kg/ha in Autumn). 

Peksen et al. [38], in Turkey, reported a grain yield increase of 103%, when field pea was 

sown in Autumn comparing to Spring (6640 kg/ha vs 3270 kg/ha, respectively). In France, 

field pea Autumn sowing increased the grain production in 1000 kg/ha [39]. 

Forwarding sowing season to Autumn promoted chickpea plant habit (54 ± 4.9 cm vs 

41 ± 3.2 cm; Figure 2c), thus allowing mechanical harvesting as plant habit heights between 

55 and 65 cm were considered the most adequate for total crop mechanization [40]. 

Conversely, field pea plant habit did not seem to be affected by sowing season (Figure 2d). 

Autumn sowing promoted heavier field pea seeds (Figure 2f), seeming to have no effect on 

chickpea seeds weight (Figure 2e). 

The effect of sowing date of faba bean (minor var. Pragana) on grain yield is shown in 

Figure 3.  

 

Figure 3. Effect of sowing date on grain yield (kg/ha) of faba bean (Vicia faba L. minor var. 

Pragana) sown in Alentejo, Portugal [33]. 

 

Autumn sowing dates promoted higher grain production than Winter ones, the highest 

(4633 kg/ha) and the lowest (1618 kg/ha) grain yield being observed for the sowing dates of 

4
1

2
9

4
0

4
7 4

6
6

3

4
3

6
9

4
0

1
5

3
8

9
8

3
8

4
2

3
3

9
6

2
5

8
6

2
8

4
0

2
5

4
1

1
6

1
8

0

1000

2000

3000

4000

5000

Y
ie

ld
 (

k
g

/h
a

)

Sowing date

Winter



Chapter 2 

64 

4th November and 4th February, respectively. Loss and Siddique [41] also reported, in dryland 

Mediterranean-type environments of South Western Australia, decreases in faba bean grain 

yield with the delay of sowing date from Autumn to Winter. Although we were unable to find 

Portuguese studies comparing different sowing dates on lupins production, others [42, 43] 

performed in Mediterranean countries (Turkey and Western Australia) have showed that 

sowing at the beginning of the rainy season (generally October), when the soil is still warm, 

increases grain yield and yield components. 

The results presented in the Portuguese literature suggest clear advantages of Autumn 

sowing comparing to late Winter or Spring. Indeed, delaying GL sowing to late Winter or 

Spring brings disadvantages or constraints, namely high temperatures and sun irradiation 

and irregular or scarce rainfall, that lead to heat and drought stresses towards maturity, 

shortening of growing cycle, low and irregular yields, unsuitable plant habit and consecutively 

the need of manual harvesting [36]. 

 

2.4. Multi-site yield experiments 
 

Figure 4 presents the grain yield obtained by Portuguese GL varieties [Table 2; 31] 

when sown in Autumn and grown under rainfed conditions in different agricultural regions in 

Portugal. 

 

Figure 4. Grain yield (kg/ha), in Autumn sowing of Portuguese varieties [31] of Kabuli (K) and 

Desi (D) types of chickpea [Chkp; 34, 44], field pea [FP; 44, 45], faba bean [FB; 44], white lupin 

[WL; 10, 46], narrow-leafed lupin [NLL; 46] and yellow lupin [YL; 10, 30, 46, 47]. A, Alentejo; BI, 

Beira Interior; E&R, Estremadura e Ribatejo; TM, Trás-os-Montes. 
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Table 2. Varieties of chickpea, field pea, faba bean and lupin included in the National Catalog of 

Varieties [31]. 

Grain Variety Maintenance Country 

Chickpea Elite (Desi type) INIAV, I.P. Portugal 

 Elmo (Desi type) INIAV, I.P. Portugal 

 Eldorado (Kabuli type) INIAV, I.P. Portugal 

 Elixir (Kabuli type) INIAV, I.P. Portugal 

 Elvar (Kabuli type) INIAV, I.P. Portugal 

Field pea Grisel INIAV, I.P. Portugal 

 Pixel INIAV, I.P. Portugal 

 Esmeralda Semillas, EL Solc S.L. Spain 

 Marqueta Semillas, EL Solc S.L. Spain 

 Montrebei Semillas, EL Solc S.L. Spain 

 Monsant Semillas, EL Solc S.L. Spain 

Faba bean Favel INIAV, I.P. Portugal 

White lupin1 Estoril INIAV, I.P. Portugal 

Narrow-leafed lupin1 Giribita INIAV, I.P. Portugal 

Yellow lupin1 Acos INIAV, I.P. Portugal 

 Cardiga INIAV, I.P. Portugal 
1 All Portuguese lupin varieties are sweet (with low alkaloids levels), with the exception of yellow lupin 

var. Cardiga [10, 48]. 

 

The varieties of chickpea Kabuli type (Elvar, Eldorado and Elixir) yielded, in average, 

between 1300 and 1900 kg/ha whereas Desi type ones (Elite and Elmo) slightly surpassed 

the 2000 kg/ha (Figure 4). Chickpea yields were higher in Trás-os-Montes region than in the 

unknown region. The yield of field pea varieties was registered between 2500 and 3000 

kg/ha, Pixel having almost achieved 5000 kg/ha in Beira Interior (Figure 4). The Favel variety 

(faba bean minor) grain yield was similar to those of some chickpea varieties and white lupin 

var. Estoril yielded between 1800 and 2500 kg/ha in all agricultural regions (Figure 4). Grain 

yields from 1700 to 1800 kg/ha were reported for the variety Giribita of narrow-leafed lupin 

and for the yellow lupin var. Acos, in the central West region (Estremadura e Ribatejo). The 

lower seed yield of the yellow lupin var. Cardiga (Figure 4) agrees with its genetic 

improvement towards green biomass production [10], thus being difficult to obtain grain given 

its extreme dehiscence [30]. 

The results of Portuguese multi-site experiments in Autumn/Winter sowing with other 

varieties (foreign and Portuguese ones not included in the CNV) of chickpea, field pea and 

sweet white, narrow-leafed and yellow lupins are summarized in Figure 5. Chickpea Kabuli 

type seeds (Figure 5a) showed higher average grain yield in Trás-os-Montes (2564 ± 668.9 

kg/ha), followed by Estremadura e Ribatejo (2305 ± 485.6 kg/ha) and Alentejo (2076 ± 601.2 
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kg/ha). Fewer varieties of Desi chickpea than of Kabuli chickpea were studied, however, 

yield results are similar between these two chickpea types for the same regions (Figures 5a 

and 5b). Beira Interior is the region with the lowest yield results for Desi chickpea (Figure 5b). 

Field pea grain yields above 3000 kg/ha were observed in all agricultural regions 

tested, the best performances being found in Beira Interior, where 50% of the varieties 

yielded between 3955 and 6264 kg/ha (Figure 5c). 

Sweet white lupin varieties sown in Alentejo showed wide performances variation 

(Figure 5d). Higher average grain yields were achieved in Trás-os-Montes and Beira Interior 

(1986 ± 256.7 kg/ha and 2659 ± 355.8 kg/ha, respectively; Figure 5d). The low yield values 

observed in Alentejo for some sweet (462 ± 135.1 kg/ha; Figure 5d) and bitter [810 ± 220.6 

kg/ha; 30] white lupin varieties agree with this crop higher requirements in terms of soil [49], 

as in this agricultural region predominate low fertile, sandy and acidic soils [10]. Sweet 

varieties of narrow-leafed lupin showed higher and similar average yields in Trás-os-Montes 

(1021 ± 203.3 kg/ha) and Estremadura e Ribatejo (1232 ± 204.4 kg/ha; Figure 5e). In 

Alentejo, bitter varieties of narrow-leafed lupins yielded more [958 ± 84.5 kg/ha; 30] than 

sweet ones (636 ± 47.6 kg/ha; Figure 5e). Miranda and Rebelo [47] also reported higher 

yields with increased content of alkaloids in the seed of yellow lupin. Indeed, Portugal intends 

large part of yellow lupin areas to bitter varieties possibly due to their lower purchase price 

and greater hardiness [50]. However, sweet yellow lupins show good performances in Trás-

os-Montes (with an average grain yield above 2000 kg/ha; Figure 5f). It must also be noted 

that sweet lupins are more likely to be eaten by several predators due to their sweetness 

[51]. 

In general, the yield results presented for the Portuguese GL varieties (Figure 4) agree 

with those of the foreign or Portuguese varieties not included in the CNV (Figure 5). From 

these multi-site yield experiments in Portugal, it can be concluded that the Northeast of 

Portugal (Trás-os-Montes) is another interesting region for chickpea production, despite the 

limited actual production [52]. Indeed, Alentejo, and Estremadura e Ribatejo have been the 

main agricultural regions responsible for chickpea production in Portugal with 1046 and 181 t 

produced in 2015, respectively [52]. 

Similarly, despite field pea adaptation to a wide range of agronomic conditions 

throughout the country, Beira Interior appears to be a great region for field pea production as 

higher yields are obtained compared to the other regions. Finally, sweet lupins present 

themselves with interesting yields in several Portuguese regions. 
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Figure 5. Grain yield (kg/ha), in Autumn/Winter sowing, in Portugal, of foreign or Portuguese 

varieties not included in the CNV [31] of (a) chickpea Kabuli and (b) chickpea Desi types [34, 

53-55], (c) field pea [34, 45], (d) sweet white lupin [10, 30, 47], (e) sweet narrow-leafed lupin [10, 

30, 46, 56] and (f) sweet yellow lupin [10, 30, 47, 56]. A, Alentejo; BI, Beira Interior; E&R, 

Estremadura and Ribatejo; TM, Trás-os-Montes. 
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2.5. Legume-based rotations 
 

Actually (2015), only 4% (ca. 142154 ha) of the mainland Portugal utilized agricultural 

area is directed to rainfed cereals grain production, namely of wheat (Triticum aestivum L.), 

barley (Hordeum vulgare L.), oat (Avena sativa L.), triticale (x Triticosecale L.) and rye 

[Secale cereale L.; 1]. Along with the reduced production area, the grain yields of such 

cereals are typically reduced, contributing to the low self-sufficiency degree, observed in 

Portugal, mainly regarding wheat and rye [7 and 14%, respectively; 57]. Those cereals are 

normally sown in Autumn/Winter (early sowing), normally in N poor fields, and grown under 

rainfed conditions, especially in the lowlands of the North and Centre inland regions (Trás-

os-Montes and Beira Interior) and in the South of the country (Alentejo). The cereal-fallow 

rotation was the most common system due to N and water economies, as well to the 

common belief that soil fertility is restored, and weeds and diseases cycles are broken 

through fallow [58]. However, cereal monoculture systems are not recommended, as they 

increase the farmer risk exposure associated with production and price variations and are 

also less environmentally friend [59]. 

It is well documented that the introduction of GL in rotation can greatly contribute to the 

development of the following cereal [60, 61]. Briefly, GL high N to carbon ratio and the 

capacity to make available other nutrients lead to an increase in the OM content of soils. 

Also, the persistence and incidence of pests and diseases both in cereals and GL is 

decreased due to the allelopathic effect of rotation [62]. With a better use of natural 

resources, minimized tillage practices, lower inputs dependence, and decreased greenhouse 

gases emissions and N leaching, GL-cereal rotations lead to more economic and 

environmentally friend farming practices, contributing to a more sustainable agriculture [61, 

63]. Simultaneously, biodiversity is encouraged and landscapes are enhanced [59]. 

As far as we know, there is a lack of Portuguese work on this subject. Castro [22] 

evaluated, in a 10-year study, the effects of a cereal (wheat and triticale)-yellow lupin and a 

cereal (wheat and triticale)-fallow rotations on both cereals performance, in a Cambisol in 

Trás-os-Montes (Table 3). Although not statistically significant, higher yields and N contents 

of cereal grain and straw were found when in rotation with the GL, rather than in a cereal-

fallow system (Table 3). When calculated per kg of N in the previous crop residue, Carranca 

et al. [64], in a 2-year study in a Haplic Luvisol in Estremadura e Ribatejo, reported an 

increase in oat biomass when preceded by white lupin comparatively to a continuous oat-oat. 

Salgueiro [65] already stated that lupins are interesting to include in rotation with less 

demanding cereals, such as oats, rye and triticale (being also able to rotate with wheat in 

poorer soils), while chickpeas, field peas and faba beans are more indicated for wheat- and 

barley-rotations, given their similar soil requirements. 
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Table 3. Effect of yellow lupin and fallow in a cereal (wheat and triticale)-based rotation (in Alentejo, 

Portugal) on cereals’ grain and straw yield and nitrogen (N) content and on 1000 seeds weight [22]. 

Cereal Rotation Grain yield Grain N Straw yield Straw N 1000 seeds 

weight 

  kg/ha g/kg kg/ha g/kg g 

Wheat1 Yellow lupin 2420 20.2 7000 5.3 40.3 

 Fallow 2220 17.4 5710 3.8 44.9 

Triticale2 Yellow lupin 2930 15.7 6510 3.6 34.2 

 Fallow 2480 14.1 5990 3.4 32.5 
1 Rotation effects on wheat were evaluated during the first six years of the trial; 2 Rotation effects on 

triticale were evaluated during the last four years of the trial. 

 

3. Grain legumes in animal feeding 
 

In Portugal, the consumption of GL in animal compound feedstuffs has been inconstant 

over the years [66, 67]. Actually, only field peas [subspecies hortense; 68] and faba beans 

[minor varieties; 69] are used. In 2015, Portugal resorted on 687 t of field peas (less 61% 

than in 2014) and on 483 t of faba beans, the same as in 2014 [67]. Sweet lupins were used 

until 2004 [70] being again included in CF in 2015 [84 t; 71]. Chickpea production in Portugal 

is entirely directed for human consumption [1], suggesting a limited production of Desi type 

varieties, not attractive as food for humans except when used in soaps and as mashed 

chickpea [72]. In what concerns to lupins, yellow lupins are mostly used in extensive farming 

systems, where sheep either graze the whole dry plant during the Summer months [50]. 

However, the seeds produced on-farm can also be offered indoors after maceration (soaking 

and imbibition in water) to reduce the alkaloids content [73]. 

 

3.1. Nutritive value 
 

There are some but not many Portuguese studies focusing on the use of GL in animal 

feedstuffs. Data on the nutritive value of GL produced and/or used in Portugal is somehow 

scarce, crude protein (CP), ether extract (EE) and starch being the most analysed chemical 

parameters. The published data on chemical composition and nutritive value of Portuguese 

and other (foreign and Portuguese not included in the CNV) varieties of chickpea, field pea, 

faba bean and lupins are presented as Supplementary Material (Table S1, Table S2, Table 

S3 and Table S4, respectively). 

The highest CP and EE contents are found in lupins, namely in yellow and white ones, 

respectively. Indeed, CP content of yellow lupins surpasses 400 g/kg dry matter (DM) and 

white lupins EE content is above 100 g/kg DM. Similar values are reported by Petterson [74]. 

Chickpeas CP contents both for Kabuli (182-240 g/kg DM) and Desi types (201-238 g/kg DM) 
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are in accordance with Bampidis and Christodoulou [29]. Starch constitutes a large fraction 

of GL seeds, comprising around 400-500 g/kg DM, lupins being an exception, as non-starch 

polysaccharides constitute up to 30 to 40% of their seeds [75]. Literature reports higher 

starch contents for field pea [68, 76] and lower ones for chickpeas [29], relatively to the 

average summarized values found in the Portuguse studies (400 and 389-472 g/kg DM, 

respectively). Comparatively, the most used vegetable protein source in animal feeding, 

SBM, presents higher CP content (ca. 440 g/kg DM) than all GL, low EE levels (ca. 15 g/kg 

DM) like field peas and faba beans, and irrelevant starch values as lupins [76]. 

Reflecting GL chemical composition, higher in vitro gas production was found for 

chickpea [77, 78] and field pea varieties when compared to lupins given their higher starch 

content [78]. Similarly, Guedes and Silva [79] found for both DM and N degradation kinetics 

in the rumen of adult cows significant higher values for the slower degradable fraction – b, in 

the Ørskov and McDonald [80] equation – in lupins relatively to field pea. These results agree 

with the findings of Calabrò et al. [81] in which lower gas production and slower fermentation 

kinetics were described for lupins comparatively to field peas and faba beans. Organic matter 

digestibility in ruminants is similar between GL species [800-920 g/kg DM; 77, 78], and is in 

line with the values presented by INRA [76]. 

Portuguese studies reporting the amino acidic fraction of GL proteins highlight the 

seeds lower content in methionine and cysteine and the high contents in lysine [82-84]. 

Indeed, the lack of tryptophan and sulphur amino acids is one of the main constraints of GL 

[85]. One other is related with the presence of antinutritional factors, already described in 

earlier works [86, 87]. Achieving a low concentration of undesirable substances in plants is 

essential for human and animal nutrition and is considered a real challenge for plant 

breeders [88]. It should be noted that compounds categorized as antinutritional may also 

have beneficial properties for the health of the consumers by revealling, for instance, 

biological activity [48]. The chemical characterization of non-nutrient compounds in GL must, 

therefore, be performed in detail [48, 89, 90]. 

 

3.2. Portuguese in vivo trials 
 

Portuguese in vivo trials with GL in animals’ diets mainly report to rabbits, pigs and 

farmed fishes, most of them focusing on the replacement of the commonly used protein 

sources by legume seeds. Studies indicate for the possibility of replacing SBM in the diet of 

growing rabbits by up to 40% of chickpeas (Kabuli type) or 20% of faba beans without 

affecting their productive performance [91, 92]. It is suggested by the authors that the 

antinutritional factors of chickpeas Desi type and faba beans may impair higher levels of 

inclusion of these seeds in growing rabbits’ regimens. Also, field peas were already reported 
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to be a satisfactory SBM substitutes when included at a level of 30% in the diets of rabbits, 

improving fertility and food conversion rates [93]. 

In weaned piglets, less favourable situations with GL-containing diets were described 

and comprise ileal losses of protein [94], systemic antibody responses due to the 

allergenicity of GL proteins [95], decrease of both protein digestibility and duodenum 

enzymes activity and villus atrophy [84], and potential worsening of animal performance [96]. 

These effects seem more pronounced with lupins due to their high content in structural 

carbohydrates [82, 83, 97], the supplementation with hydrolases not having improved protein 

ileal digestibility [98]. Conversely, Prandini et al. [99] did not found negative performance 

effects with high levels of lupins (170 g/kg) in weaned piglets and, overall, lupins, field peas 

and faba beans were considered satisfactory alternative protein sources to SBM [83, 99] and 

good complements to cereal proteins [82]. 

In growing pigs, lupins fibre fraction was also an issue negatively affecting energy 

digestibility [100]. However, both lupins and field peas are considered good vegetable protein 

sources for these animals also showing hypocholesterolemic properties [101, 102]. Prandini 

et al. [99] suggest an inclusion up to 100-150 g/kg of lupins and 150-200 g/kg of field peas in 

the diet of growing pigs. Other authors did not find major issues on growth and slaughtering 

performances of pigs fed GL nor with the digestive utilization of nutrients [103, 104]. 

Portuguese studies also clearly demonstrate the possibility of including between 30 

and 66% of lupins, field peas or faba beans, as replacers of fish meal, in the diet of farmed 

fish such as rainbow trout [105], European sea bass [106, 107], and gilthead seabream 

[108], with no negative associated effects, being in accordance with other authors [109]. 

Recently, Magalhães et al. [110] showed that raw Portuguese GL varieties present potential 

in terms of digestibility to be included in diets for both rainbow trout and Nile tilapia with 

previous seed processing being apparently required only for chickpeas and faba beans in 

rainbow trout and for chickling vetch (Lathyrus cicera L.) in Nile tilapia diets. 

As far as we know, there are no published Portuguese studies on the effect of GL in 

ruminants’ performance. Nevertheless, the conclusions of several existing works are 

unanimous in reporting GL as readily accepted ingredients and valid substitutes of SBM in 

sheep [111, 112] and cattle [113], with, for instance, no constraints related to feed intake and 

milk yield or composition. According to Dixon and Hosking [114], the two main limitations of 

GL, namely the lack of sulphur amino acids and the presence of antinutritional factors, are of 

lesser importance for ruminants than for monogastrics due to the fermentation reactions 

occurring in the rumen provided that these characteristics are taken into account when 

formulating the diet. Thus, with few exceptions, it seems not necessary to resort on 

processing techniques to improve GL nutritive value for these animals, allowing the reduction 
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of production costs. Also, contrarily to what was above mentioned for swine, lupins high fibre 

content do not constitute a problem in ruminants [114]. 

 

3.3. Conclusions  
 

Research evidence presented in this review shows that there are several chickpea, 

field pea, faba bean and lupin varieties, adapted to Portuguese soils and climatic conditions, 

capable of growing under rainfed conditions (Autumn sowing), with final grain yields above 

those traditionally observed. Grain legumes-cereal rotations could benefit the cereal and 

contribute to more organic and extensive farming systems, leading to higher farmer incomes 

while helping to combat human desertification in North and Central inland, and South 

(Alentejo) of the country.  

Available data on the chemical composition and nutritive value of GL used in Portugal 

suggest these seeds as interesting protein sources for animal feeding. Indeed, in vivo studies 

emphasize the potential of these ingredients as alternatives to the commonly used protein 

sources in livestock and aquaculture industries. 

Focusing on the varieties that show a good adaptation to Portuguese ecological 

conditions, this paper appeals for the need of more exhaustive work related with GL nutritive 

value, with detailed characterization of their antinutritional factors and of treatments feasible 

to be routinely applied to decrease or even eliminate their levels. It is also important to 

evaluate GL extent of use and impacts on growth and performance of animals reared in 

intensive farming systems (swine, poultry, fish and ruminants) and whose diets largely resort 

on imported protein-rich compound feedstuffs. 

 

Supplementary material: Table S1: Chemical composition (g/kg DM) of varieties of 

chickpea Kabuli and Desi types (Cicer arietinum L.); Table S2: Chemical composition (g/kg 

DM) of varieties of field pea (Pisum sativum L.); Table S3: Chemical composition (g/kg DM) 

of varieties of faba bean (Vicia faba L.); Table S4: Chemical composition (g/kg DM) of 

varieties of lupin (Lupinus spp.). 
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Table S1. Chemical composition (g/kg DM) of varieties of chickpea Kabuli and Desi types. 

Cultivar CP EE CF NDF ADF ADL Starch Sugar 

Portuguese Kabuli1         

Elvar [40, 44] 233 - - - - - 433 - 

Eldorado [44] 226 - - - - - - - 

Elixir [44, 110] 234 - - 143 30 17 413 - 

Mean 231 - - - - - 423 - 

SD 4.2 - - - - - 10.0 - 

Other Kabuli2         

ChK 256 [77] 182 64 30 130 48 3.1 499 64 

ChK 2833 [78] 215 52 39 109 58 13.0 460 55 

ChK 309 [115] 221 56 - - - - - - 

ChK 510 [115] 216 61 - - - - - - 

ChK 512 [115] 216 62 - - - - - - 

ChK 513 [115] 214 60 - - - - - - 

ChK 551 [115] 215 60 - - - - - - 

ChK 571 [115] 215 61 - - - - - - 

ChK 606 [115] 215 61 - - - - - - 

ChK 807 [115] 215 61 - - - - - - 

ChK 881 [115] 219 62 - - - - - - 

ChK 1081 [115] 222 57 - - - - - - 

FLIP 8315C [77] 205 58 36 146 58 6.3 491 87 

FLIP 82186C [77] 221 55 38 160 57 4.2 459 73 

FLIP 82258C [77] 207 63 31 146 64 1.4 542 75 

FLIP 8341 [77] 213 56 37 158 59 1.0 498 64 

ILC 482 [77] 200 63 39 127 55 4.2 504 63 

Unknown [92] 240 61 39 109 59 10.5 452 - 

Unknown4 [84] 195 43 - 101 32 0.1 345 - 

Mean 213 59 36 132 54 4.9 472 69 

SD 11.9 4.9 3.6 22.1 9.3 4.38 55.4 10.5 

Portuguese Desi1         

Elmo [44, 110] 233 - - 229 94 15 345 - 

Elite [44] 238 - - - - - - - 

Mean 235 - - - - - - - 

SD 3.8 - - - - - - - 

Other Desi2         

ChD 322 [115] 207 56 - - - - - - 

ChD 3235 [78, 115] 203 49 91 169 121 22.0 382 - 

ChD 326 [115] 215 60 - - - - - - 

ChD 1083 [115] 225 58 - - - - - - 

ChD 1085 [115] 217 51 - - - - - - 

ChD 1087 [115] 219 50 - - - - - - 

ChD 1090 [115] 210 52 - - - - - - 

ChD 1091 [115] 213 51 - - - - - - 

PCH 70 [77] 226 51 54 163 101 6.3 503 26 

Unknown [92] 201 62 90 164 119 13.0 409 - 

Unknown6 [84] 213 40 - 191 102 11.3 261 - 

Mean 214 53 78 172 111 13.2 389 - 

SD 8.1 6.1 21.1 12.9 10.7 6.55 99.7 - 

ADF, acid detergent fibre; ADL, acid detergent fibre; CF, crude fibre; CP, crude protein; DM, dry 

matter; EE, ether extract; NDF, neutral detergent fibre. 

1 Included in the CNV [31]; 2 Foreign or Portuguese varieties not included in the CNV; 3 921 g organic 
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matter digestibility (OMD)/kg DM; 17.6 MJ digestible energy (DE)/kg DM (evaluated in Merino rams); 4 

337.9 g non starch polysaccharides (NSP)/kg; 8.3 g ash/kg; 5 902 g OMD/kg DM; 16.9 MJ DE/kg DM 

(evaluated in Merino rams); 6 414.1 g NSP/kg; 28.5 g ash/kg. 

 

Table S2. Chemical composition (g/kg DM) of varieties of field pea. 

Cultivar Ash CP EE NDF Starch 

Portuguese1       

Grisel [44] - 215 - - - 

Pixel3 [44, 110] - 223 - 197 432 

Mean - 219 - - - 

SD - 5.8 - - - 

Others2       

Gp 9504 [78] 33 210 17 146 453 

Cartouche [116] 35 231 11 - 412 

Enduro [116] 34 228 11 - 407 

Audit [116] 34 242 14 - 450 

Corrent [116] 36 261 8 - 389 

Alhambra [116] 35 250 15 - 397 

Cherokee [116] 36 245 16 - 424 

Isard [116] 35 249 12 - 405 

Livia [116] 37 239 7 - 368 

Gregor [116] 35 250 9 - 408 

James [116] 35 232 11 - 417 

47405 [79] 40 301 23 264 362 

Unknown6 [105] 19 246 - - - 

Unknown7 [83] - 199 17 135 311 

Mean 34 242 13 182 400 

SD 4.9 23.8 4.4 71.7 37.6 

CP, crude protein; DM, dry matter; EE, ether extract; NDF, neutral detergent fibre. 

1 Included in the CNV [31]; 2 Foreign or Portuguese varieties not included in the CNV; 3 34.5 g lipids/kg 

DM; 66.3 g acid detergent fibre (ADF)/kg DM; 271.3 g non-starch carbohydrates/kg DM; 4 72 g crude 

fibre/kg DM; 81 g ADF/kg DM; 11 g acid detergent lignin (ADL)/kg DM; 911 g organic matter 

digestibility/kg DM; 16.5 MJ digestible energy/kg DM (evaluated in Merino rams); 5 804 g degradable 

DM/kg DM (with a rumen outflow rate of 4.4%/h and a degradation rate of 0.131/h); 878 g degradable 

nitrogen/kg DM (with a rumen outflow rate of 4.4%/h and a degradation rate of 0.180/h (evaluated in 

adult cows); 6 16.1 kJ gross energy/g; 7 389.5 g non starch polysaccharides/kg; 51.9 g ADF/kg; 0.35 g 

ADL/kg; 14.5 mg sucrose/g. 
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Table S3. Chemical composition (g/kg DM) of varieties of faba bean. 

Cultivar CP EE CF NDF ADF ADL Starch 

Portuguese1        

Favel [44, 110] 255 - - 204 103 21 409 

Others2        

cv. Beja3 [78] 237 14 100 202 131 24 400 

Unknown [82] 256 - - 106 69 - 358 

Unknown4 [105] 270 - 14 - - - - 

Unknown5 [83] 243 19 - 152 94 6 224 

Mean 252 17 57 153 98 15 327 

SD 14.7 3.5 60.8 48.0 31.2 12.7 91.9 

ADF, acid detergent fibre; ADL, acid detergent fibre; CF, crude fibre; CP, crude protein; DM, dry 

matter; EE, ether extract; NDF, neutral detergent fibre. 

1 Included in the CNV [31]; 2 Portuguese varieties not included in the CNV; 3 917 g organic matter 

digestibility/kg DM; 16.3 MJ digestible energy/kg DM (evaluated in Merino rams); 4 16.7 kJ gross 

energy/g; 14 g crude fibre/kg; 5 435.5 g non starch polysaccharides/kg; 17.2 mg sucrose/g. 
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Table S4. Chemical composition (g/kg DM) of varieties of lupins.  

Cultivar Ash CP EE CF NDF ADF Starch NFE 

Portuguese1         

White lupin         

Estoril (sweet) [110] 38 363 - - 231 156 n.d. - 

Yellow lupin         

Cardiga (bitter)3 [47, 78] 47 381 60 202 286 246 7 231 

Others2         

Sweet white lupin          

804-4 [117]  29 374 120 117 - - - 360 

930-3 [117] 31 363 116 121 - - - 369 

551-3 [117] 31 373 116 118 - - - 362 

802-15 [117] 31 362 117 106 - - - 384 

816-20 [117] 30 394 116 108 - - - 353 

968-12 [117] 32 376 114 103 - - - 376 

551-5 [117] 33 350 124 121 - - - 372 

893-7 [117] 31 372 104 120 - - - 373 

357-2 [117] 33 370 115 113 - - - 370 

Unknown [82] - 339 - - 212 153 - - 

Mean 31 367 116 114 - - - 369 

SD 1.3 15.1 5.4 6.9 - - - 9.3 

Blue lupin         

Illyarie4 [78] 26 291 72 161 269 229 8 - 

81765 [79] 40 342 77 - 271 - 11 - 

Unknown6 [105] 23 327 - 63 - - - - 

Unknown7 [83] - 338 61 - 197 138 0 - 

Unknown8 [108] 28 340 64 - - - - - 

Mean 29 328 69 112 246 184 6 - 

SD 7.5 21.3 7.3 69.3 42.2 64.3 5.7 - 

Yellow lupin         

Refusa (sweet) [47] 52 437 66 - - - - 200 

RM 102-B (sweet) [47] 48 417 58 - - - - 199 

RM 202-B [47] 59 456 60 - - - - 191 

RM 202-P (bitter) [47] 52 433 58 - - - - 201 

Unknown9 [24] 46 425 48 - - - 15 321 

3 

Mean 

51 434 58 - - - - 222 

SD 5.0 14.7 6.5 - - - - 55.3 

CF, crude fibre; CP, crude protein; DM, dry matter; EE, ether extract; NDF, neutral detergent fibre; 

NFE, N free extract; n.d., not detected.  

1 Included in the CNV [31]; 2 Portuguese varieties not included in the CNV; 3 28 g acid detergent lignin 

(ADL)/kg DM, 836 g organic matter digestibility (OMD)/kg DM, 16.9 MJ digestible energy (DE)/kg DM 

(evaluated in Merino rams); 4 28 g ADL/kg DM, 860 g OMD/kg DM, 16.5 MJ DE/kg DM (evaluated in 

Merino rams); 5 798 g degradable DM/kg (with a rumen outflow rate of 4.4%/h and a degradation rate 

of 0.135/h) and 856 g degradable nitrogen/kg DM (with a rumen outflow rate of 4.4%/h and a 

degradation rate of 0.166/h); 6 18.4 kJ gross energy/g; 7 477.5 g non starch polysaccharides/kg; 5.45 g 

ADL/kg; 31.7 mg sucrose/g; 8 17.6 kJ energy/g; 9 125 g pentosans/kg DM; 161 g crude cellulose/kg 

DM; 3 g lignin/kg DM. 
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PROXIMATE AND PHYTOCHEMICAL COMPOSITION OF EUROPEAN 

VARIETIES OF GRAIN LEGUMES1 

 

1. Introduction 
 

Grain legumes (GL), also called pulses, are crops of the botanical family Fabaceae. 

Examples of GL used for food and feed include, for example, chickpeas (Cicer arietinum L.), 

field peas (Pisum sativum L.), faba beans (Vicia faba L.), lupins (Lupinus spp. L.), vetches 

(e.g. common vetch, Vicia sativa L. or chickling vetch, Lathyrus cicera L.), common beans 

(Phaseolus vulgaris L.) or lentils (Lens lens L.). As good sources of crude protein [CP; 1], GL 

constitute appealing economical and sustainable alternatives to the protein sources 

commonly used in animal feedstuffs such as soybean meal (SBM) and fishmeal [2, 3]. 

Additionally, legume seeds are good sources of energy and fibre [2, 4] also presenting non-

nutrients, product of plants’ secondary metabolism, that may exert positive, negative or both 

effects when ingested [5]. Non-nutrients, particularly those with antinutritional effect, are of 

greater concern to monogastrics than for ruminants because these latter can destroy or 

modify these metabolites through rumen fermentation [4, 6]. Nonetheless, GL varieties with 

negligible or low amounts of antinutritional factors are preferred for both classes of animals 

[6, 7]. 

Despite the low European production of GL due to the reasons previously address in 

this dissertation (Section 1.1.2.2), European countries present suitable edaphoclimatic 

conditions to cultivate these crops and measures towards increasing their local production 

have already been purposed by the European Commission as a way of decreasing the 

external dependence on soybeans and SBM [8]. The year of 2016 was even declared as the 

International Year of Pulses by the 68th United Nations General Assembly [9]. It is therefore, 

crucial to fully characterize these locally-produced ingredients for an adequate inclusion in 

the diets of different farmed animals.  

In this context, the aim of the work presented in this chapter was to characterize in 

depth marketable European GL varieties in terms of proximate composition and profiles in 

fatty acids (FA), carotenoids and organic acids. The phytochemical profile regarding phenolic 

compounds and alkaloids of some of the varieties herein characterized was recently 

determined [10-12]. 

                                                           
1 This work had the collaboration of Margarida R.G. Maia (ICBAS-UP), Ana R.J. Cabrita (ICBAS-UP), Patrícia 

Valentão (FFUP), Paula B. Andrade (FFUP) and António J.M. Fonseca (ICBAS-UP). The manuscript is still under 

preparation and has not been validated by coauthors. 
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2. Material and methods 
 

2.1. Sampling 
 

A total of 51 GL seeds (registered in the European Plant Variety Database [13] except 

yellow lupin Lupinus luteus, cv. Nacional), offered by the seed companies Agri-Obtentions 

(Guyancourt, France), Agroservice SpA (S. Severino Marche, Italy), Fertiprado (Vaiamonte, 

Portugal), Florimond Desprez (Cappelle-en-Pévèle, France), Institute of Plant Genetics of the 

Polish Academy of Sciences (Poznan, Poland), Instituto Nacional de Investigação Agrária e 

Veterinária, I.P. (Oeiras, Portugal), Jouffray-Drillaud (Vienne, France), RAGT Seeds Ltd 

(Saffron Walden, UK) and Semillas El Solc S.L. (Lleida, Spain), included mature raw whole 

seeds of Kabuli (CHK; large, white to cream seeds; n=5) and Desi (CHD; small and dark 

seeds; n=1) chickpeas, field peas (FP; n=21), faba beans (FB; n=10), white lupins (WL; 

Lupinus albus; n=5), narrow-leafed lupins (NLL; L. angustifolius; n=2), yellow lupins (YL; 

n=5), common vetch (CoV; n=1) and chickling vetch (CV; n=1; Table 1). After reception, 

seeds were dried in a forced-air oven (65 ºC, 24 h) and grounded to 1 mm for further analysis 

(0.5 mm for starch). 

 

2.2. Proximate composition 
 

All 51 GL seed varieties were analyzed for proximate composition, total lipids and FA 

profile whereas only 30 were studied for organic acids and carotenoids evaluation. These 30 

samples are clearly identified also in Table 1 and included all the varieties belonging to the 

Portuguese catalog of varieties [n=12; 14] as well as others that, besides not Portuguese, 

were grown in the country (n=3); additionally, depending on seed availability, other varieties 

were added to the analysis (n=15). 

According to AOAC [15], dry matter (DM) of samples was determined after drying at 

103 ± 2 ºC for 2 h (method 930.15), ash was obtained after incineration at 550 ± 20 ºC for 3 h 

and CP was calculated as 6.25 x Kjeldahl N (method 954.01). Soluble CP, total lipids and 

starch were determined according to Hart and Bentley [16], Folch et al. [17] and 

Salomonsson et al. [18], respectively. Neutral detergent fibre (NDF; assayed with heat stable 

amylase and expressed exclusive of residual ash), acid detergent fibre (ADF; expressed 

inclusive of residual ash) and acid detergent lignin (ADL; determined by solubilization of 

cellulose with sulphuric acid and expressed exclusive of residual ash) contents were 

determined by the procedures of Van Soest et al. [19] and Robertson and Van Soest [20]. 

Gross energy (GE) content was determined in an adiabatic bomb calorimeter (Werke C2000, 

IKA, Staufen, Germany). All analysis were run in duplicate. 
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Table 1. List of varieties and respective supplier countries of the studied grain legume samples. 

Material Origin Material Origin 

Chickpea  Field pea  

Elmo (Desi type)* Portugal Cartouche France 

Eldorado (Kabuli type)* Portugal Cherokee France 

Elixir (Kabuli type)* Portugal Cigal France 

Elvar (Kabuli type)* Portugal Comanche France 

Reale (Kabuli type)* Italy Dove France 

Sultano (Kabuli type)* Italy Eiffel Italy 

  Enduro France 

Faba bean var. minor  Esmeralda* Spain 

Chiaro di Torrelama* Italy Genial France 

Diva* France Grisel* Portugal 

Fabelle*  France Indiana France 

Favel* Portugal Isard France 

Gladice France James France 

Irena France Marqueta* Spain 

Nordica France Montrebei* Spain 

Organdi* France Montsant* Spain 

Rumbo Italy Pixel-I* Portugal 

Scuro di Torrelama* Italy Pixel-L Portugal  

  Spacial France 

White lupin  Standal France 

Amiga* France Verbal France 

Estoril* Portugal   

Lumen* France Narrow-leafed lupin  

Multitalia-IT Italy Azuro* Portugal 

Multitalia-PT* Portugal Sonet* Poland 

    

Yellow lupin  Chickling vetch  

Dukat* Poland Grão-da-gramicha* Portugal 

Mister-PL Poland   

Mister-PT* Portugal Common vetch  

Nacional* Portugal Barril* Portugal 

Taper* Poland   

*Varieties analyzed for carotenoids and organic acids profiles in addition to proximate composition and 

fatty acids profile. 

 

2.3. Fatty acids composition 
 

Lipids from dried seeds were extracted by a modified procedure of Folch et al. [17], 

using a dichloromethane:methanol (2:1, v/v) solution and determined gravimetrically. Fatty 

acid methyl esters (FAME) were prepared by direct transesterification following Alves et al. 

[21] and heptadecanoic acid (C17:0; Sigma-Aldrich, St. Louis, MO; 0.5 mg/mL) was used as 

the internal standard. 
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The FAME were analyzed by gas chromatography (GC) using a GC-2010 Plus 

(Shimadzu Europe GmbH, Germany) chromatograph equipped with a flame ionization 

detector and a fused-silica capillary column (Omegawax 250, 30 m × 0.25 mm × 0.25 μm; 

Supelco, Bellefonte, PA). Helium was the carrier gas, and the split ratio was 1:100. The 

injector and detector temperatures were 250 and 260°C, respectively. The initial oven 

temperature of 150°C was held for 7 min, increased at 3°C/min to 170°C and held for 25 min, 

and then increased at 3ºC/min to 220ºC and held for 30 min. Peak identification was based 

on comparison of retention times with FAME standards (Supelco 37 component FAME mix, 

Sigma-Aldrich, St, Louis, MO; GLC-110 mixture and Bacterial acid methyl esters CP mixture, 

Matreya LLC, Pleasant Gap, PA). Analysis were run in duplicate 

 

2.4. Secondary compounds 
 

The procedure used to determine GL seeds carotenoids and organic acids were as 

previously described by Fernandes et al. [22] and Magalhães et al. [23], respectively. 

 

2.5. Statistical analysis 
 

A discriminant analysis was performed (SPSS®, v.24; IBM, USA) on the 51 GL 

samples using seeds’ CP content as the categorical dependent variable (Table 2). Grain 

legumes were grouped according to species being further divided in two different groups (G1 

and G2) according to their CP content in order to create distinct ranges of CP values (Table 

2). Both vetches (common and chickling ones) were included together with faba beans given 

the overall similarities they presented in terms of chemical composition. 

 

Table 2. Discriminant analysis applied on grain legume groups using seeds CP content as the 

categorical dependent variable.  

Grain legume group Group CP range, g CP/100 g DM n 

Chickpeas G1 21.0 - 22.1 3 

G2 23.7 - 27.0 3 

Field peas G1 21.3 - 23.0 11 

G2 23.1 - 26.9 10 

Faba beans, common vetch and chickling vetch G1 22.3 - 26.8 6 

G2 28.1 - 32.8 6 

White, narrow-leafed and yellow lupins G1 26.8 - 36.5 5 

G2 38.0 - 42.6 7 

 

Mean values of chemical parameters analyzed in the seeds, i.e. independent variables 

(ash, NDF, ADF, ADL, GE, soluble CP, lipids, total and individual FA and SFA, MUFA and 
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PUFA contents), were compared between quartiles (within a group) by one-way analysis of 

variance. Tukey’s HSD post hoc test was used to compare means. In all cases, significant 

differences were considered when P < 0.05.  

 

3. Results 
 

3.1. Proximate composition of grain legumes 
 

Proximate composition and GE content of all studied grain legume varieties is 

presented in Table 3. Average CP content was highest for lupins, in particular for YL varieties 

(40 ± 1.9 g/100 g DM) which were followed by WL and NLL (37 ± 1.1 and 30 ± 3.1 g CP/100 

g DM, respectively) and lowest for CHD and CV (ca. 22.0 g/100 g DM). The varieties with the 

lowest and highest levels of CP within each species were as follows: respectively, Eldorado 

and Sultano for CHK, Enduro and Montrebei for FP, Nordica and Fabelle for FB, Lumen and 

Multitalia-IT for WL and Mister-PT and Taper for YL. The solubility of seeds’ protein was high 

having ranged, in average, between 50.3 g/100 g CP in CV and 66.1 g/100 CP in WL 

samples.  Neutral detergent fibre and ADF contents were also highest for lupins: 

respectively, 30.3 and 20.0 g/100 g DM for NLL, 27.2 and 18.8 g/100 g DM for YL and 24.8 

and 16.9 g/100 g DM for WL; the lowest values were found in CHK samples (13.5 and 3.2 

g/100 g DM, respectively). ADL contents varied between 0.6 g/100 g DM in FP and 2.4 g/100 

g DM in YL. Seeds’ starch levels ranged from 27.3 g/100 g DM in CHD to 40.4 g/100 g DM in 

CoV and were null in all lupin samples. In average, highest GE values were found in lupins 

and CHK (17.5-18.7 MJ/kg DM) whereas in all the other legume samples GE levels ranged 

between 16.0 and 16.4 MJ/kg DM. 

 

3.2. Total lipid content and fatty acids profile of grain legumes 
 

Grain legume varieties’ total content in lipids as well as their profiles in FA can be 

observed in Table 4 (the complete individual FA profile of each sample is presented as 

supplementary material in Table S1). A chromatogram of a GL variety (CHK var. Elvar) is 

shown in Figure 1. 

Lipids were found at higher contents in WL (9.1 g/100 g DM) than in all the other 

legume samples (2.4-6.4 g/100 g DM in vetches and CHK, respectively).  
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Table 3. Proximate composition and gross energy content of the grain legume samples.1  

Samples Ash CP2 Soluble CP NDF ADF ADL Starch GE 

 g/100 g DM g/100 g CP g/100 g DM MJ/kg DM 

Chickpea         

Elmo 3.4 22.0 50.3 22.9 9.4 1.5 27.3 16.4 

Eldorado 3.0 21.0 63.7 13.3 3.0 2.2 35.5 17.4 

Elixir 2.8 23.7 63.5 12.5 3.0 1.7 37.5 17.5 

Elvar 3.0 22.1 60.4 15.8 3.2 1.9 36.6 17.2 

Reale 3.2 26.3 67.7 13.3 3.4 0.3 30.5 17.9 

Sultano 3.3 27.1 63.8 12.3 3.3 1.0 31.7 17.5 

Mean3 3.1 24.0 63.8 13.5 3.2 1.4 34.4 17.5 

SD4 0.18 2.34 2.45 1.30 0.22 0.70 2.78 0.21 

Field pea         

Cartouche 2.9 23.4 66.3 18.4 7.4 0.7 40.0 16.5 

Cherokee 2.7 22.4 59.3 19.1 7.2 0.2 39.7 16.4 

Cigal 3.0 24.0 67.4 16.5 7.0 0.8 37.5 16.4 

Comanche 3.0 23.0 65.8 18.4 7.2 0.5 40.6 16.3 

Dove 3.4 21.4 62.6 20.9 7.7 0.5 39.7 16.1 

Eiffel 3.0 22.3 64.6 18.0 7.0 0.3 41.5 16.2 

Enduro 3.1 21.3 60.2 22.1 7.3 0.2 39.0 16.0 

Esmeralda 2.7 25.1 56.9 19.6 7.4 0.9 34.9 16.4 

Genial 3.1 23.0 65.1 20.4 6.8 0.7 44.6 16.2 

Grisel 3.3 23.1 66.1 18.7 7.6 1.8 40.5 15.9 

Indiana 2.6 21.4 71.9 16.6 6.5 0.7 42.0 16.3 

Isard 2.8 22.2 64.1 20.8 7.7 0.4 38.5 16.0 

James 2.9 23.5 53.8 21.3 6.5 0.7 38.3 16.2 

Marqueta 3.0 24.4 56.9 19.7 7.1 0.3 37.7 16.2 

Montrebei 3.3 26.9 57.4 20.4 7.0 0.5 37.2 16.5 

Montsant 3.1 22.7 52.6 20.3 7.3 1.4 40.0 16.3 

Pixel-I 3.3 23.6 62.5 19.3 6.6 0.6 37.0 15.8 

Pixel-L 3.1 24.0 66.1 17.5 7.5 0.6 40.7 16.1 

Spacial 3.0 21.7 63.7 17.6 6.1 0.3 43.6 16.4 

Standal 2.7 22.6 66.8 19.6 6.6 0.2 39.4 16.0 

Verbal 3.2 23.9 62.3 21.4 7.9 0.9 37.3 16.0 

Mean 3.0 23.1 62.5 19.4 7.1 0.6 39.5 16.2 

SD 0.22 1.33 4.81 1.57 0.47 0.40 2.25 0.20 

Faba bean         

Chiaro di Torrelama 3.3 26.8 59.5 20.3 10.1 0.4 37.4 16.5 

Diva 4.1 29.7 66.3 18.4 9.6 0.7 32.1 16.3 

Fabelle 4.2 32.8 62.2 17.9 9.5 1.5 31.4 16.1 

Favel 4.0 25.0 63.1 20.5 10.3 2.1 38.4 15.9 

Gladice 3.4 29.9 67.7 19.1 9.0 0.9 32.6 16.5 
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Irena 4.4 28.1 57.2 20.7 10.8 1.5 32.1 16.3 

Nordica 3.3 25.6 66.3 20.2 9.4 1.3 35.8 16.2 

Organdi 3.4 29.1 66.2 21.0 12.0 1.5 33.8 16.5 

Rumbo 3.7 25.7 58.8 22.6 10.3 0.5 36.8 16.2 

Scuro di Torrelama 3.2 31.6 65.6 17.5 9.9 1.4 34.6 16.7 

Mean 3.7 28.4 63.0 19.8 10.1 1.2 34.5 16.3 

SD 0.41 2.52 4.32 1.51 0.84 0.60 2.39 0.23 

White lupin         

Amiga 3.6 36.5 62.4 25.1 16.7 1.2 n.d.5 19.2 

Estoril 3.8 36.0 67.5 23.1 15.6 0.8 n.d. 18.3 

Lumen 3.8 35.7 70.7 25.0 18.0 1.1 n.d. 18.5 

Multitalia-IT 3.3 38.3 62.9 24.0 16.4 1.1 n.d. 19.1 

Multitalia-PT 4.1 38.0 67.1 26.9 17.9 1.6 n.d. 18.3 

Mean 3.7 36.9 66.1 24.8 16.9 1.2 - 18.7 

SD 0.29 1.05 3.13 1.29 0.96 0.31 - 0.41 

Narrow-leafed lupin         

Azuro 3.1 32.9 63.8 30.1 21.0 1.7 n.d. 17.6 

Sonet 4.1 26.8 54.8 30.6 19.1 2.9 n.d. 17.5 

Mean 3.6 29.8 59.3 30.3 20.0 2.3 - 17.5 

SD 0.50 3.05 4.50 0.24 1.01 0.61 - 0.06 

Yellow lupin         

Dukat 5.6 41.9 67.8 26.3 18.2 3.2 n.d. 17.9 

Mister-PL 5.5 40.8 63.1 26.9 18.9 3.5 n.d. 17.7 

Mister-PT 5.0 38.0 66.1 28.2 19.4 1.3 n.d. 17.9 

Nacional 5.8 38.3 63.9 29.1 20.0 1.1 n.d. 17.7 

Taper 5.6 42.6 67.0 25.7 17.7 2.8 n.d. 17.8 

Mean 5.5 40.3 65.6 27.2 18.8 2.4 - 17.8 

SD 0.29 1.86 1.83 1.26 0.86 1.03 - 0.11 

Chickling vetch         

Grão-da-gramicha 3.7 22.3 50.3 22.6 9.2 1.4 34.7 16.1 

Common vetch         

Barril  3.7 25.3 59.8 18.7 6.0 1.3 40.4 16.0 

1Results expressed as mean values (n=2). 2NDF, neutral detergent fibre; ADF, acid detergent fibre; 

ADL, acid detergent lignin; CP, crude protein; GE, gross energy. 3Mean values of Kabuli type varieties 

(all except var. Elmo). 4SD; standard deviation. 5nd, not detected. 

 

Within FA, five were considered major FA given their proportions in the seeds when 

compared to the other FA, namely, C16:0 (palmitic acid), C18:0 (stearic acid), C18:1c9 (oleic 

acid), C18:2n6 (linoleic acid) and C18:3n3 (α-linolenic acid). These FA together accounted at 

least for 84% of total FA in the GL seeds. C16:0 average content was lowest for YL (6.7 

g/100 g FA) followed by WL (8.8 g/100 FA) and highest for CV (16.7 g/100 g FA). C18:0 was 

lowest for CHD and WL (< 1.8 g/100 FA) and highest for NLL and CoV (> 6.4 g/100 g FA). 
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C18:1c9 was highest for WL (50.6 g/100 g FA) and lowest for CoV (12.0 g/100 g FA) 

whereas C18:2n6 was found at highest and lowest levels in CHD and WL, respectively (59.2 

and 17.6 g/100 g FA, respectively). Finally, C18:3n3 varied, in average, from 2.2 g/100 g FA 

in CHK to 8.3 g/100 g FA in FP. Overall, PUFA (47.0-61.9 g/100 g FA) predominated over 

SFA and MUFA in all legumes seeds except in WL which, instead, presented increased 

levels of MUFA (57.6 g/100 g FA). n6/n3 FA ratio was highest for chickpeas, followed by FB, 

and lowest for WL (in average 23.1, 17.1 and 2.3, respectively). 

 

3.3. Carotenoids and organic acids profiles of grain legumes 
 

Seeds carotenoids and organic acids profiles are presented in Table 5 and 

chromatograms of one chickpea variety type Kabuli (var. Elvar) can be seen in Figures 2 and 

3, respectively. 

Among all varieties, only two carotenoids were identified, namely lutein and zeaxanthin 

(both xanthophylls). Lutein was present in all samples (0.1-0.8 mg/100 g DM) whereas 

zeaxanthin was only found in chickpeas and lupins (1.6-15.4 mg/100 g DM). Among all 

chickpeas, CHD stood out from the CHK ones in terms of total carotenoids content (16.2 vs. 

6.4 mg/100 g DM, respectively). For the other grain legumes species, total carotenoids 

content was lower (0.2-3.3 mg/100 g DM).  

Several organic acids were identified in grain legume seeds, namely, oxalic, aconitic, 

citric, pyruvic, malic and fumaric acids. Citric and aconitic acids were common to all varieties, 

the former being the major compound in all samples, varying, in average, from 23.4 mg/100 

g DM in CoV to 385.1 mg/100 g DM in WL. Consequently, WL presented the highest total 

amount of organic acids (404 mg/100 g DM) and CoV the lowest (55 mg/100 g DM). Oxalic 

acid was absent in all FP and FB varieties and varied between 2.0 and 7.7 mg/100 g DM in 

the other species. 
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Table 4. Total lipids content and fatty acids composition (dry matter basis) of the grain legume 

samples.1 

Samples Lipids FA2 C16:0 C18:0 C18:1c9 C18:2n6 C18:3n3 SFA MUFA PUFA n6/n3 

 g/100 g DM g/100 g FA  

Chickpea            

Elmo 4.2 4.0 12.6 1.4 19.4 59.2 2.9 16.1 21.5 61.9 20.2 

Eldorado 6.5 6.0 11.0 1.6 24.0 57.0 2.4 14.5 25.8 59.2 23.3 

Elixir 6.3 5.6 10.7 1.5 28.6 52.7 2.4 14.0 30.6 54.8 21.9 

Elvar 7.3 5.7 10.8 1.6 25.5 55.5 2.5 14.2 27.4 57.7 21.9 

Reale 6.1 5.1 9.7 7.1 34.3 42.8 1.8 20.1 35.2 44.3 24.0 

Sultano 5.8 5.1 10.3 1.4 35.5 46.8 1.9 13.6 37.6 48.5 24.4 

Mean3 6.4 5.5 10.5 2.6 29.6 51.0 2.2 15.3 31.3 52.9 23.1 

SD4 0.44 0.36 0.48 2.23 4.60 5.35 0.31 2.45 4.48 5.64 1.17 

Field pea            

Cartouche 7.0 1.8 13.2 4.0 25.7 45.5 8.6 19.0 26.5 53.9 5.2 

Cherokee 3.0 1.5 14.4 2.9 22.4 47.0 10.2 19.0 23.3 57.1 4.5 

Cigal 4.1 1.6 14.2 4.2 25.7 42.6 10.0 20.5 26.6 52.4 4.2 

Comanche 3.0 1.5 14.5 3.5 17.0 53.0 9.1 19.9 17.8 61.9 5.8 

Dove 4.2 1.5 13.5 4.1 24.5 47.3 7.0 19.4 25.6 54.2 6.6 

Eiffel 3.4 1.3 12.9 3.6 26.6 43.8 10.2 18.2 27.5 53.8 4.3 

Enduro 2.5 1.6 15.1 3.1 18.5 52.8 7.9 20.0 19.0 60.5 6.6 

Esmeralda 3.9 1.3 14.6 3.2 20.0 49.6 9.1 19.9 21.0 58.4 5.4 

Genial 3.4 1.2 13.3 4.9 19.3 51.7 7.6 20.3 20.2 59.1 6.7 

Grisel 2.8 1.4 13.2 3.0 23.7 49.3 7.3 18.1 24.6 56.5 6.6 

Indiana 3.1 1.4 15.3 3.2 24.3 44.1 9.9 20.3 25.3 53.8 4.4 

Isard 2.7 1.2 13.3 3.2 21.4 50.6 8.6 18.1 22.0 59.2 5.7 

James 3.3 1.1 14.9 3.1 15.5 53.0 9.8 20.0 16.6 62.6 5.3 

Marqueta 3.7 1.5 14.4 3.8 21.4 49.2 7.7 20.4 22.2 56.7 6.3 

Montrebei 2.7 1.2 14.9 4.0 20.9 49.1 7.9 21.0 21.8 56.7 6.2 

Montsant 3.1 1.4 14.4 3.8 20.5 50.1 7.6 20.3 21.4 57.5 6.4 

Pixel-I 3.5 1.6 12.4 3.1 26.6 46.3 8.5 17.2 27.6 54.6 5.3 

Pixel-L 3.7 1.7 14.0 3.8 37.0 36.2 5.8 19.7 38.0 41.8 6.1 

Spacial 3.5 1.2 12.6 4.0 19.3 53.0 7.9 18.3 20.4 60.7 6.6 

Standal 3.4 1.3 13.1 4.3 28.9 42.9 7.2 19.1 30.1 50.0 5.8 

Verbal 2.5 1.3 13.3 3.5 27.7 45.0 7.4 18.5 28.8 52.3 6.0 

Mean 3.5 1.4 13.9 3.6 23.2 47.7 8.3 19.4 24.1 55.9 5.7 

SD 0.93 0.19 0.85 0.51 4.70 4.23 1.17 0.99 4.76 4.56 0.80 

Faba bean            

Chiaro di Torrelama 2.7 1.3 16.2 2.3 21.8 52.1 3.2 21.7 22.6 55.1 15.9 

Diva 3.6 1.4 13.7 2.4 24.9 52.4 2.6 18.8 25.8 54.8 19.1 

Fabelle 2.5 1.3 13.6 1.9 21.0 56.3 3.0 18.2 21.9 59.2 18.0 

Favel 2.7 1.5 15.6 2.5 23.5 50.4 3.3 21.6 24.4 53.4 15.1 
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Gladice 3.4 1.4 15.0 2.7 26.9 47.7 2.7 20.9 27.9 50.3 16.4 

Irena 3.9 1.5 14.3 2.1 25.6 50.6 3.1 19.4 26.5 53.6 15.8 

Nordica 2.5 1.5 14.8 2.0 24.0 52.6 2.5 19.5 24.9 55.0 19.7 

Organdi 3.3 1.3 15.4 2.8 24.4 49.2 3.0 21.5 25.5 52.1 15.4 

Rumbo 3.3 1.4 15.1 2.4 25.9 49.6 2.9 20.5 26.8 52.3 16.8 

Scuro di Torrelama 3.0 1.2 15.7 2.2 22.1 52.6 2.7 21.0 23.1 55.1 18.6 

Mean 3.1 1.4 14.9 2.3 24.0 51.4 2.9 20.3 24.9 54.1 17.1 

SD 0.52 0.10 0.82 0.28 1.82 2.28 0.24 1.18 1.83 2.28 1.57 

White lupin            

Amiga 9.7 9.0 7.7 1.5 51.0 18.6 8.8 14.0 58.1 27.5 2.1 

Estoril 10.7 7.5 8.4 1.7 47.8 19.1 7.7 15.5 56.7 27.1 2.5 

Lumen 8.3 7.6 8.9 1.9 55.7 13.6 7.2 16.3 62.4 20.8 1.9 

Multitalia-IT 8.8 7.3 9.1 1.8 47.9 18.9 7.3 16.6 56.0 26.5 2.6 

Multitalia-PT 8.1 5.5 9.9 1.6 47.6 17.8 8.2 17.9 54.9 26.2 2.2 

Mean 9.1 7.4 8.8 1.7 50.6 17.6 7.8 16.1 57.6 25.6 2.3 

SD 0.99 1.14 0.74 0.14 3.12 2.07 0.57 1.28 2.60 2.44 0.27 

Narrow-leafed lupin           

Azuro 6.1 4.3 11.6 6.2 27.9 44.5 5.0 21.4 28.9 49.2 8.8 

Sonet 6.0 5.5 10.2 6.8 33.7 40.2 4.8 20.4 34.5 44.8 8.4 

Mean 6.1 4.9 10.9 6.5 30.8 42.4 4.9 20.9 31.7 47.0 8.6 

SD 0.20 0.58 0.70 0.30 2.91 2.13 0.09 0.50 2.82 2.23 0.26 

Yellow lupin            

Dukat 6.2 5.1 6.6 3.0 21.8 48.2 7.4 18.7 24.8 55.9 6.5 

Mister-PL 6.0 4.9 6.2 2.7 23.5 48.9 6.6 16.8 26.7 55.7 7.5 

Mister-PT 4.7 3.6 7.2 2.6 30.4 41.8 4.8 18.0 34.1 46.8 8.6 

Nacional 5.4 5.0 7.1 2.3 20.4 50.1 6.6 16.6 25.5 56.9 7.6 

Taper 5.5 4.9 6.5 2.7 21.1 49.9 8.1 17.1 24.0 58.2 6.2 

Mean 5.6 4.7 6.7 2.7 23.4 47.8 6.7 17.5 27.0 54.7 7.3 

SD 0.55 0.61 0.36 0.22 3.63 3.06 1.09 0.78 3.67 4.04 0.85 

Chickling vetch           

Grão-da-gramicha 2.4 1.0 16.7 6.7 12.0 50.8 6.7 27.1 13.0 59.3 7.6 

Common vetch           

Barril  2.4 1.2 15.5 3.5 12.0 54.3 6.1 22.1 16.5 60.6 8.3 

1Results expressed as mean values (n=2). 2DM, dry matter; FA, fatty acids; MUFA, monounsaturated 

fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids. 3Mean values of Kabuli type 

varieties (all except var. Elmo). 4SD; standard deviation. 
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Figure 1. GC-FID fatty acids profile of a) chickpea type Kabuli var. Elvar and b) white lupin var. 

Estoril. BHT, butylated hydroxytoluene; IS, internal standard (C17:0); RT, retention time. 
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Table 5. Carotenoids and organic acids composition (mg/100 g, dry matter basis) of the grain legume 

samples.1 

Samples Carotenoids Organic acids 

 Lutein Zeaxanthin Total Oxalic Aconitic Citric Pyruvic Malic Fumaric Total 

Chickpea           

Elmo 0.81 15.42 16.23 6.1 0.3 110.1 n.d.4 22.3 0.1 138.9 

Eldorado 0.32 8.44 8.76 2.4 0.5 154.9 n.d. 13.2 n.d. 171.0 

Elixir 0.25 8.02 8.28 7.2 1.1 255.7 n.d. 30.6 n.d. 294.5 

Elvar 0.31 8.10 8.41 6.5 0.5 324.6 n.d. 30.9 0.1 362.6 

Reale 0.20 4.85 5.05 2.9 0.4 181.4 n.d. 27.5 n.d. 212.2 

Sultano 0.10 2.77 2.87 2.0 0.3 186.0 n.d. 23.2 n.d. 211.6 

Mean2 0.24 6.44 6.67 4.2 0.5 220.5 - 25.1 0.1 250.4 

SD3 0.083 2.252 2.333 2.18 0.24 62.30 - 6.58 0.04 69.42 

Field pea           

Esmeralda 0.49 n.d. 0.49 n.d. 0.4 88.7 1.9 28.5 0.1 119.6 

Grisel 0.36 n.d. 0.36 n.d. 0.2 104.0 n.d. 33.5 n.d. 137.7 

Marqueta 0.36 n.d. 0.36 n.d. 0.6 243.9 2.7 28.2 0.1 275.4 

Montrebei 0.90 n.d. 0.90 n.d. 1.4 104.3 3.2 30.0 0.1 139.0 

Montsant 0.39 n.d. 0.39 n.d. 0.8 86.6 1.3 13.2 0.1 101.9 

Pixel-I 0.43 n.d. 0.43 n.d. 0.3 97.6 n.d. 25.7 nd 123.7 

Mean 0.49 - 0.49 - 0.6 120.8 1.5 26.5 0.1 149.5 

SD 0.190 - 0.190 - 0.38 55.81 1.22 6.50 0.04 57.95 

Faba bean           

Chiaro di Torrelama 0.33 n.d. 0.33 n.d. 1.3 114.6 23.8 39.4 0.1 179.1 

Diva 0.24 n.d. 0.24 n.d. 1.3 60.8 13.9 28.2 n.d. 104.1 

Fabelle 0.39 n.d. 0.39 n.d. 0.5 151.7 4.0 49.1 0.1 205.3 

Favel 0.36 n.d. 0.36 n.d. 1.3 97.2 22.6 56.7 n.d. 177.7 

Organdi 0.29 n.d. 0.29 n.d. 1.7 138.6 32.7 36.9 n.d. 209.8 

Scuro di Torrelama 0.21 n.d. 0.21 n.d. 1.5 116.9 13.4 33.7 n.d. 165.4 

Mean 0.30 - 0.30 - 1.2 113.3 18.4 40.6 0.0 173.6 

SD 0.065 - 0.065 - 0.34 29.36 9.19 9.58 0.05 34.89 

White lupin           

Amiga 0.05 1.43 1.48 7.7 0.3 393.5 n.d. 8.4 0.1 410.0 

Estoril 0.12 1.78 1.89 4.7 0.3 362.5 n.d. 12.9 n.d. 380.4 

Lumen 0.16 1.67 1.84 6.9 0.3 347.2 n.d. 9.8 0.1 364.2 

Multitalia-PT 0.18 1.40 1.58 5.9 0.3 437.4 n.d. 18.0 0.1 461.6 

Mean 0.13 1.57 1.70 6.3 0.3 385.1 - 12.3 0.1 404.0 

SD 0.051 0.168 0.178 1.13 0.01 34.50 - 3.69 0.02 37.09 

Narrow-leafed lupin          

Azuro 0.15 2.14 2.29 3.4 0.4 182.2 2.0 18.8 0.1 206.8 

Sonet 0.24 4.01 4.25 0.7 0.2 121.9 1.6 9.4 n.d. 133.8 

Mean 0.20 3.07 3.27 2.0 0.3 152.0 1.8 14.1 - 170.3 
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SD 0.044 0.939 0.982 1.34 0.08 30.20 0.21 4.69 - 36.53 

Yellow lupin           

Dukat 0.30 2.46 2.76 3.0 0.3 151.9 n.d. 12.4 0.1 167.6 

Mister-PT 0.23 1.31 1.54 4.3 1.1 224.4 2.3 25.9 0.3 258.2 

Nacional 0.25 1.44 1.69 3.2 0.2 293.3 n.d. 19.2 0.1 316.0 

Taper 0.17 1.49 1.67 5.3 0.4 200.3 n.d. 14.2 0.1 220.3 

Mean 0.24 1.68 1.91 3.9 0.5 217.5 - 17.9 0.1 240.4 

SD 0.047 0.458 0.494 0.93 0.33 51.18 - 5.42 0.08 54.28 

Chickling vetch          

Grão-da-gramicha 0.44 n.d. 0.44 4.0 0.3 106.7 2.2 21.3 n.d. 134.4 

Common vetch           

Barril  0.16 n.d. 0.16 3.0 0.5 23.4 10.1 18.3 0.1 55.3 

1Results expressed as mean values (n=2). 2Mean values of Kabuli type varieties (all except var. 

Elmo). 3SD; standard deviation. 4n.d., not detected. 

 

 

Figure 2. HPLC-DAD carotenoids profile of chickpea var. Elvar. Peaks identification: lutein (1) 

and zeaxanthin (2). 

 

Figure 3. HPLC-UV organic acids profile of chickpea var. Elvar. Peaks identification: mobile 

phase (1), oxalic acid (2), cis-aconitic acid (2), citric acid (4), malic acid (5), trans-aconitic acid 

(6) and fumaric acid (7). 
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3.4. Discriminant analysis 
 

For chickpea, G2 presented, in comparison to G1, higher (P < 0.05) levels of C18:1c9 

and MUFA and lower (P < 0.05) levels of C18:2n6 and thus of PUFA. C18:3n3 tended (P < 

0.1) to be higher in G1 than in G2. For field pea, G2 tended (P < 0.1) to present higher 

contents than G1 of ADL and C12:0 and showed significantly lower (P < 0.01) levels of 

starch than G1. For the group comprising faba beans, common vetch and chickling vetch, G1 

presented significantly higher levels of starch (P < 0.01) and C23:0 (P < 0.05) and lower 

ones of lipids and C20:1c11 (P < 0.05). Moreover, G1 tended (P < 0.1) to present higher 

levels of NDF, C16:0 and C24:0 and lower values of GE and soluble CP than G2. Finally, 

regarding lupins, G1 showed in relation to G2 significantly (P < 0.05) higher ash levels and 

tended (P < 0.1) to present higher contents of total FA and C16:0. However, G2 significantly 

differed from G1 in individual FA namely C16:1 and C20:0 (P < 0.05) and C22:0 and C22:2n6 

(P < 0.01) for which levels were higher. 
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Figure 4. Analysis of variance (per grain legume group) between groups that represent different crude protein content ranges. NDF, 

neutral detergent fibre; ADF, acid detergent fibre; ADL, acid detergent lignin; GE, gross energy; SolCP, soluble crude protein; FA, fatty 

acids; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; DM, dry matter. **, P < 0.01; *, 

P < 0.05; ꝉ, P < 0.1; absence of statistical symbol in columns indicate groups are not significantly different (P > 0.05). 
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4. Discussion 
 

The EU is characterized by a low level of vegetal protein production [24]. Despite the 

fact the import of large quantities of soybeans and SBM has enabled self-sufficiency in 

livestock products, increasing the cultivation of GL would be an important contribution to the 

sustainable development of European agriculture and food systems [25]. Data on the 

nutritive value of locally-produced GL seeds is therefore useful to promote these alternative 

ingredients in animal feeding. Moreover, knowledge on the seeds non-nutrients (or 

secondary compounds) is crucial to avoid toxic events on animals (the case of antinutritional 

factors) and to take into consideration the benefits these metabolites may bring to farmed 

animals in terms of, for instance, welfare, zootechnical performances or final product color. 

Proximate composition revealed lupins varieties as better sources of CP and of cell-

wall components than the other GL, though the poorest sources of starch. Mean CP values 

found for lupins and other legume seeds are in accordance with known feed tables and other 

studies [4, 7, 26-28]. However, they may vary slightly depending on variety, maturity and 

growing conditions [29]. For example, when compared to the CP levels observed in the 

present work for lupins, Musco et al. [27] reported lower ones for the YL varieties Dukat, 

Mister e Taper (34.3, 36.2 e 32.2 g/100 g DM, respectively) and a higher one for WL var. 

Multitalia grown in Italy (45.4 g/100 g DM). Still, CP content of all GL studied is quite lower 

than that of SBM (ca. 50.0 g/100 g DM) and fishmeal (ca. 75 g/100 g DM) [28]. In addition to 

nutritional properties, GL proteins exhibit functional properties such as solubility, foaming, 

water and fat binding capacity that play an important role in food formulation and processing. 

Those properties are determined by the amino acidic composition, structure and 

conformation as well as processing conditions [30]. About half of seeds CP was highly 

soluble in water (Table 3) reflecting the presence of water-soluble storage proteins (which 

may include protease inhibitors and lectins) [29]. Approximately 50% of solubility was 

previously reported for a chickpea type Kabuli protein isolate after an aqueous alkaline 

extraction followed by isoelectric precipitation [30]. 

When compared to other GL, lupins have, indeed, unique carbohydrate properties 

characterized by high levels of fibre and negligible amounts of starch [7]. Still, energy 

provided by these seeds is high (Table 3). Seeds of NLL contained more NDF and ADF 

together than YL and WL, meeting Gdala [31] who also explained that differences may be on 

the distinct seed content in rhamnose, xylose, galactose, and uronic acids [31]. High 

concentration of fibre in lupins is considered a drawback mainly in piglets and growing pigs 

[7, 32] but is interesting for ruminant animals once they well utilize cell-wall components in 

their diets. Dixon and Hosking [6] reported that fibre from lupin seeds is highly digestible and 

could favour a good acetate:proprionate ratio in the rumen. In the remaining GL, high starch 
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levels were observed, as expected [4, 7, 28]. Common vetch (var. Barril), as some FP 

varieties, achieved more than 40.0 g starch/100 g DM, being in accordance with findings of 

Abreu and Bruno-Soares [33]. Starch levels above 40.0 g/100 g DM are frequently reported 

also for FB [7, 28, 33]; in the present work, maximum value was 37.4 g/100g DM (Chiaro di 

Torrelama). Differences may be attributed to varieties themselves or method of analysis. 

Grain legumes contained low amounts of fat with beneficial composition in terms of 

unsaturated FA, mainly of C18:2n6 and C18:1c9 which accounted for ca. 60-80% of total FA. 

C18:1c9 was at higher proportion than C18:2n6 only in WL samples contributing to their 

increased MUFA levels and low n6/n3 ratio, whereas C18:2n6 prevailed in all the other GL 

studied supporting their richness in PUFA. The profile obtained agrees with the literature for 

most GL species [4, 7, 27, 34]. Little information is available for common vetch; the 

commercial cultivar “Lanjian NO.3” from China showed different FA profile to var. Barril from 

Portugal mainly for PUFA as it presented in average 40.0 g C18:3n3/100 g FA and only 18.0 

g C18:2n6/100 g FA [35]. FP and WL varieties approached for C18:3n3 similar levels to 

those of soybean oil (ca. 7.8 g/100 g FA) [35]. 

Among chickpea varieties, differences were noticed between Desi and Kabuli seeds. 

Despite the fact only one Desi variety was available for analysis, results suggest that these 

seeds, more likely to be used in animal feeding, are, comparing to Kabuli ones, richer in cell-

wall components and poorer in starch and lipids (still, with higher PUFA proportion). 

Bampidis and Christodoulou [4] also reported such differences. 

Xanthophylls are a class of carotenoids widely used as feed additives to generate 

products meeting consumers’ demands mainly in terms of color. The application of 

xanthophylls in animal feed in the EU is restricted to farming of poultry and fish (mainly 

salmon and trout) [36], lutein being of greatest importance together with astaxanthin and 

canthaxanthin [37]. When as feed additives, and according to current legislation [36], lutein 

and zeaxanthin, the two xanthophylls found in the studied GL (Table 4), are only allowed to 

be fed to poultry. Chickpeas and lupins, while containing the highest levels of zeaxanthin and 

therefore of total xanthophylls (Table 5), could hence play a major role as sources of natural 

pigments in poultry diets helping to generate better color of broiler skin and especially of egg 

yolk [37]. Interestingly, in humans, positive correlations between consumption of 

lutein/zeaxanthin and adult macula degeneration were ascertained [37]. Greater amounts of 

carotenoids found in chickpeas and lupins may be associated with their also higher lipid 

content (Table 4) once carotenoids are fat-soluble compounds. Higher carotenoid levels in 

chickpea type Desi than in type Kabuli ones can be related to the higher antioxidant activity 

observed for darker seeds [38] and for which carotenoids may give a contribution. 

Among GL, WL varieties presented the highest levels of total organic acids given their 

increased contents in citric acid (Table 4). Dinkelaker et al. [39] showed that, as a way of 
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mobilizing nutrients (in particular phosphorus) in calcareous soils, white lupins enhanced the 

release of organic acids such as citric acid from particular root zones. According to these 

authors, as most of the other lupin species prefer acidic or neutral soils, they do not have to 

make this effort to acquire nutrients from the soil. This could be the reason why higher levels 

of citric acid were found in WL seeds comparing to the other GL samples. As natural sources 

of organic acids, all the studied GL could play a role in animal diets of swine, poultry or fish. 

Indeed, it is believed that after the ban on most of the antibiotic growth promoters within the 

EU in 1999, feed additives such as organic acids and probiotics have increased in 

importance in animal nutrition [40]. In the diets for broilers, acidifiers such as organic acids 

avoid scouring, maintain the health of the gastrointestinal tract and therefore improve overall 

zootechnical performances [41]. Used as a supplement for acidification in the diets of 

rainbow trout, red seabream and rohu, citric acid has been extensively used to enhance 

growth and feed utilization [42]. Among all organic acids, oxalic acid should be highlighted 

once it affects calcium and magnesium metabolism and protein digestion when ingested 

mainly by monogastrics [43]. Where detected (Table 5), this organic acid stood below the 

levels found for soybean seeds [44]. 

Discriminant analysis builds a predictive model for group membership. This analysis 

revealed that more inter-varietal differences occur in the case of lupin seeds. This is probably 

because, despite of the same genus, the three lupin species (WL, NLL, YL; herein clustered 

together) differ among each other particularly for FA profile. Within the studied chickpeas, 

discriminant analysis showed that increased MUFA and decreased PUFA contents (in 

particular of C18:1c9 and C18:2n6, respectively) are achieved in seeds with more than 23.6 

g CP/100 DM. Both for FP and FB/CoV/CV groups of varieties analyzed, more starch levels 

are found in seeds with lower CP contents (< 23.1 and 28.1 g CP/100 g DM, respectively). 

This analysis allows to realize that the choice for a given variety only based on its high CP 

content may penalize the supply of starch in the case of FP and FP/CoV/CV, PUFA in the 

case of chickpeas and total FA in the case of Lupinus seeds. 

 

5. Conclusions 

 

A fully characterization of the proximate composition, total lipid content, and fatty acids, 

carotenoids and organic acids profiles of several European marketable GL varieties is herein 

presented, comprising a valuable tool for those dealing with animal nutrition. Despite lower 

than that of SBM, protein content of the studied raw mature GL seeds was good (in average 

22-40 g/100 g DM). Additionally, high energy levels can also be provided by these seeds 
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from their starch (in all GL except lupins) and fibre (mainly lupins) fractions, which can 

strongly dictate which seeds best fit the animal to be fed (e.g. ruminants-fibre issue). All GL 

varieties revealed to be good sources of unsaturated FA, with C18:1c9 and C18:2n6 

comprising over 60% of total FA. 

Chickpeas and lupins presented the highest levels of total carotenoids (xanthophylls), 

thus suggesting to be putative alternative natural pigments for poultry diets. All varieties but 

mostly WL varieties could function as natural dietary acidifiers given the levels of organic 

acids (mainly citric acid) found in the seeds.   
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Table S1. Fatty acids profile of grain legume samples (g/100 g total fatty acids). 

 Samples C12:0 C14:0 C16:0 C16:1 C18:0 C18:1c9 C18:2n6 C18:3n3 C20:0 C20:2n6 C20:3n3 C22:0 C22:2n6 C24:0 NID1 

Chickpea               

Eldorado 0.01 0.16 11.04 0.03 1.59 24.04 57.00 2.42 0.59 0.06 n.d.2 0.33 n.d. 0.21 2.52 

Elixir 0.01 0.16 10.70 0.03 1.46 28.63 52.71 2.38 0.56 0.05 n.d. 0.33 n.d. 0.20 2.77 

Elmo 0.01 0.21 12.59 0.03 1.38 19.36 59.23 2.89 0.62 0.09 n.d. 0.43 n.d. 0.22 2.96 

Elvar 0.01 0.16 10.81 0.02 1.55 25.46 55.47 2.50 0.59 0.06 n.d. 0.33 n.d. 0.20 2.84 

Reale 0.01 0.16 9.67 0.04 7.11 34.30 42.83 1.75 1.78 0.03 n.d. 0.53 n.d. 0.30 1.48 

Sultano 0.01 0.14 10.32 0.04 1.39 35.49 46.80 1.86 0.60 0.06 n.d. 0.38 n.d. 0.20 2.71 

Mean1 0.01 0.16 10.51 0.03 2.62 29.58 50.96 2.18 0.82 0.05 - 0.38 - 0.22 2.46 

SD2 0.000 0.008 0.479 0.007 2.246 4.599 5.353 0.312 0.478 0.012 - 0.077 - 0.039 0.503 

Field pea               

Cartouche 0.01 0.23 13.20 0.01 4.01 25.73 45.52 8.55 0.49 0.04 n.d. 0.16 n.d. 0.31 1.73 

Cherokee 0.01 0.23 14.38 0.02 2.88 22.38 47.05 10.23 0.47 0.05 n.d. 0.17 n.d. 0.23 1.89 

Cigal 0.10 0.20 14.17 0.02 4.24 25.73 42.60 9.98 0.63 0.05 n.d. 0.17 n.d. 0.29 1.79 

Comanche 0.01 0.18 14.53 0.02 3.54 16.98 53.05 9.05 0.45 0.06 n.d. 0.16 n.d. 0.29 1.66 

Dove 0.01 0.21 13.45 0.03 4.08 24.53 47.31 6.96 0.50 0.04 n.d. 0.16 n.d. 0.35 2.35 

Eiffel 0.01 0.17 12.90 0.02 3.59 26.61 43.82 10.22 0.48 0.06 n.d. 0.14 n.d. 0.29 1.69 

Enduro 0.01 0.21 15.15 0.02 3.05 18.50 52.82 7.91 0.44 0.07 n.d. 0.16 n.d. 0.31 1.35 

Esmeralda 0.03 0.24 14.65 0.04 3.25 19.98 49.56 9.08 0.53 0.06 n.d. 0.19 n.d. 0.31 2.08 

Genial 0.01 0.21 13.34 0.04 4.86 19.27 51.65 7.60 0.69 0.06 n.d. 0.18 n.d. 0.29 1.81 

Grisel 0.09 0.21 13.16 0.02 3.05 23.66 49.32 7.26 0.46 0.05 n.d. 0.17 n.d. 0.30 2.25 

Indiana 0.01 0.25 15.28 0.03 3.16 24.33 44.13 9.90 0.49 0.06 n.d. 0.15 n.d. 0.24 1.98 

Isard 0.03 0.16 13.29 0.03 3.20 21.42 50.62 8.62 0.39 0.06 n.d. 0.14 n.d. 0.30 1.73 

James 0.02 0.23 14.93 0.03 3.14 15.49 53.02 9.76 0.55 0.09 n.d. 0.18 n.d. 0.23 2.31 

Marqueta 0.01 0.33 14.45 0.03 3.79 21.35 49.22 7.69 0.57 0.07 n.d. 0.23 n.d. 0.33 1.93 

Montrebei 0.01 0.22 14.91 0.03 4.04 20.92 49.13 7.88 0.53 0.05 n.d. 0.20 n.d. 0.38 1.70 
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Montsant 0.02 0.28 14.41 0.03 3.82 20.55 50.10 7.61 0.55 0.06 n.d. 0.21 n.d. 0.33 2.03 

Pixel-I 0.06 0.14 12.44 0.02 3.07 26.60 46.26 8.46 0.44 0.04 n.d. 0.14 n.d. 0.21 2.09 

Pixel-L 0.01 0.16 13.97 0.04 3.82 37.01 36.18 5.84 0.62 0.04 n.d. 0.18 n.d. 0.27 1.87 

Spacial 0.01 0.18 12.57 0.03 4.02 19.35 53.00 7.88 0.51 0.06 n.d. 0.15 n.d. 0.26 1.98 

Standal 0.02 0.20 13.07 0.03 4.26 28.95 42.92 7.24 0.52 0.04 n.d. 0.16 n.d. 0.28 2.31 

Verbal 0.02 0.18 13.29 0.02 3.52 27.69 45.03 7.43 0.39 0.04 n.d. 0.14 n.d. 0.27 1.98 

Mean 0.02 0.21 13.88 0.03 3.64 23.19 47.73 8.34 0.51 0.05 - 0.17 - 0.29 1.93 

SD 0.026 0.042 0.852 0.008 0.507 4.698 4.228 1.173 0.074 0.013 - 0.024 - 0.040 0.246 

Faba bean               

Chiaro di Torrelama 0.03 0.28 16.19 0.03 2.32 21.79 52.12 3.21 1.19 0.09 n.d. 0.48 n.d. 0.30 1.97 

Diva 0.02 0.16 13.68 0.02 2.40 24.86 52.38 2.61 1.06 0.10 n.d. 0.47 n.d. 0.24 1.99 

Fabelle 0.02 0.12 13.55 0.03 1.86 21.04 56.34 3.05 1.16 0.14 n.d. 0.40 n.d. 0.21 2.08 

Favel 0.02 0.33 15.60 0.04 2.53 23.52 50.37 3.26 1.34 0.08 n.d. 0.53 n.d. 0.35 2.03 

Gladice 0.02 0.22 14.96 0.04 2.71 26.89 47.71 2.71 1.36 0.10 n.d. 0.51 n.d. 0.26 2.53 

Irena 0.18 0.26 14.34 0.03 2.06 25.61 50.62 3.09 1.04 0.12 n.d. 0.43 n.d. 0.27 1.97 

Nordica 0.01 0.14 14.76 0.03 1.96 23.98 52.64 2.55 1.02 0.11 n.d. 0.50 n.d. 0.28 2.01 

Organdi 0.02 0.24 15.44 0.05 2.77 24.45 49.20 3.01 1.37 0.09 n.d. 0.51 n.d. 0.25 2.59 

Rumbo 0.02 0.20 15.11 0.03 2.42 25.91 49.65 2.89 1.14 0.09 n.d. 0.47 n.d. 0.28 1.77 

Scuro di Torrelama 0.03 0.25 15.68 0.03 2.18 22.13 52.62 2.70 1.15 0.09 n.d. 0.48 n.d. 0.29 2.37 

Mean 0.04 0.22 14.93 0.03 2.32 24.02 51.37 2.91 1.18 0.10 - 0.48 - 0.27 2.13 

SD 0.048 0.062 0.821 0.008 0.290 1.814 2.282 0.241 0.125 0.017 - 0.037 - 0.036 0.256 

White lupin               

Amiga 0.01 0.09 7.67 0.04 1.49 51.01 18.56 8.77 0.96 0.21 0.05 2.85 0.04 0.58 7.65 

Estoril 0.02 0.11 8.35 0.04 1.66 47.79 19.13 7.67 0.89 0.31 0.03 3.21 0.12 0.81 9.89 

Lumen 0.02 0.11 8.88 0.07 1.89 55.73 13.56 7.22 0.99 0.13 0.03 3.06 0.03 0.86 7.40 

Multitalia-IT 0.02 0.12 9.09 0.05 1.84 47.95 18.92 7.35 0.96 0.26 0.05 3.27 0.10 0.85 9.19 

Multitalia-PT 0.02 0.14 9.86 0.07 1.65 47.64 17.77 8.18 0.91 0.23 0.05 3.53 0.09 1.18 8.67 
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Mean 0.02 0.11 8.77 0.05 1.71 50.02 17.59 7.84 0.94 0.23 0.04 3.18 0.08 0.86 8.56 

SD 0.004 0.016 0.733 0.014 0.144 3.115 2.067 0.572 0.037 0.059 0.010 0.226 0.035 0.191 0.933 

Narrow-leafed lupin              

Azuro 0.03 0.22 11.56 0.05 6.23 27.91 44.49 4.97 0.79 0.04 n.d. 1.57 n.d. 0.37 1.57 

Sonet 0.02 0.18 10.17 0.04 6.84 33.69 40.25 4.80 0.82 0.03 n.d. 1.56 n.d. 0.33 1.25 

Mean 0.03 0.20 10.87 0.05 6.54 30.80 42.37 4.89 0.81 0.04 - 1.57 - 0.35 1.41 

SD 0.005 0.020 0.695 0.005 0.305 2.890 2.120 0.085 0.015 0.005 - 0.005 - 0.020 0.160 

Yellow lupin               

Dukat 0.02 0.16 6.64 0.09 3.01 21.76 48.24 7.41 2.43 0.23 n.d. 5.19 0.17 0.64 4.00 

Mister-PL 0.03 0.16 6.20 0.09 2.66 23.51 48.85 6.56 2.09 0.24 n.d. 4.60 0.17 0.58 4.28 

Mister-PT 0.04 0.23 7.18 0.13 2.65 30.41 41.84 4.82 1.78 0.17 n.d. 4.69 0.11 0.79 5.14 

Nacional 0.03 0.19 7.06 0.08 2.26 20.42 50.14 6.64 1.72 0.23 n.d. 4.21 0.15 0.60 6.30 

Taper 0.02 0.16 6.55 0.09 2.67 21.11 49.89 8.09 1.88 0.22 n.d. 4.62 0.15 0.60 3.96 

Mean 0.03 0.18 6.73 0.10 2.65 23.44 47.79 6.70 1.98 0.22 - 4.66 0.15 0.64 4.74 

SD 0.007 0.028 0.356 0.017 0.238 3.632 3.055 1.095 0.258 0.025 - 0.313 0.022 0.077 0.890 

Chickling vetch               

Grão-da-gramicha 0.02 0.63 16.67 n.d. 6.75 11.97 50.80 6.74 1.05 1.85 0.09 0.46 0.22 0.46 2.3 

Common vetch               

Barril  0.03 0.19 15.48 0.04 3.47 15.49 54.32 6.11 1.08 0.08 n.d. 0.39 n.d. 0.68 2.65 

1 NID, non-identified fatty acids.  
2 n.d., not detected 
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Supplementary material 1. HPLC-DAD representative chromatograms of pure standards 

and of grain legumes samples. (1) gallic acid, (2) protocatechuic acid, (3) p-hydroxybenzoic 

acid, (4) gentisic acid, (5) epicatechin, (6) syringic acid, (7) luteolin-8-C-glucoside, (8) 

apigenin-8-C-glucoside, (9) luteolin-6-C-glucoside, (10) luteolin-3,7-di-O-glucoside, (11) 

myricetin-3-O-rhamnoside, (12) apigenin-6-C-glucoside, (13) quercetin-3-O-galactoside, (14) 

quercetin-3-O-rhamnoside, (15) apigenin-7-O-neohesperoside, (a) apigenin heteroside (from 

Lupinus spp. samples). 
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Cicer arietinum L. var. Elmo 
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Pisum sativum L. var. Pixel 
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Vicia faba L. var. Chiaro di torrelama 
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Vicia sativa L. var. Barril 
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Lupinus luteus L. var. Nacional 
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Supplementary material 2. HPLC-DAD UV-vis spectra of the identified phenolic 

compounds in grain legume samples. 
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Reprinted from Food Chemistry, 214, F. Ferreres, S.C.Q. Magalhães, A. Gil-Izquierdo, P. Valentão, 

A.R.J. Cabrita, A.J.M. Fonseca, P.B. Andrade, HPLC-DAD-ESI/MSn profiling of phenolic compounds 

from Lathyrus cicera L. seeds, 678-685, Copyright (2017), with permission from Elsevier. 

S.C.Q. Magalhães performed seeds’ phenolic compounds extraction and wrote the Introduction and 

Conclusion sections as well as part of the Results and discussion section.
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This dissertation contains four papers published in international journals and one 

manuscript to be further published. A detailed discussion and conclusions of each 

related experimental work are presented in previous chapters of this thesis, relatively to 

each study. A general discussion and conclusions of the studies carried out are 

presented in this chapter as well as some future perspectives. 

 

8.1. General discussion 
 

The European Union (EU) has been experiencing for several years now a serious 

deficit in protein sources of vegetable origin, one of the most affected sectors being the 

animal feed industry, since the massive production of meat/fish, milk and/or eggs 

requires a large contribution of compound feedstuffs in which vegetable protein is an 

essential component. The European Commission is now focused on reverting this 

situation by promoting and stimulating the local production of protein crops in the EU, 

with emphasis on grain legumes. The production of grain legumes is currently low in 

the EU mainly because of past economic and political decisions but there are several 

opportunities related to the cultivation and ingestion of these seeds by animals and 

humans that can contribute to promote them as crops as well as to disseminate their 

consumption (Chapter 1). However, there are also limitations that must be overcome to 

meet the goal of facing grain legumes as alternative vegetable protein sources in 

animal feeding, namely the need for more information on the nutritional value of these 

ingredients. 

Portugal is an European country that also depends on large quantities of 

imported oilseed meals for compound feedstuffs. When reviewing in detail the 

particular situation of this country regarding grain legumes production during the last 

decades and use in animal feedstuffs (Chapter 2), it was noticed that there are several 

varieties of grain legumes well-adapted to national soil and climatic conditions, capable 

of growing under rainfed conditions (Autumn sowing), presenting final grain yields 

above those traditionally observed. Nonetheless, the information on the chemical 

composition of grain legumes used in Portugal, besides, mainly focused on crude 

protein, starch and ether extract. 

To fill this gap on the lack of knowledge on the chemical composition of 

Portuguese and other European varieties, it urges, therefore, to characterize in depth 

several commercial grain legumes varieties. This was the aim of the present 

dissertation: to promote grain legumes incorporation in farmed animals’ diets by 

unveiling their chemical composition. To achieve this goal, several varieties of different 

grain legumes species (a total of 51 samples), namely of chickpea (Kabuli and Desi 
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types), field pea, faba bean, lupins (white lupins, narrow-leafed lupins and yellow 

lupins), common vetch and chickling vetch were gathered from different European seed 

companies in their raw mature state to be assessed in terms of nutritive value and 

phytochemicals profile. If on the one hand, these grain legume species are adapted to 

the European edaphoclimatic conditions [1], on the other, they present most tradition in 

the European continent for food and/or feed purposes [2]. 

A detailed characterization of the primary metabolites, i.e. nutrients, of all 

varieties was performed and comprised proximate composition and fatty acids profile 

(Chapter 3). Indeed, the interest for an ingredient for food and feed arises primarily 

from its nutrients composition and content. The work presented on Chapter 3 can thus 

be a valuable tool for nutritionists, geneticists or producers dealing with animal feeding. 

It may allow creating a profile-type for grain legume species which could be of interest 

for the construction or improvement of nutritional tables. Nonetheless, other chemical 

parameters should be addressed in order to make grain legume profiles the most 

complete possible, namely, seeds amino acid profiles, minerals, vitamins and protein 

(albumins and globulins) and carbohydrate (mono-, di- and oligosaccharides) fractions.  

Not only do nutrients matter when discussing vegetable ingredients. In fact, the 

knowledge on the compounds resulting from the plants’ secondary metabolism (so-

called non-nutrients) is essential to, on the one hand, avoid toxic episodes in animals 

and humans (in the case of antinutritional factors) and, on the other, take advantage of 

the beneficial effects that may arise thereof (e.g. biological activities such as 

antioxidant, anti-inflammatory activities, among others). Champ [3] stated that 

secondary metabolites may have positive, negative or both effects when ingested. This 

situation is simply illustrated for instance with phenolic compounds. They are widely 

known for their antioxidant power [4], however, phenolic compounds such as the 

condensed tannins can precipitate proteins from the diet, decreasing their 

bioavailability and increasing their fecal excretion, and also cause bitter taste to the 

diet, decreasing feed intake and subsequently impacting body weight gain [5]. For this 

reason, the profile of some phytochemicals in the seeds was also studied during the 

present thesis. 

The choice regarding which phytochemicals to analyze fell on carotenoids 

(Chapter 3), organic acids (Chapter 3), phenolic compounds (Chapters 4 and 5) and 

alkaloids (in the specific case of lupins; Chapter 6). Carotenoids confer antioxidant 

properties to the seed and may also play a role on the color of the final product, this is, 

meat/fish or egg yolk [6, 7]. Dietary organic acids are commonly used as acidifiers in 

poultry and fish diets promoting growth and a better utilization of nutrients [8]. Phenolic 
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compounds contribute to the seed color and sensory characteristics of the seed and 

are responsible for several biological properties (e.g. antioxidant, anti-thrombotic, anti-

inflammatory) [4]. Finally, alkaloids are major phytochemicals in lupin seeds causing, 

when at high concentrations in feedstuffs, bitter taste that affects diet palatability and 

body weight gain [9]. As a first approach in this regard, the characterization of grain 

legumes phytochemical profile was performed on a smaller group of varieties 

(n=30/51). All the varieties belonging to the Portuguese catalog of varieties [n=12; 10] 

were chosen for the analysis as well as others that, besides not Portuguese, were 

grown in the country (n=3). Additionally, depending on seed availability, other varieties 

were included (n=15). Adequate chromatographic techniques (HPLC-DAD, HPLC-UV, 

HPLC-DAD-ESI/MSn, and GC-IT/MS) were used for this purpose. 

The studies presented in chapters 3-6 greatly contributed to increase the 

knowledge on the secondary compounds of grain legumes with major advances being 

achieved. The individual phenolics profile of mature raw whole seeds of chickpea type 

Desi, field pea and common vetch was characterized for the first time whereas for 

chickpea type Kabuli, faba beans and lupins a further insight into their phenolics profile 

was achieved with the characterization of varieties/genotypes not studied to date 

(Chapter 4). The qualitative phenolics profile of the chickling vetch variety was in depth 

characterized constituting a great advance in terms of phytochemical knowledge of this 

seed and even of the Lathyrus genus as until then no seed of this genus had been 

analyzed in this regard. It was possible to detect in its composition the presence of 

glycosylated flavonoids mainly of the kaempferol type. It is therefore of major interest to 

determine also its quantitative profile of such compounds. Regarding lupins alkaloids, it 

was possible to establish for the first time the alkaloids of some lupin samples namely 

white lupin var. Lumen and Estoril, yellow lupin var. Nacional and narrow-leafed lupin 

var. Azuro (Chapter 6). 

Applying a principal component analysis (PCA) on the sub-group of 30 samples 

for which nutrients and secondary compounds were studied (Table 1 of Chapter 3), it 

may be possible to understand the most prominent characteristics of each variety or 

group of varieties and thus better decide which one to choose depending, for example, 

on the animal species to fed (Figure 1). Indeed, the PCA, identify patterns that highlight 

similarities among samples. Noting, PCA did not consider the chickling vetch variety 

once its phenolic profile characterization was merely qualitative. 
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Figure 1. Projection of (A) grain legumes samples [variables: 1, chickpea type Desi (CHD) var. Elmo; 2, chickpea type Kabuli (CHK) var. Eldorado; 3, 

CHK var. Elixir; 4, CHK var. Elvar; 5, CHK var. Reale; 6, CHK var. Sultano; 7, field pea (FP) var. Esmeralda; 8, FP var. Grisel; 9, FP var. Marqueta; 10, FP 

var. Montrebei; 11, FP var. Montsant; 12, FP var. Pixel-I; 13, faba bean (FB) var Chiaro di Torrelama; 14, FB var. Diva; 15, FB var. Fabelle; 16, FB var. Favel; 

17, FB var. Organdi; 18, FB var. Scuro di Torrelama; 19, white lupin (WL) var. Amiga; 20, WL var. Estoril; 21, WL var. Lumen; 22, WL var. Multitalia-PT; 23, 

narrow-leafed lupin (NLL) var. Azuro; 24, NLL var. Sonet; 25, yellow lupin (YL) var. Dukat; 26, YL var. Mister-PT; 27, YL var. Nacional; 28; YL var. Taper; 29, 

common vetch (CV) var. Barril] and (B) loadings by chemical and phytochemical contents into the plane composed by the principal components PC1 and PC2 

containing 67.63% of total variance. (CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber; GE, gross energy; SFA, saturated fatty acids; 

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; OA, organic acids; PhenAcids., phenolic acids; PC_Total, total phenolic compounds). 
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Two PCs were retained and explained 67.63% of total data variability: PC1 represented 

48.15%% of the variation and was highly associated with starch whereas PC2 represented 

19.48% of data variability and was associated with total phenolic compounds content and in 

particular to that of flavonoids. Based on this, it is possible to notice how the different studied 

varieties are clearly grouped based on their composition in primary and secondary 

compounds, constituting four well-separated groups: 

• Group G1 is composed by the type Desi chickpea, all field peas and faba bean 

varieties and common vetch. In comparison to the other varieties these grain legumes 

stand out for the highest levels in C16:0 and phenolic acids and the lowest contents in 

GE, lipids and FA; chickpea type Desi is the variety containing the greatest levels of 

xanthophylls, compounds that occur at very low concentrations in all the other grain 

legumes; 

• Group G2 is composed by all narrow-leafed lupins and yellow lupin varieties. They 

present the highest levels of cell-wall components (NDF, ADF), flavonoids and total 

phenolic compounds; yellow lupin varieties are, in relation to all the other grain 

legumes, those with the greatest contents of ash and crude protein; 

• Group G3 is composed by all white lupin varieties. These are richer than the others in 

terms of lipids, fatty acids, C18:1c9 and consequently monounsaturated fatty acids; 

additionally, white lupin varieties present also the highest levels of organic acids; 

• Group G4 is composed by all Kabuli type chickpeas. These varieties present the 

highest levels of xanthophylls after chickpea type Desi but the poorest contents of 

overall phenolics, saturated fatty acids, C18:3n3 and cell-wall components. 

 

This analysis, while encompassing all grain legume varieties, is comparing lupins with 

the other grain legume species and, as observed in Chapter 3, lupin species present marked 

differences to the remaining seeds species. In line with this, PCA clearly separated lupins 

from the other grain legumes by placing them in the negative plan of PC1. For grain legumes 

other than lupins, it is noticed that they all resemble except Kabuli chickpeas. The PCA is 

therefore useful to take a global vision of the chemical composition of all the grain legumes 

studied. It may suggest poor intra-specific deviations, at least for the chemical parameters 

herein analyzed, because varieties of a same species are all clustered together, however, as 

observed in Chapter 3 with the discriminant analysis based on crude protein content of the 

seeds, significant intraspecific differences may be observed for some nutrients. It is of 

interest in following studies to characterize carotenoids, organic acids, phenolic compounds 

and alkaloids also for the remaining 21 grain legume samples for which the profiles were not 
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determined and to see if these groups are maintained. Moreover, the secondary metabolites 

analyzed in the present dissertation in grain legume seeds should be faced as a starting 

point for the study of other phytochemical compounds. Enzyme inhibitors (protease and 

amylase inhibitors), lectins, saponins are some examples. 

After an exhaustive study of several grain legume varieties, it matters to evaluate them 

in vivo to understand the impact of their inclusion in the diets of different farmed animals. The 

work developed in this sense in the present dissertation was based on two freshwater fish 

species of interest for the aquaculture industry, namely rainbow trout (carnivorous fish) and 

Nile tilapia (omnivorous fish). Since the first approach when an ingredient is to be tested in 

aquafeeds is the analysis of its apparent digestibility coefficients (ADC), this was herein 

developed (Chapter 7). Aquaculture is an expanding activity worldwide with very concrete 

needs regarding sustainable and cheap protein sources. In Chapter 2, it was evident the lack 

of in vivo nutrition studies on cataloged/commercial Portuguese varieties in the diet of farmed 

animals. Therefore, the evaluation of grain legumes apparent digestibility coefficients was 

built on six Portuguese varieties: chickpea type Desi var. Elmo, chickpea type Kabuli var. 

Elixir, field pea var. Pixel-I; faba bean var. Favel, white lupin var. Estoril and chickling vetch 

var. Grão-da-gramicha. Another breakthrough was achieved for chickling vetch as it was 

here evaluated for the first time in rainbow trout diets appearing as a promising ingredient for 

this fish species. Raw chickpeas were also studied for the first time in both species with very 

good results in Nile tilapia. Field pea was highly digestible in rainbow trout despite its high 

starch content. Processing appears to be needed for chickpeas and faba beans in rainbow 

trout and for chickling vetch in Nile tilapia diets to improve the overall digestibility of nutrients. 

Except for these situations, grain legume varieties could be cost-effective alternatives to 

high-price fish meal and soybean meal. Overall, Portuguese grain legumes digestibility 

results in farmed fish can boost the interest for Portuguese varieties, promoting their 

cultivation and commercialization. In fact, it is also possible to verify from Chapter 2 of this 

dissertation that Portuguese grain legume varieties present in some region of the country 

yields above 1000 kg/ha, which would be of interest to explore. To fully assess the real value 

of these grain legumes in aquaculture feed formulations, the next step would be to measure 

their ADCs at different dietary inclusion levels, to perform growth and palatability trials, to 

study the immune status of fish and to determine the effects on the organoleptic quality of the 

fish. Additionally, in vivo trials could be extended to other aquaculture species as well as to 

land farmed animals (poultry, swine and cattle) which end up being the major consumers of 

compound feedstuffs based on high-protein ingredients, as showed in Chapter 1. 

The knowledge on European marketable varieties of grain legumes was, at different 

levels, improved along the works developed in the present thesis. Overall, all grain legumes 
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present potential as raw mature vegetable protein sources in diets for farmed animals. 

However, levels of alkaloids (in the case of lupins), starch or fibre shall be considered 

individually for each variety also taking into account the animal species to be fed. 

Although it is not easy to totally replace an ingredient such as soybean meal in animal 

feed, it is crucial for Europe to have alternatives and to know about their potential as much as 

possible. The greater or lesser incorporation rates of grain legumes in European compound 

feedstuffs will depend on their price and availability. “Sustainability”, widely claimed 

nowadays for animal and vegetable production systems can in fact help increasing the area 

devoted to grain legumes in the EU and thus their inclusion in European compound 

feedstuffs. 

 

8.2. Conclusions 
 

At the beginning of the present thesis, we proposed to review the state of knowledge 

on grain legumes production in Portugal, to improve the knowledge on the nutritive value and 

phytochemical composition of European varieties of grain legumes and to evaluate the 

feasibility of including Portuguese varieties of grain legumes in the diet of rainbow trout and 

Nile tilapia by determining their ADC in both fish species. We successfully achieved the 

proposed objectives. The main conclusions of this thesis are: 

• Several varieties of chickpea, field pea, faba bean and lupins exist well-adapted to 

Portuguese edaphoclimatic conditions and capable of being sown in Autumn and 

grown under rainfed conditions, with final grain yields above those traditionally 

observed; 

• Protein content of the studied raw mature grain legume seeds was good varying in 

average between 22 g/100 g DM (chickpea type Desi var. Elmo and common vetch 

var. Barril) and ca. 40 g/100 g DM (yellow lupins). Seeds’ starch levels ranged from ca. 

27 g/100 g DM in chickpea type Desi var. Elmo to ca. 40 g/100 g DM in common vetch 

var. Barril and were null in all lupin samples. Neutral detergent fibre and acid detergent 

fibre were lowest for chickpea type Kabuli varieties (ca. 14 and 3 g/100 g DM, 

respectively and highest for narrow-leafed lupins (ca. 30 and 20 g/100 DM, 

respectively); 

• Discriminant analysis using seeds crude protein content as the categorical dependent 

variable showed significant inter-varietal (within grain legume species/groups) 

differences for some chemical parameters, revealing that the choice for a given variety 

only based on its high crude protein content may penalize the supply of starch in the 
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case of field pea and faba beans/common vetch/chickling vetch groups, 

polyunsaturated fatty acids in the case of chickpeas and total fatty acids in the case of 

Lupinus seeds; 

• Polyunsaturated fatty acids predominate in all grain legume species, except in white 

lupins, where monounsaturated fatty acids prevailed; 

• Zeaxanthin contents and therefore total carotenoids were highest for chickpea type 

Desi var. Elmo. Citric acid and therefore total organic acids were highest for white lupin 

varieties; 

• Phenolics profile of mature raw whole seeds of chickpea type Desi, field peas and 

common and a further insight into the genotypes of chickpea type Kabuli, faba beans 

and lupins was achieved for the first time; 

• Lathyrus cicera seeds were, for the first time, characterized for the phenolics fraction – 

where the presence of 37 glycosylated flavonoids, mainly kaempferol glycosides was 

revealed – and evaluated in diets for farmed fish showing good potential, at least at a 

digestibility level; 

• Alkaloids profile of varieties Lumen, Estoril (both white lupins), Nacional (yellow lupin) 

and Azuro (narrow-leafed lupin) were characterized for the first time; 

• Rich-alkaloid lupin extracts showed moderate anti-inflammatory activity, though low 

antioxidant activity, which could encourage the use of lupins not only as whole seed 

and flour but as nutraceuticals or therapeutic agents; 

• Field pea var. Pixel showed potential in diets for rainbow trout despite its high starch 

content and chickpeas (var. Elixir and Elmo) in those of Nile tilapia. Need for previous 

seed processing appear to be only necessary for chickpeas and FB in rainbow trout 

and for chickling vetch in Nile tilapia to improve overall digestibility of nutrients; 

• Overall, the data presented in this dissertation contribute to the valorization of grain 

legumes as alternative vegetable protein ingredients in compound feedstuffs. 

 

8.3. Future perspectives 
 

• Characterize the protein (albumin and globulin storage proteins) and carbohydrate 

fractions (mono-, di- and oligosaccharides) of grain legume varieties; 

• Characterize grain legume varieties amino acids profiles; 

• Determine grain legume varieties minerals and vitamins; 
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• Complete the characterization of grain legume varieties by determining other 

phytochemicals in the seeds (e.g. protease and amylase inhibitors, lectins, saponins); 

• Characterize the quantitative profile in phenolic compounds of chickling vetch var. 

Grão-da-gramicha; 

• Fully assess the value of grain legumes in aquaculture feed formulations by (1) 

measuring the ADCs of tested grain legumes at different dietary inclusion levels, (2) 

performing growth and palatability trials, (3) studying the immune status of fish and 

(4) determining the effects on the organoleptic quality of the fish; 

• Evaluate the potential of including these grain legume varieties also in diets for cattle, 

pigs and poultry as well as in those of other farmed fish species. 
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production under rainfed conditions in Portugal. Animal Science Doctoral Programme – I 
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2 - Poster 2 - Magalhães, S.C.Q., Cabrita, A.R.J., Fonseca, A.J.M. Produção de 

proteaginosas grão para alimentação animal em condições de sequeiro em Portugal. 
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3 – Poster 3 - Magalhães, S.C.Q., Cabrita, A.R.J., Valente, L.M.P., Rema, P., Fonseca, 

A.J.M. Apparent digestibility coefficients of Portuguese grain legumes in rainbow trout 

(Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus). Animal Science Doctoral 

Programme – II Workshop, 2015, Porto, Portugal. 
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bioactive compounds. Animal Science Doctoral Programme – I Workshop, 2014, Porto, 
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Introduction 

Grain legumes (GL) are crops of the botanical family Fabaceae grown for food and feed. Their recognized high 

protein content is the reason why they are dubbed “poor man’s meat” in low-income groups in developing countries  

(Tharanathan and Mahadevamma, 2003). In animal nutrition, GL also constitute appealing economical and 

sustainable alternatives to the protein sources commonly used (for instance soybean meal; e.g. Jezierny et al., 

2010). Mediterranean countries present suitable edaphoclimatic conditions for GL growth and measures towards 

increasing GL production have already been purposed in the European Union. Beyond proteins, legume seeds are 

great sources of energy and fiber (Jezierny et al., 2010) also containing non-nutrient bioactive compounds that 

may exert positive, negative or both effects in those who ingest them (Champ, 2002). For instance, while 

carotenoids and phenolic compounds confer antioxidant properties to GL, other metabolites such as oxalates, 

enzyme inhibitors or alkaloids may decrease nutrients ’ availability and digestibility in the gastrointestinal tract. 

Therefore, it seems imperative to determine in detail the nutritive value of GL available to better include these 

ingredients in humans’ and animals’ diets . The aim of this work was to characterize several Mediterranean GL 

varieties regarding nutritional and bioactive properties . Whenever possible, Portuguese (PT) varieties were 

compared with those from foreign (F) countries. 

Species chosen and analysis  

Grain legumes studied included Kabuli (beige; n=5) and Desi (dark; n=1) chickpea (Cicer arietinum), field pea 

(Pisum sativum; n=21), faba bean (Vicia faba var. minor; n=10), white (n=5), narrow-leafed (n=2) and yellow 

(n=5) lupins (Lupinus albus, L. angustifolius and L. luteus, respectively), chickling vetch (Lathyrus cicero; n=1) 

and common vetch (Vicia sativa; n=1) which were provided by several companies from Portugal, Spain, France , 

Italy and Poland. Fourteen varieties belonged to the Portuguese Catalog of Varieties. Proximate composition was 

determined in all varieties as described by Cabrita et al. (2011). Seeds were also analyzed for fatty acids profile 

by GC, according to Alves et al. (2008), organic acids by HPLC-UV following Sousa et al. (2009), carotenoids 

by HPLC-DAD as described by Mariutti et al. (2012) and phenolic compounds  by HPLC-DAD according to Silva 

et al. (2005). 

Major results  

Among all samples, protein content ranged between 21.0 and 42.8% DM with values above 32% belonging to 

lupins. Protein fraction was characterized as being highly soluble (62.7±5.41%) in all samples. Fattest samples 

were chickpeas and lupins (4.7±0.83 and 6.2±1.74% ether extract in DM, respectively) and the major fatty acids 

found in all varieties were palmitic (16:0), oleic (18:1c9) and linoleic (18:2) acids that accounted for more than 

75% of total fatty acids. Within chickpeas, the dark variety, which is suited for animal feeding, presented less fat 

and starch contents and higher levels of cell-wall components than beige seeds. Starch content ranged from 27.3 

to 44.6% DM in all samples, lupins being an exception. Indeed, lupins lacked starch but presented increased 

amount of non-starch polysaccharides  (17-29% DM) comparatively to the other samples. Major differences 

between PT and F varieties were observed in beige chickpeas; PT seeds presented (DM basis), in average, less 4.5 

percent points (pp) of protein and more 1.4 pp of fat and 5.4 pp of starch, relatively to F ones. Also, PT faba beans 

and white lupins had lower protein content, while field peas and white lupins showed similar values between both 

groups.  

Among all varieties, only two carotenoids were identified, namely lutein and zeaxanthin. Lutein was present in all 

samples and zeaxanthin only in chickpea and lupins . Of all chickpeas, dark variety stood out from the beige ones 

in terms of total carotenoids content (162.3 vs. 28.7-87.6 µg g-1 DM, respectively).  
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Indeed, dark chickpeas present higher antioxidant activity (Segev et al., 2010), carotenoids contributing for that. 

Main differences between PT and F varieties were also found in beige chickpeas, with the formers presenting 

higher total carotenoids levels. 

Several organic acids were identified in GL seeds (Figure 1). Citric and aconitic acids  (antioxidant agents) were 

common to all varieties, the former being the major compound in all samples. Lupins presented the highest total 

amount of organic acids (4.0±0.43 mg g-1 DM) and common vetch the lowest (0.5 mg g -1 DM). Among all, oxalic 

acid should be highlighted once it affects calcium and magnesium metabolism and protein digestion when ingested 

mainly by monogastrics (Akande et al., 2010). Results showed field peas and faba beans to lack oxalic acid and 

the other species to contain between 2.0 and 7.7 mg 100 g-1. These values are considered low for human 

consumption (OHF, 2008) and are below those found for soybean seeds (Massey et al., 2001). PT yellow lupin 

presented higher organic acids content than F ones mainly due to increased citric acid levels.  

 

Figure 1. HPLC-UV organic acids profile of chickpea var. Elvar.  Peaks identification: mobile phase (MP), 

oxalic acid (1), cis-aconitic acid (2), citric acid (3), malic acid (4), trans-aconitic acid (5) and fumaric acid 

(6).  

 

 

 

With the exception of chickpea samples, in which no phenolic compounds were detected , phenolic acids and 

flavones were the metabolites identified in GL seeds . The profile quietly varied between species and in some cases 

within varieties of the same species. Samples with a higher content and a more detailed profile in phenolic 

compounds were field peas (0.15-0.44 mg g-1 DM) and faba beans (0.30-0.41 mg g-1 DM). 

Conclusions 

Although for some species, PT varieties were not as proteinaceous as F ones, they all represent good sources of 

protein, energy and unsaturated fatty acids  for humans and animals . The content of xantophylls, citric acid and 

phenols is indicative of the antioxidant power of these seeds in biological systems. Oxalates do not constitute a 

problem in any of the samples studied. 
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Grain legumes (GL) play an important role in the humans’ diet and constitute appealing economical and 

sustainable alternatives to the protein sources commonly used in  animal feeding (e.g. soybean meal) [1]. 

Beyond proteins, legume seeds are great sources of energy and fiber [1] and also contain non-nutrient bioactive 

compounds that may exert positive, negative or both effects in those who ingest them. Thus, the aim of this 

work was to increase the knowledge on the bioactive compounds of several Mediterranean GL varieties 

regarding their utilization in human and animal nutrition. In this study, Kabuli (beige; n=5) and Desi (dark;  

n=1) chickpeas (Cicer arietinum), field peas (Pisum sativum; n=6), faba beans (Vicia faba var. minor; n=6), 

white (n=4), narrow-leafed (n=2) and yellow (n=4) lupins (Lupinus albus, L. angustifolius and L. luteus, 

respectively), chickling vetch (Lathyrus cicera; n=1) and common vetch (Vicia sativa; n=1) were evaluated. 

These samples were provided by companies from Portugal, France, Italy and Poland. Fourteen varieties 

belonged to the Portuguese Catalog of Varieties. Seeds were analyzed for organic acids by HPLC-UV [2] and 

for carotenoids [3] and phenolic compounds by HPLC-DAD [4].  

Concerning to the carotenoids profile, among all varieties, only two carotenoids were identified, namely lutein 

and zeaxanthin. Lutein was present in all samples and zeaxanthin only in chickpea and lupins . Of all chickpeas, 

the dark variety (suited for animal feeding) stood out from the beige ones in terms of total carotenoids content 

(162.3 vs. 28.7-87.6 µg/g dry matter, DM, respectively). Indeed, it was already reported that dark chickpeas 

present higher antioxidant activity [5], for which carotenoids may give a contribution. Portuguese beige 

chickpeas presented higher total carotenoids levels. Several organic acids were identified in GL seeds. Citric 

and aconitic acids (antioxidant agents) were common to all varieties, the former being the major compound in 

all samples. Lupins presented the highest total amount of organic acids (4.0±0.43 mg/g DM) and common 

vetch the lowest one (0.5 mg/g DM). Among all, oxalic acid should be highlighted once it affects calcium and 

magnesium metabolism and protein digestion when ingested mainly by monogastrics [6]. Results showed field  

peas and faba beans to lack oxalic acid and the other species to contain  between 2.0 and 7.7 mg/100 g. These 

values are considered low for human consumption [7] and are below those found for soybean seeds [8]. The 

Portuguese yellow lupin presented higher organic acids content than foreign ones mainly due to increased citric 

acid levels. In terms of phenolic compounds, they were not detected in all chickpeas, one white lupin and one 

faba bean varieties studied. In all the other samples, phenolic acids and flavones were the metabolites identified . 

Several differences between species were noticed and in some cases also within varieties of the same species. 

Field peas and faba beans presented a bigger variety and amount (0.35-0.45 mg/g DM) of phenolic compounds. 

In conclusion, the GL analysed are a good source of bioactive compounds, namely carotenoids, citric acid and 

phenolics, which are well known by their health promoting effects . In addition, oxalates do not constitute a 

problem in any of the samples studied. In this matter, Portuguese varieties seem promising options for both 

human and animal nutrition. 
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 10 

INTRODUÇÃO  11 
A indústria dos alimentos para animais enfrenta na Europa uma crise relacionada com a falta 12 
de fontes proteicas de origem vegetal. A maior parte dos ingredientes proteicos utilizados é 13 
importada de países terceiros (exemplo da soja e seus subprodutos), tendo um forte impacto 14 
negativo na balança comercial dos países e na rentabilidade das explorações. Neste contexto, 15 
a Comissão Europeia tem vindo a desenvolver esforços no sentido de incentivar a produção 16 
de plantas ricas em proteína, dando especial enfoque a leguminosas-grão (LG), como grão-17 
de-bico, ervilha, fava, entre outras, por apresentarem elevados níveis de proteína bruta (PB) 18 
(20-38% na matéria seca, MS) e um perfil nutricional interessante para a alimentação animal. 19 
Entre diversas LG, as sementes de tremoceiros têm a vantagem de apresentar níveis mais 20 
elevados de PB (32-38% na matéria seca; Petterson, 2000), sendo, por isso, amplamente 21 
valorizadas como alternativas aos ingredientes proteicos atualmente usados. No entanto, 22 
como todas as LG, os tremoceiros apresentam compostos antinutricionais, resultantes do 23 
metabolismo secundário, tais como fitolectinas, saponinas, oligossacarídeos, ácido fítico e 24 
alcaloides (Muzquiz et al., 2012). Estes últimos, em particular, são os compostos 25 
antinutricionais mais abundantes nos tremoceiros e com efeitos toxicológicos mais 26 
importantes, nomeadamente no sistema nervoso central, nos processos digestivos e nos 27 
sistemas reprodutor e imunitário, principalmente de animais monogástricos como aves e 28 
suínos (Pastuszewska et al., 2001) e peixes (Glencross et al., 2006). Os alcaloides podem 29 
ainda diminuir a palatabilidade das dietas, afetando, por consequência, a ingestão voluntária 30 
do alimento. No entanto, a inclusão de diferentes espécies de tremoceiros em dietas de aves, 31 
porcos, ruminantes e peixes foi já descrita com sucesso (e.g. Barneveld, 1999). Os alcaloides 32 
presentes nas sementes de tremoceiros derivam do aminoácido lisina e compreendem os 33 
alcaloides quinolizidínicos (lupanina, angustifolina, esparteína, entre outros), presentes em 34 
elevadas quantidades, e, por vezes, alcaloides piperidínicos (piperina) e indólicos (gramina) 35 
(Koleva et al., 2012). Diversas técnicas de processamento podem ser aplicadas de forma a 36 
reduzir o teor em alcaloides dos tremoceiros, nomeadamente a sua embebição em água, o 37 
descascamento e a fervura. Existem, no entanto, variedades com teor muito reduzido ou 38 
inexistente de alcaloides (apelidadas de “variedades doces”), resultantes de trabalhos de 39 
melhoramento genético. 40 
Para melhor selecionar sementes de tremoceiros para uso animal, as variedades disponíveis 41 
devem ser caracterizadas ou monitorizadas relativamente à sua composição em alcaloides. 42 
Neste sentido, o objetivo do presente trabalho foi o de determinar o perfil qualitativo e 43 
quantitativo destes compostos em variedades mediterrânicas de tremoceiros.  44 
 45 

MATERIAL E MÉTODOS 46 
Foram analisadas doze variedades de tremoceiros que compreendiam tremoço branco 47 
(Lupinus albus; n=5), tremoço azul (L. angustifolius; n=2) e tremocilha (L. luteus; n=5), 48 
gentilmente cedidas por empresas de Portugal, França e Itália (Quadro 1). Foram também 49 
analisadas variedades polacas já cultivadas com sucesso em Itália (Gresta et al., 2010). 50 
Após receção, as sementes foram secas em estufa com circulação forçada de ar (65ºC, 24 51 

h) e moídas (1 mm). A extração dos alcaloides realizou-se de acordo com Muzquiz et al. 52 
(1994) e Gresta et al. (2010). Sucintamente, 2 g de amostra foram homogeneizadas em 20 53 
ml de ácido tricloroacético 5% durante 30 min, a 400 rpm, e centrifugadas a 4000 rpm por 15 54 
min. O processo foi repetido por duas vezes. Os sobrenadantes foram reunidos e 55 
adicionaram-se 4 ml de hidróxido de sódio 10 M. Foi feita uma extração líquido-líquido com  56 
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diclorometano. O extrato foi evaporado até à secura (sob vácuo num evaporador rotativo) e 1 
os alcaloides diluídos em volume apropriado de diclorometano. A cafeína (1 mg/ml) foi usada 2 
como padrão interno. Procedeu-se à identificação dos alcaloides presentes nos extratos por 3 
cromatografia gasosa acoplada a espetrometria de massa (CG-EM) e à sua quantificação por 4 
CG acoplada a uma detetor de ionização de chama (FID). As condições de separação 5 

cromatográfica foram as descritas por Gresta et al. (2010). Os alcaloides foram identificados 6 
por comparação do seu índice de retenção e espetro de massa com padrões externos 7 
(gramina, lupanina e angustifolina) e com dados bibliográficos (Wink et al., 1995; WebBook, 8 
http://webbook.nist.gov/chemistry/). A quantificação dos compostos foi, por sua vez, realizada 9 
pelo método do padrão externo usando retas de calibração. Os compostos esparteína, α-10 

isolupanina, 11,12-desidrolupanina e 13-hidroxilupanina foram quantificados como lupanina. 11 
Os restantes foram quantificados como eles mesmos.  12 
 13 

RESULTADOS E DISCUSSÃO 14 
Foram identificados sete alcaloides nas amostras de tremoceiros: gramina, esparteína, 15 
angustifolina, α-isolupanina, lupanina, 11,12-desidrolupanina e 13-hidroxilupanina (Quadro 1, 16 
Figura 1). Todos os alcaloides encontrados são quinolizidínicos, com a exceção da gramina 17 
(indólico). Como é normalmente dado maior enfoque aos alcaloides quinolizidínicos, a 18 
informação relativa à gramina é escassa. No entanto, este metabolito tem sido, juntamente 19 
com a lupinina e a esparteína, alvo de estudo, principalmente em animais monogástricos, por 20 
ser dos alcaloides com maior toxicidade, estando descritas concentrações máximas de 21 
inclusão em dietas de aves, porcos e peixes (Pastuszewska et al., 2001; Glencross et al., 22 
2006). De acordo com Wink et al. (1995) poucas espécies de tremoceiros produzem gramina, 23 
sendo típico das tremocilhas (Petterson, 2000). No entanto, no presente trabalho, a gramina 24 
foi encontrada, a par da esparteína, em tremocilha e também em três variedades de tremoço 25 
branco; no entanto, em quantidades negligíveis. Apesar da lupanina ser descrita como o 26 
alcaloide maioritário em tremoceiros, não foi detetada na tremocilha. No entanto, resultados 27 
semelhantes foram já obtidos por Gresta et al. (2010). Apesar da angustifolina não ser comum 28 
em tremoço branco, este composto foi identificado em algumas variedades, tal como 29 
previamente descrito (Wink et al., 1995; Gresta et al., 2010).  30 
O perfil quantitativo de alcaloides nas amostras apresentou variação inter e intraespecífica 31 
(Quadro 1). A lupanina foi o composto maioritário nas variedades dos tremoceiros branco e 32 
azul e a esparteína nas de tremocilha, indo de encontro ao previamente descrito por diversos 33 
autores (e.g. Boschin et al., 2008; Gresta et al., 2010). No entanto, de forma geral, os valores 34 
encontrados são superiores aos descritos. Todas as variedades de tremoceiro branco, com a 35 
exceção da Multitalia, apresentaram um teor total em alcaloides inferior a 50 mg/100g MS, 36 
sendo, por isso, consideradas variedades doces (Pilegaard e Gry, 2009). Os elevados teores 37 
de lupanina verificados para a variedade Multitalia (1.40-4.62 g/100g MS) não eram 38 
expectáveis, uma vez que esta é descrita na literatura (Andrada et al., 2008; Gresta et al., 39 
2010), e pelo próprio fornecedor de semente, como uma variedade isenta ou com baixo teor 40 
de alcaloides. Por outro lado, é também referida como uma variedade antiga/histórica e com 41 
menor seleção genética comparativamente a outras (Calabrò et al., 2015). A explicação para 42 
valores tão elevados e para a  diferença no teor total de alcaloides entre ambas as variedades 43 
Multitalia (com diferentes origens) poderá dever-se, para além de motivos relacionados com 44 
melhoramento genético, a diferentes e/ou menos favoráveis condições ambientais a que a 45 
planta foi sujeita durante o crescimento (Christiansen et al., 1997; Calabrò et al., 2015). 46 
Relativamente às tremocilhas, Dukat apresentou níveis negligíveis de alcaloides, sendo, 47 
assim como Mister, considerada variedade doce. Por outro lado, Taper e Nacional são 48 
variedades amargas (> 50mg/100g MS). Gresta et al. (2010) descreveu resultados 49 
semelhantes para Dukat mas valores inferiores para Mister (0.9 mg/100g) e Taper (1.4 50 
mg/100g). Ambas as variedades de tremoceiro azul apresentaram niveis altos de angustifolina 51 
(9.7-383.1 mg/100g MS) e lupanina (52.2-1996.9 mg/100g MS), sendo, por isso, variedades 52 
amargas.  53 
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Das variedades doces identificadas (< 50 mg/100g MS; Quadro 1), apenas Estoril, Amiga e 1 
ambas as variedades Mister podem ser incluídas na alimentação animal sem qualquer 2 
restrição uma vez que apresentam um teor de alcaloides inferior ao limite de segurança 3 
imposto por autoridades do Reino Unido, França e Austrália (20 mg/100g MS; Pilegaard e 4 
Gry, 2009). Os valores elevados de lupanina e esparteína encontrados em Multitalia, Nacional, 5 
Taper e Azuro podem condicionar o seu uso em alimentação de suínos por estarem acima 6 
das doses letais descritas para esta espécie animal (Kim et al., 2007). Os suínos são, 7 
comparativamente com as aves, animais mais sensiveis a alcaloides de tremoço (Berneveld, 8 
1999; Petterson, 2000). Também não parece aconselhável incluir qualquer uma das 9 
variedades de tremocilha (exceto Dukat) em dietas de peixes por apresentarem um teor em 10 
esparteína superior a 10 mg/100g MS (Serrano et al., 2012). Em herbívoros, a lupanina e 11 
esparteína apresentam toxicidade média (Wink et al., 1995), no entanto, naqueles que são 12 
ruminantes, a presença de qualquer composto antinutricional é de menor importância 13 
relativamente a monogástricos, uma vez que as reações que ocorrem no rumen são capazes 14 
de transformar esses mesmos compostos em formas menos tóxicas (Dixon and Hosking, 15 
1992).  16 
 17 
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Quadro 1. Perfil e composição (mg/100g de matéria seca) em alcaloides de variedades 38 
mediterrânicas de tremoço. 39 
Amostra Origem 1 2 3 4 5 6 7 Total 

Tremoço branco 
Lumen França nq nq 3.1 nq 27.8 nd nq 30.9 
Estoril Portugal nq nq nq nq 19.8 nq nq 19.8 
Multitalia Portugal nd nd nq nd 1401.5 nd nd 1401.5 
Multitalia Itália nd nd 74.7 nd 4623.7 nd nd 4698.4 
Amiga França nq nq nd nq 15.5 nd nq 15.5 

Tremocilha 
Dukat Polónia nq nq nq nd nd nd nd 0.0 
Nacional Portugal nq 623.3 nd nd nd nq nd 623.3 
Mister Portugal nq 20.8 nq nd nd nq nd 20.8 
Mister Polónia nq 13.9 nd nd nd nq nd 13.9 
Taper Polónia nq 53.8 nd nd nd nd nd 80.3 

Tremoço azul 
Azuro Portugal nd nd 383.1 nq 1996.9 nd nd 2380.0 
Sonet Polónia nd nd 9.7 nq 52.2 18.4 nd 80.3 

 40 
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(1) Gramina, (2) Esparteína, (3) Angustifolina, (4) α-Isolupanina, (5) Lupanina, (6) 11,12-1 
Desidrolupanina, (7) 13-Hidroxilupanina. nd, não detetado (valor inferior ao limite de deteção: 2 
gramina, 0.05 mg/ml; angustifolina, 0.02 mg/ml; lupanina, 0.08 mg/ml); nq, não quantificado 3 
(valor inferior ao limite de quantificação: gramina, 0.16 mg/ml; angustifolina, 0.05 mg/ml; 4 
lupanina, 0.24 mg/ml).  5 
 6 

 7 
Figura 1. Exemplo geral do perfil cromatográfico obtido por CG-EM de alcaloides de tremoço 8 
branco (Lupinus albus). Identidade dos compostos de acordo com o Quadro 1. PI, padrão 9 
interno (cafeína). 10 

 11 
ALKALOIDS PROFILE OF MEDITERRANEAN VARIETIES OF LUPINUS ALBUS, L. 12 

ANGUSTIFOLIUS AND L. LUTEUS 13 
 14 
ABSTRACT 15 
In a European scenario of external dependence on protein crops for animal feeding, lupins 16 
(Lupinus spp.) are suggested as valuable alternatives to the commonly used vegetable protein 17 
ingredients, as they supply 32-38% of protein (dry matter basis, DM). However, lupins contain 18 
alkaloids as main antinutritional factors, which may cause several toxic effects on animals. In 19 
the present work, the qualitative and quantitative alkaloids profile of twelve mediterranean 20 
varieties of different lupins species (L. albus, white lupin; L. angustifolius, narrow-leafed lupin; 21 
L. luteus, yellow lupin) was determined by GC. Seven alkaloids were identified, namely, 22 
gramine, sparteine, angustifoline, α-isolupanine, lupanine, 11,12-dehydrolupanine and 13-23 
hydroxylupanine. The major compounds found were lupanine in white (16-4624 mg/100g DM) 24 
and narrow-leafed lupins (52-1997 mg/100g DM) and sparteine in yellow lupins (14-623 25 
mg/100g DM). Six varieties comprising white and yellow lupins were considered sweet (< 50 26 
mg/100g DM). The high contents of lupanine and sparteine obtained for some varieties may 27 
compromise their use in pig nutrition. Also, sparteine levels of yellow lupins above 10 mg/100g 28 
MS may limit their inclusion in aquafeeds. Major focus of attention must, therefore, be given to 29 
the sweet varieties also taking in account the individual composition of lupins alkaloids in order 30 
to better include these seeds in animal feeding. 31 
 32 
Keywords: Alkaloids, Gas chromatography, Lupins, mediterranean  33 
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Introduction 

Lupin seeds (Lupinus spp.) are low price and non-genetic modified ingredients that 

constitute good sources of protein (ca. 40%), fiber (ca. 28%), healthy fatty acids, vitamins, 

minerals and other metabolites with recognized antioxidant properties (e.g., polyphenols). 

However, they contain alkaloids as main antinutritional factors, which may cause several 

types of disorders on humans and animals. Considering the recent efforts towards 

increasing the local production of protein-rich crops, with emphasis on lupins, in the 

European countries for food and feed purposes , the present work aimed at determining the 

alkaloids profile of some lupins grown in Mediterranean countries and in Poland. The 

potential of the studied lupin seeds to be included in food and feed is here briefly 

discussed, based on our results on seeds alkaloids composition and on relevant information 

available in the literature. 

Material and methods 

Eleven varieties (included in the European Plant Variety Database) and one Portuguese 

ecotype of lupins, corresponding to mature raw seeds of L. albus (white lupin, WL; n=5), 

L. angustifolius (narrow-leafed lupin, NLL; n=2) and L. luteus (yellow lupin, NLL; n=2), 

were analyzed. Seeds were dried (65 ºC, 24 h), ground (1 mm) and dry matter (DM) 

content determined after drying the powdered samples at 103 ºC overnight. Alkaloids were 

extracted as previously described by Muzquiz et al. (1994) and Gresta et al. (2010), with 

slight modifications. Alkaloids identification and quantification in the rich-alkalo id  

extracts was performed by GC-MS and GC-FID, respectively. Chromatographic 

conditions were as described by Gresta et al. (2010). Using SPSS, mean values were 

compared by one-way ANOVA and principal component analysis (PCA) was applied for 

reducing the number of variables to a smaller number of the new derived va riables 

(principal components, PCs) that adequately summarize the original information, i.e., the 

alkaloids composition of the studied lupin samples. 

Major results and discussion 

Nine compounds were identified comprising quinolizidine (lupinine, sparteine, 

angustifoline, α-isolupanine, lupanine, 11,12,-dehydrolupanine and 13α-

hydroxylupanine), piperidine (smipine) and indole (gramine) alkaloids. Lupanine was the 

major alkaloid in samples of WL and NLL whereas sparteine was the most abu ndant 

compound in most of YL samples. These two tetracyclic quinolizidine alkaloids  are 

ubiquitous in lupin species. Two PCs explained 73.23% of total data variability (Fig. 1). 

PC1 represented 47.44% of the variation and was associated with total alkaloids content, 

and with the compounds angustifoline, lupanine and 13α-hydroxylupanine, whereas PC2, 

responsible for 25.79% of the variation, was mainly represented by lupinine and spart eine. 

According to that, three groups of lupin samples could be clearly distinguished (Fig. 1). 
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Fig. 1. Projection of lupin samples (variables: WL var. Estoril (WL-E); WL var. Amiga (WL-A); WL var. 
Multitalia-IT (WL-M-IT); WL var. Multitalia-PT (WL-M-PT); WL var. Lumen; YL ecotype Nacional (YL-N); 
YL var. Mister-PT (YL-M-PT); YL var. Mister-PL (YL-M-PL); YL var. Dukat (YL-D); YL var. Taper (YL-T); 

NLL var. Azuro (NLL-A); NLL var. Sonet  (NLL-S)) and loadings by alkaloids and total alkaloids content into 
the plane composed by the principal components PC1 and PC2 containing 73.23% of the total variance.  

Table 1 summarizes the total alkaloids content of each lupin sample, indicates which of 

them are suitable for human consumption and also reports  their maximum level of 

inclusion in feedstuffs based on the maximum recommended concentration of individual 

alkaloids reported in the literature.  

Table 1. Studied lupin samples: total alkaloids content and suitability as food and feed.  

Lupin 

samples 

Total alkaloids Human consumption? Trout Pigs 

mg/100 g DM if < 20 mg/100 g DM % of inclusion 

WL-E 19.8 (S) Yes - 38-56 

WL-A 0.0 (S) Yes - 100 

WL-M-IT 5169.1 (B) No - < 1 

WL-M-PT 1219.2 (B) No - < 1 

WL-L 31.5 (S) No - 27-40 
YL-N 1030.7 (B) No ~ 1 ~ 1 

YL-M-PT 26.7 (S) No 38 19-41 

YL-M-PL 70.6 (B) No 14 7-16 

YL-T 77.5 (B) No 18 24-51 

YL-D 12.4 (S) Yes (yet, not from an edible lupin species) 81 41-89 
NLL-A 2440.2 (B) No - < 1 

NLL-S 63.9 (B) No - 14-20 

S, sweet (< 50 mg/100 g DM); B, bitter (> 50 mg/100 g DM) 

Besides monogastrics, also ruminants (sheep, cattle) are large consumers of lupin seeds  as 

protein sources. Their biggest advantage regarding dietary alkaloids is that, apparently, 

prolonged exposure of alkaloids to rumen microorganisms increase their tolerance to such 

metabolites and may suppress alkaloids deleterious effects (Aguiar and Wink, 2005). 

Nonetheless, under penalty of affecting feed intake, bitter varieties found in the present 

work, and especially those containing very high levels of alkaloids (> 1000 mg /100 g DM) 

should be debittered to ensure a safer consumption and to allow increasing lupins dietary 

levels in monogastrics and ruminants.  

Conclusions 

Sweet WL and YL varieties appear as good options to include in food and/or feedstuffs as 

high intakes or inclusion levels appear to be possible. For the other lupin seeds, a 

debittering process is recommended before consumption. 
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Lupin varieties Origin Total alkaloids content (g/kg DM) IC25 for LOX inhibition 

WL Estoril Portugal 0.19 0.136 

Wl Multitalia-IT Italy 51.69 0.525 

Wl Multitalia-PT Portugal 12.19 0.229 

YL Nacional Portugal 10.31 0.766 

YL Taper Poland 0.78 0.104 

YL Dukat Poland 0.12 0.341 

NLL Azuro Portugal 24.40 0.416 

NLL Sonet Poland 0.64 > 0.354 
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Introduction 

Lupins (Lupinus spp.) are low cost and non-genetic modified legume seeds that provide 

30-40% dietary protein, ca. 28% fiber, healthy fatty acids, vitamins and minerals Sbihi, et 

al., 2013. Besides, lupins also contain several phytochemicals that result from the plant 

secondary metabolism, alkaloids being major compounds. Their levels in the seed must 

be as low as possible to ensure a safe consumption of lupins Lucas , et al., 2015. Indeed, 

in feedstuffs, lupins bitter taste, highly related to the seed alkaloids content, may decrease 

diet palatability, affecting feed intake and body weight gain; teratogenic alkaloids are of 

major concern for livestock due to death losses and to crooked calf disease in pregnant 

range cows Pilegaard and Gry, 2009. Although alkaloids may be toxic when ingested at 

high concentrations, several biological properties were already described for rich -alkalo id  

lupin extracts, such as antimutagenic, antibacterial, antifungal and anticancer Khan, et al., 

2015. As far as we are aware, the anti-inflammatory and antioxidant potential of these 

lupins secondary compounds has not been studied yet. The present work aimed at 

determining, in a cell-free system, the anti-inflammatory and antioxidant potential of rich-

alkaloids extracts from seeds of European Lupinus species, at concentrations considered 

non-toxic when consumed, by evaluating the 5-lipoxygenase (LOX) inhibitory capacity 

and the nitric oxide radical (•NO) scavenging activity, respectively. As the 68th United 

Nations General Assembly declared 2016 as the International Year of Pulses United 

Nations, 2014, we consider of interest the study of a major group of phytochemicals in 

lupins also from a pharmacological perspective. 

Material and methods 

Eight varieties (included in the European Plant Variety Database PVD, 2015) and one 

Portuguese ecotype of lupins, corresponding to mature raw seeds of 3 white lupins (L. 

albus), 2 narrow-leafed lupins (L. angustifolius) and 3 yellow lupins (L. luteus), were 

analyzed (Table 1). Seeds were dried (65 ºC, 24 h) and grounded (1 mm). Alkaloids were 

extracted as according to Muzquiz, et al., 1994 and Gresta, et al., 2010, with slight 

modifications. The inhibitory effect on LOX and the antiradical activity of the extracts 

were assessed according to Pereira, et al., 2015 and Vrchovska, et al., 2007, respectively. 

In both assays, three experiments were performed in triplicate. 

 
Table 1. IC25 (mg/mL) values for LOX inhibition by white (WL), yellow (YL) and narrow-leafed 

lupins (NLL) rich-alkaloid extracts. 
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Results and discussion 

The rich-alkaloid lupin extracts exhibited a concentration-dependent LOX inhibitory 

capacity (Figure 1). According to the effect observed (IC25), Taper and Nacional were the 

most and the least potent varieties, respectively  (Table 1). For Sonet, 18% of inhibition 

was noticed for the maximum concentration tested (0.354 mg of dried extract/mL). Pure 

compounds also inhibited LOX in a concentration-dependent manner, gramine displaying 

the strongest effect (data not shown). Due to low solubility in the phosphate buffer used 

in the assay, the highest concentration tested for lupanine, sparteine and angustifoline was 

0.077 mg/mL, which corresponded to 13, 18 and 23% inhibition, respectively. Both lupin  

extracts and pure standards revealed lower inhibitory capacity than quercetin 

(IC25=0.00051), the positive control used. 

 

 

 

The rich-alkaloids extracts studied herein revealed a moderate LOX-inhibitory potential. 

There was not a direct relation between extracts activity and its total alkaloid content 

(Table 1) but these compounds contribute to some extent for the extracts activity ; indeed, 

LOX inhibitory activity of Taper may be greatly attributed to gramine’s activity. The 

results obtained suggest that besides the phenolic compounds previously reported 

Czubinski, et al., 2012, alkaloids can play a role in LOX inhibition in lupin seeds. 

All the extracts and pure compounds displayed weak activity against •NO, Azuro 

displaying the best scavenging activity (20% at the highest concentration . Gramine was 

able to be scavenge •NO up to 34% at the maximum concentration (1 mg gramine/mL). 

Lupanine (0.238 mg/mL) presented ca. 11% of activity, whereas spartein and ang ustifoline 

revealed no activity. 

Conclusion 

The studied rich-alkaloid lupin extracts showed moderate LOX inhibitory activity, 

explained, at least partially, by their alkaloid composition, but were weak •NO scavengers.  
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Figure 1. 5-LOX inhibitory effect of 

white, yellow and narrow-leafed lupins’ 

rich-alkaloid extracts. 


