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Foreword 

(1) The EN Eurocodes are a series of European Standards which provide a 
common series of methods for calculating the mechanical strength of 
elements playing a structural role in construction works, i.e. the structural 
construction products. 

 

 They enable to design construction works, to check their stability and to 
give the necessary dimensions to the structural construction products. 

 

(2) They are the result of a long procedure of bringing together and 
harmonizing the different design traditions in the Member States. In the 
same time, the Member States keep exclusive competence and 
responsibility for the levels of safety of works. 

 

(3) Sustainability requirements for buildings often lead to structural concepts, 
for which the mechanical resistance and stability of construction works is 
not governing the design, but serviceability criteria can control the 
dimensions. A typical example are long span lightweight floor structures, 
for which the design for vibrations to avoid discomfort provides the main 
design parameters. 

 

(4) So far for floor structures the Eurocodes give only recommendations for 
estimated limits for eigenfrequencies, e.g. 3 Hz or 8 Hz depending on the 
construction material, or they give reference to ISO-standards as ISO/DIS 
10137 and ISO 2631, which give general criteria for the perception of 
vibrations and could be the basis to develop more detailed design rules for 
vibrations specific to particular structures and types of excitation. 

 

(5)  This report is intended to fill this gap and to provide an easy-to-use design 
guide with background information that shall help to specify comfort 
requirements for occupants and to perform a design that guarantees the 
specified comfort. 

 

(6) It applies to floors in office and/or residential buildings that might be 
excited by walking persons and which can affect the comfort of other 
building users. 

 

(7) This report may be considered as a supplement to EN 1990 and may also 
be used as a source of support to: 

- further harmonization of the design rules across different 
structural materials and construction procedures, 

 - further development of the Eurocodes. 



 

  

(8) The rules for the “Design of floor structures for human induced vibrations” 
given in this report are the result of two international projects, the VOF-
project and the HIVOSS-project, both funded by the Research Fund for 
Coal and Steel (RFCS), initiated and carried out by a group of experts from 
RWTH Aachen University, Germany, ArcelorMittal, Luxembourg, TNO, The 
Netherlands, SCI, United Kingdom, CTICM, France, FEUP Porto, Portugal 
and Schlaich, Bergermann und Partner, Germany [1], [2] 

 

(9) The agreement of RFCS and the project partners to publish this report in 
the series of the “JRC-Scientific and Technical Reports” in support of the 
further development of the Eurocodes is highly appreciated. 

 

(7) The examples given in this guideline mainly covers light-weight steel 
structures, where the consideration of human induced vibrations is part of 
the optimization strategy for sustainable constructions. Therefore, the 
publication has been carried out in the context of the JRC-ECCS-
cooperation agreement in order to support the further harmonization of 
National procedures and the further evolution of the Eurocodes. 
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Table of definitions and frequently used symbols  

 

Definitions 

The definitions given here are oriented on the application of this guideline. 

 

Damping D Damping is the energy dissipation of a vibrating 

system. The total damping consists of 

 material and structural damping 

 damping by furniture and finishing (e.g. false 
floor) 

 geometrical radiation (propagation of energy 
through the structure) 

Modal mass Mmod  

generalised mass 

In many cases, a system with n degrees of freedom 

can be reduced to a n SDOF systems with frequency: 

i

i
i M

K
f

mod,

mod,

2

1


  

where: 

fi is the natural frequency of the i-th system 

Kmod,i is the modal stiffness of the i-th system 

Mmod,i is the modal mass of the i-th system 

Thus, the modal mass can be interpreted to be the 

mass activated in a specific mode. 

The determination of the modal mass is described in 

section 7. 
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Natural frequency f = 

Eigenfrequency 

Each mode of a structure has its specific dynamic 

behaviour with regard to vibration mode shape and 

period T [s] of a single oscillation. The frequency f is 

the reciprocal of the oscillation period T (f = 1/T). 

The natural frequency is the frequency of a free 

decaying oscillation without continuously being driven 

by an excitation source. 

Each structure has as many natural frequencies and 

associated mode shapes as degrees of freedom. They 

are commonly sorted by the amount of energy that is 

activated by the oscillation. Therefore, the first natural 

frequency is that on the lowest energy level and is thus 

the most likely to be activated. 

The equation for the natural frequency of a single 

degree of freedom system is 

M

K
f

2

1
  

where:  K is the stiffness 

  M is the mass 

OS-RMS90  One-Step-RMS-value of the acceleration resp. velocity 

for a significant single step, that is larger than the 90% 

fractile of peoples’ walking steps. 

OS: One step 

RMS: Root mean square = effective value of the 

acceleration a resp. velocity v: 

 
2

)(
1

0

2 Peak
T

RMS

a
dtta

T
a    

where:  T is the period. 
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Variables, units and symbols  

a Acceleration  [m/s²] 

B Width [m] 

D Damping ratio (% of critical damping) [-] 

D1 Structural damping ratio [-] 

D2 Damping ratio from furniture [-] 

D3 Damping ratio from finishings [-] 

(x,y) Deflection at location x,y [m] 

 Deflection [m] 

E Young’s modulus [kN/cm2] 

f, fi Natural frequency [Hz] 

fs Walking frequency [Hz] 

G Body weight [kg] 

K, k Stiffness [N/m] 

l Length [m] 

Mmod Modal mass [kg] 

Mtotal Total mass [kg] 

 Mass distribution per unit of length or per unit of 
area 

[kg/m] or 
[kg/m²] 

OS-RMS One step root mean square value of the effective 
velocity resp. acceleration 

[-] 

OS-
RMS90 

90 % fractile of OS-RMS values [-] 

p Distributed load (per unit of length or per unit of 
area) 

[kN/m] or 
[kN/m²] 

T Period (of oscillation) [s] 

t Time [s] 

t Thickness [m] 

v Velocity [mm/s] 
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1 Objective 
Sustainability requires multi-storey buildings built for flexible use concerning 
space arrangement and usage. In consequence large span floor structures with a 
minimum number of intermediate columns or walls are of interest. 

 

Modern materials and construction processes, e.g. composite floor systems or 
prestressed flat concrete floors with high strengths, are getting more and more 
suitable to fulfil these requirements. 

 

These slender floor structures have in common, that their design is usually not 
controlled by ultimate limit states but by serviceability criteria, i.e. deflections or 
vibrations. 

 

Whereas for ultimate limit state verifications and for the determination of 
deflections design codes provide sufficient rules, the calculation and assessment 
of floor vibrations in the design stage has still a number of uncertainties. 

 

These uncertainties are related to: 

 

- a suitable design model including the effects of frequencies, damping, 
displacement amplitudes, velocity and acceleration to predict the dynamic 
response of the floor structure with sufficient reliability in the design stage, 

- the characterisation of boundary conditions for the model, 

- the shape and magnitude of the excitation, 

- the judgement of the floor response in light of the type of use of the floor 
and acceptance of the user. 

 

This report gives a procedure for the determination and assessment of floor 
responses to walking of pedestrians which on one side takes account of the 
complexity of the mechanical vibrations problem, but on the other side leads – 
by appropriate working up-to easy-to-use design charts. 
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2 General procedure 
The procedure for the determination of an acceptable floor response to excitation 
induced by walking persons is based on the following: 

 

1. the characteristics of the loading by identifying the appropriate features 
of the walking process by describing the load-time-history as a function of 
body weight, step frequency and their statistical demographic distribution, 

2. the identification of the dynamic floor response from representative 
“Single degree of freedom”-models for different typologies of floors, to 
which actions in the form of parameterized time-histories of step forces 
are applied; these responses are given as time-histories or frequency 
distributions for further evaluations, 

3. the comfort assessment of the floor responses taking into account 
human perception and condensation of data to a single representative 
response parameter (OS-RMS-value90) which defines a certain fractile of 
the distribution of responses to actions and is suitable for being 
compared with response requirements depending on the type of building 
and its use. 

The procedure has been used to develop design diagrams, the use of which is 
demonstrated by worked examples. 
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3 Description of the loading 
Walking of a person differs from running, because one foot keeps continuously 
contact to the ground while the other foot moves. It can be described by the 
time history of walking induced contact forces. 

 

The movement phases of a single leg, as illustrated in Figure 3-1, are the 
following: 

 

a) The right foot touches the ground with the heel. This is the starting point 
of the contact forces. 

b) The right leg is stretched; it transmits the full body weight. 

c) Rocking: the right foot rocks while the left leg swings forward. 

d) The left foot touches the ground while the right leg swings forward. 

ba c d

Ground contact Streched, 
full body weight

Rocking Swing
Right leg:

 
Figure 3-1: Movement phases of legs and feet during walking 

A typical velocity time history measured at a representative point of a floor 
structure excited by a walking person is given in Figure 3-2. 

0 1 2 3 4 5 6

-2

0

2
Original Signal

v 
in

 m
m

/s

Time in s  
Figure 3-2: Typical velocity response time history of a floor to walking loads 

 

Due to the periodicity of the contact forces it is possible to consider the time 
history of the contact force of a single step according to Figure 3-1 only and to 
describe this force-time history in a normalised way. 



 

8 

Figure 3-3 gives an example for the time history of the contact forces for two 
different step frequencies, where the amplitudes are normalized by relating them 
to the body weight G of the person. 

 

 
Figure 3-3: Example for the time history of the normalised contact forces for 
two different step frequencies 

 

The standard walking load of a person can then be described as a series of 
consecutive steps, where each step is given by a polynomial function, as given in 
Table 3-1. 

  1.5

1.5 Hz
2.2 Hz

time in s 

1.0

0.5

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Step frequency

Contact force related to body weight (normalized force)
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Polynomial function for the contact force due to a single step: 

  8
8

7
7

6
6

5
5

4
4

3
3

2
21 tKtKtKtKtKtKtKtK

G

tF
  

 

Coefficient 

 

 

step frequency ranges 

fs ≤ 1.75 Hz 1.75 < fs < 2 Hz fs ≥ 2 Hz 

K1 -8 × fs + 38 24 × fs – 18 75 × fs - 120 

K2 376 × fs – 844 -404 × fs + 521 -1720 × fs + 3153 

K3 -2804 × fs + 
6025 

4224 × fs – 6274 17055 × fs - 31936 

K4 6308 × fs – 
16573 

-29144 × fs + 
45468 

-94265 × fs + 
175710 

K5 1732 × fs + 
13619 

109976 × fs – 
175808 

298940 × fs – 
553736 

K6 -24648 × fs + 
16045 

-217424 × fs + 
353403 

-529390 × fs + 
977335 

K7 31836 × fs – 
33614 

212776 × fs – 
350259 

481665× fs – 
888037 

K8 -12948× fs + 
15532 

-81572× fs + 
135624 

-174265× fs + 
321008 

Table 3-1: Determination of the normalized contact forces  

 

The load duration st  of a single footfall is given by 

23844.0757.16606.2 sss ffT  . 

 

Figure 3-4 gives an example of a standard walking load history which is 

composed by a repetition of normalized contact forces at intervals of 
sf

1 . 
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Figure 3-4: Example of a walking load function composed of normalized contact 
forces 

 

In order to obtain information on the statistical distributions of walking 
frequencies sf  and body weights G of persons, measurements of step 
frequencies were carried out in the entrance area of the TNO building in Delft (in 
total 700 persons) and the distribution of step frequencies were correlated with 
the distribution of body mass, as published for Europe, assuming that step 
frequencies and body masses would be statistically independent. 

Figure 3-5 gives the distribution of step frequencies and body mass and Table 
3-2 gives the associated cumulative distributions. 

 

 
Figure 3-5: Frequency distribution of body mass and step frequency for a 
population of data of 700 
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Classes of step frequency fsm       

 m = 1  35 

Classes of masses Mn   

 n = 1  20  

Cumulative 
probability 

Step frequency fs 
(Hz) 

Cumulative 
probability 

Step frequency fs 
(Hz) 

0,0003 1,64 0,0000 30 

0,0035 1,68 0,0002 35 

0,0164 1,72 0,0011 40 

0,0474 1,76 0,0043 45 

0,1016 1,80 00,146 50 

0,1776 1,84 0,0407 55 

0,2691 1,88 0,0950 60 

0,3679 1,92 0,1882 65 

0,4663 1,96 0,3210 70 

0,5585 2,00 0,4797 75 

0,6410 2,04 0,6402 80 

0,7122 2,08 0,7786 85 

0,7719 2,12 0,8804 90 

0,8209 2,16 0,9440 95 

0,8604 2,20 0,9776 100 

0,8919 2,24 0,9924 105 

0,9167 2,28 0,9978 110 

0,9360 2,32 0,9995 115 

0,9510 2,36 0,9999 120 

0,9625 2,40 1,0000 125 

0,9714 2,44   

0,9782 2,48   

0,9834 2,52   

0,9873 2,56   

0,9903 2,60   

0,9926 2,64   

0,9944 2,68   

0,9957 2,72   

0,9967 2,76   

0,9975 2,80   

0,9981 2,84   

0,9985 2,88   

0,9988 2,92   

0,9991 2,96   

0,9993 3,00   

Table 3-2: Cumulative probability distribution functions for step frequency fs.m 
and body mass Mn 
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The functions for contact forces in Figure 3-3 and the distributions of step 
frequency and body mass are the input data for calculating the dynamic 
responses of floor structures. The 20 classes of body mass and the 35 classes of 
step frequency as given in Table 3-2 were used (in total 700 combinations) to 
develop design charts. 
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4 Dynamic floor response 
The dynamic response of a floor structure to persons walking is controlled by the 
loading characteristics, as described in Section 3, and by the structural dynamic 
properties of the floor. 

 

The dynamic properties of the floor structure relevant to the floor response are, 
for each vibration mode i: 

 

- the eigenfrequency fi ,  

- the modal mass Mmod,i , 

- the damping value iD .  

 

The various modes i are normally arrayed according to their energy contents. 
The first mode (i = 1) needs the smallest energy content to be excited. 

 

When the eigenfrequency of a mode and the frequency of steps are identical, 
resonance can lead to very large response amplitudes. Resonance can also occur 
for higher modes, i.e. where the multiple of the step frequency coincides with a 
floor frequency. 

 

The response amplitudes of floor structures due to walking of persons are in 
general limited by the following effects: 

 

- the mass of the floor structure. As the number of step impulses is limited 
by the dimensions of the floor (walking distances), the ratio of the body 
mass to the exited floor mass influences the vibration, 

- the damping D that dissipates excitation energy. The damping iD  consists 
of the structural damping 1D , e.g. due to inner friction within the floor 
structure or in connections of the floor to other structural components 
such as supports, of the damping 2D  from furniture and equipment and of 
the damping 3D  from further permanent installations and finishings. 

 

Table 4-1 gives an overview on typical damping values as collected from various 
sources of literature [6]. 
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Type Damping 

(% of critical damping) 

Structural Damping D1 

Wood 6% 

Concrete 2% 

Steel 1% 

Composite 1% 

Damping due to furniture D2 

Traditional office for 1 to 3 persons  
with separation walls 

2% 

Paperless office  0% 

Open plan office. 1% 

Library 1% 

Houses 1% 

Schools 0% 

Gymnasium  0% 

Damping due to finishings D3 

Ceiling under the floor  1% 

Free floating floor 0% 

Swimming screed 1% 

Total Damping D = D1 + D2 + D3 

Table 4-1: Components of damping 

 

Figure 4-1 demonstrates by means of a flow chart how floor responses in terms 
of time histories or frequency spectra of velocity have been calculated for various 
floor systems k, which were used for further evaluation. 
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6 Time step analysis

1 Floor system with index k

)();();(

)()()()(

txtxtx

tFtxCtxDtxM kkk





 tt

Next step frequency

Next body mass

2 Single mass oscillator 
representative for the deck k 
with the structural properties

Mk, fk , Dk

3 Body mass Mn
and associated probability 
distribution function HM,n

30 ... 125 kg

4 Step frequency fs,m
and associated probability 
distribution function Hf,m

1,6 ... 3,0 Hz

7 … 11 Determination of
OS-RMS value, associate 

with joint probability of 
frequency and mass
HOS-RMS = HM,n * Hf,m

12 Determination of the 90%
fractile OS-RMS90
from the cumulated 
probability function
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Figure 4-1: Flow chart for calculation of dynamic floor responses to walking 
excitations by a person with the mass nM  and the frequency mf , see also Figure 
5-5 
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In these calculations the excitation point is assumed to be stationary , i.e. the 
walking path is not taken into consideration. In general, the location of the 
stationary excitation and hence the location of the response are selected where 
the largest vibration amplitudes are expected (for regular floors it is usually the 
middle of the floor span). 

 

Apart from excitation by the regular walking also the excitation from single 
impacts, e.g. from heel drop may occur that leads to transient vibrations. This 
report only refers to excitation from regular walking because experience shows 
that for floor structures with lowest eigenfrequency fs  7 Hz walking is the 
relevant excitation type, whereas heel drop is only relevant for fundamental 
eigenfrequencies fs > 7 Hz. 

 

In general, the time response of a floor system to regular excitation by walking 
take the form of one of the plots given in Figure 4-2. 

 

time

acceleration

 

acceleration

time

 
a)     b) 

Figure 4-2: Possible envelopes of dynamic responses of a floor to regular 
excitation a) resonant response, b) transient response 

 

If the excitation frequency (or higher harmonics of the excitation) is similar to an 
eigenfrequency of the floor, the response takes the form as shown in Figure 4-2 
a): a gradually increasing of the response envelope until a steady-state level. 
This response is known as either resonant response or steady state response. 
This kind of response can occur for floors with a fundamental natural frequency 
inferior to 9-10 Hz. 

 

If the excitation frequency is significantly lower than the natural frequency of the 
floor, the response envelope shown in Figure 4-2 b) is typical, known as 
transient response. In this case, the floor structure responds to the excitation as 
if it is a series of impulses with the vibration due to one foot step dying away 
before the next step impulse. 
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5 Comfort assessment of the floor structures 
 

The purpose of the comfort assessment of the floor structures is a design, by 
that vibrations are so small, that adequate comfort of the users is obtained. 

 

This comfort assessment implies the use of a single response parameter that 
reflects both, the comfort perception of users and the dynamic response of the 
floor structure. 

 

The definition of such a parameter requires various assumptions: 

 

1. a weighting of the frequencies obtained from the response of the floor 
structure to take the frequency dependence of human perception into 
account. In a similar way to human hearing, the human perception of 
vibration varies with the frequency. 

 

 The weighting function used applies to the response in terms of velocity, 
 see Figure 5-1: 

 

 

B(f)
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B
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0
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





 
 Figure 5-1: Weighting function for the spectrum of vibration velocities 

  

 The weighting function achieves that the weighted response is 
 dimensionless. 

 

2. Use of RMS-values (Root mean square values) as effective response 
values by evaluation of a time window sT : 
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  



sTt

t
B

s
mn dttx

T
RMS 2

,

1   

 

3. Definition of the time window T = Ts. If Ts is too long, the results are 
smeared, if Ts is too short, the results are arbitrarily. 

 

The well-proven definition of the time window Ts is the time interval of 
standard contact force for a single step according to Figure 3-3, see 
Figure 5-2.  
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Figure 5-2: Selection of the time window sT  for the RMS-value of the 
weighted velocity response  

 

This definition leads to the “one step-root mean square value”, so called 
OS-RMS-value, which is independent on the step frequency and duration 
of time interval:  
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Figure 5-3 gives as an example for a floor structure with the dynamic 
properties f = 2.8 Hz, Mmod = 20000 kg, D = 3% the OS-RMS-value as a 
function of the step frequency and of the body mass. 
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Figure 5-3: Example for OS-RMS-values as a function of step frequency 
and body mass  

 

The results in Figure 5-3 do however not yet consider effects of the 
frequency distributions of the step frequency fs and of the body mass G.  

 

They may be agglomerated to a cumulative frequency distribution, see 
Figure 5-4.  

 

4. Accounting for the frequency distribution Hfm of the step frequency fs and 
the body mass G.  

 

The classes of OS-RMS-values HOS-RMS in Figure 5-3, are multiplied with 
the cumulative probability distributions Hfm. In conclusion a cumulative 
distribution of OS-RMS-values is obtained according to Figure 5-4, that 
also contains the results.  
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Figure 5-4: Cumulative frequency distribution of OS-RMS-values with and 
without taking the frequency distribution Hfm into account  

 

5. Definition of a representative OS-RMS-value to obtain the desired reliability. 
This representative value is defined as the 90 %-fractile of OS-RMS-values 
from the cumulative frequency distribution, as indicated in Figure 5-4, which 
is denoted as OS-RMS90.  

 

Figure 5-5 gives an overview of the various steps to obtain the OS-RMS90 values 
by means of a flow chart. 
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Figure 5-5: Flow chart for the evaluation of dynamic floor-response to walking 
excitations by a person with the mass Mn and the frequency fm to obtain the OS-
RMSn,m values and their distribution 
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The limits for the OS-RMS90-values for comfort are based on various standards for 
standardizing human perception [6], [7], [8], [9], [10], [11].  

 

In general, the perception and the individual judgement, whether vibrations are 
disturbing or not (discomfort), are based on the same criteria but can lead to 
different limits, as certain persons can detect vibrations without being 
discomforted by them. 

 

The governing parameters are e.g.:  

 

 momentary activity of the user (manual work or sleeping),  

 age and state of health of the user,  

 posture of the user (sitting, standing, laying down), see Figure 5-6 

 Relation between the user and the source of excitation (are vibrations 
expected or not),  

 Frequency and amplitude of vibration (as taken into account by the 
weighting function).  
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Figure 5-6: Directions for vibrations defined in ISO 10137 [6] 
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Figure 5-7 gives examples for curves of same perception for z-axis vibration 
( bW  curve) and x-and y-axis vibrations ( dW  curve); e.g. according to the bW  
curve a sine wave of 8 Hz is equivalent to a sine wave with 2.5 Hz or 32 Hz with 
double amplitude. 
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Figure 5-7: bW  and dW -weighting curves 

These parameters can be allocated to various classes of perception defined by 
lower and upper threshold values for the OS-RMS90-values, that are suitable for 
being associated to certain typical usages of floors, see  

Table 5-1. 
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A 0.0 0.1           

B 0.1 0.2           

C 0.2 0.8           

D  0.8 3.2           

E 3.2 12.8           

F 12.8 51.2           

             

    Recommended   

    Critical   

    Not recommended   

       

 

Table 5-1: Allocation of classes of perception A to F to threshold values of OS-
RMS90-values and relation of occupancies of floors to comfort limits  

 

 

 

Table 5-2 gives the background to Table 5-2 from limits specified in ISO 10137 
[6]. 
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Usage Time Multiplying 
Factor 

OS-RMS90 
equivalent 

Critical working areas (e.g. hospitals 
operating-theatres, precision 

laboratories, etc.) 

Day 1 0.1 

 

Night 1 0.1 

Residential (e.g. flats, homes, hospitals) Day 2 to 4 0.2 to 0.4 

Night 1.4 0.14 

Quiet office, open plan Day 2 0.2 

Night 2 0.2 

General office (e.g. schools, offices) Day 4 0.4 

Night 4 0.4 

Workshops Day 8 0.8 

Night 8 0.8 

Table 5-2: Vibration limits specified in ISO 10137 [6] for continuous vibration  

 

As it depends on the agreement between designer and client to define the 
serviceability limits of comfort for floor structures, the allocation of perception 
classes to comfort classes for various occupancies (Table 5-1) has the character 
of recommendations. 
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6 Development of design charts 
The procedure described in sections 2 to 5 may be used as assumed in this 
report to calculate for other excitation mechanisms, e.g. for heel drop, the 
structural response and the associated OS-RMS90-values. But it has been used for 
the particular excitation by walking persons to develop design charts, which give 
a relationship between 

 

- the modal mass Mmod of the floor structure [kg], 

- the eigenfrequency fi of the floor structure [Hz], 

- the OS-RMS90-values and their association to perception classes A to F 

 

all for a given damping ratio D.  

 

Figure 6-1 gives an example for such a design diagram for a damping ratio of 
3 %.  

 

Each point in this design chart is based on the statistical evaluation of 700 
combination functions of step frequency and body mass.  
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Figure 6-1: Example of a design chart for the vibration assessment of floor 
structures for a damping ratio D = 3 %  
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The design procedure based on these design charts provides the following steps, 
see Figure 6-2:  

 

1. Determination of the basic floor characteristics (natural frequency, modal 
mass, damping) for input, 

2. Determination of the OS-RMS90-value (90 % one-step RMS-value) from the 
design chart, which characterizes the floor response to walking,  

3. Compare the OS-RMS90-value with the recommended or required limits for 
the floor occupancy.  

 

 
Figure 6-2: Design procedure using the proposed design charts  

 

If the floor response is characterized by more than one natural frequency, the 
OS-RMS90-value should be determined as a combination of OS-RMS90-values 
obtained for each mode of vibration i: 

 

  
i

iRMSOSRMSOS 2
9090  

 

Determine dynamic floor 
characteristics: 

Natural Frequency 

Modal Mass 

Damping 

Read off OS-RMS90 value 

Determine and verify 
floor class 
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7 Guidance for the design of floors for human 
induced vibrations using design charts 

7.1 Scope 

This guidance provides a simplified method for determining and verifying floor 
design for vibrations due to walking developed with the procedure given in 
Section 2 to 6.  

 

The guidance focuses on recommendations for the acceptance of vibration of 
floors which are caused by people during normal use. Human induced vibrations 
from rhythmic movements as dancing, gymnastic activities, jumping, machine 
induced vibrations or vibrations due to traffic etc. are not covered by this 
guidance.  

 

The use of the guidance should be restricted to floors in buildings; it is not 
applicable to pedestrian bridges or other structures not comparable with floors.  

 

The guidance focuses on the prediction and evaluation of vibration at the design 
level.  

 

7.2 Procedure  

The procedure used in this guidance needs the determination of the following 
values:  

 

1. Dynamic properties of the floor structure: 

 - eigenfrequency, 

 - modal mass, 

 - damping.  

 

The dynamic properties should include a realistic assumption of the 
mechanical behaviour at the level of the vibration amplitudes expected 
(elastic behaviour), of the permanent mass and of the quasi permanent 
part of the mass of variable loads.  

 

In case of very light floor structures also the mass from persons should 
be included in the floor mass.  

 

2. The appropriate OS-RMS90-value. 
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3. The relevant occupancy class or classes of the floor.  

4. The requirement for comfort assessment.  

 

 

7.3 Determination of dynamic properties of floor 
structures  

 

In general, the method for the determination of dynamic properties of floor 
structures should not be disproportionately more refined than the method for the 
vibration limit state assessment, which is basically a hand calculation method.  

 

Hence, this method is part of the package agreed between the designer and the 
client in the design stage.  

 

The hand calculation method for the determination of dynamic properties of 
floor-structures assumes that the dynamic response of the floor can be 
represented by a single degree of freedom system based on the fundamental 
eigenfrequency.  

 

The eigenfrequency, modal mass and damping of this system can be obtained by  

 

- calculation on the basis of the project documents or by 

- measurements carried out at floor-structures which have been built and 
are used in a similar way as those projected and are suitable to be used 
as prototypes.  

 

For the calculation of the stiffness of the structure and of the connections the 
initial elastic stiffness should be used, e.g. for concrete the dynamic modulus of 
elasticity should be considered to be 10 % larger than the static tangent modules 
Ecm.  

 

For calculation of the masses on the basis of project documents experienced 
values for the quasi permanent part of imposed loads for residential and office 
buildings are 10 % to 20 % of the mass of the characteristic values. For light-
weight floors the mass of one person with a minimum mass of 30 kg is 
recommended to be added to the mass of the structure.  
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7.4 Values for eigenfrequency and modal mass  

7.4.1 Simple calculation formulas for isotropic plates and 
beams  

Table 7-1 gives hand formulas for the determination of the first natural 
frequency and the modal mass of isotropic plates for different supporting 
conditions. For the application of this table it is assumed that all four edges of 
the plate are linearly supported (no deflection of edges). 

Table 7-2 gives hand formulas for beams for various support conditions. 

 

 

Supporting Conditions: 
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 ≈ 0.,25 for all  
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 ≈ 0.20 for all  

Table 7-1: Natural frequencies and modal mass for isotropic plates  
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Supporting Conditions: 

 

clamped hinged  

Frequency ; Modal Mass 
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 ≈ 0.21 for all  

Table 7-1 (continued): Natural frequencies and modal mass for isotropic 
plates 
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Supporting Conditions: 

 

clamped hinged  

Frequency ; Modal Mass 
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 ≈ 0.17 for all  

 

E Young’s Modulus in N/m² 

t Thickness of Plate in m 

 mass of floor including finishing and 
furniture in kg/m² 

 Poisson ratio 

Mtot Total mass of floor including finishings and 
representative variable loading in kg 

Table 7-1 (continued): Natural frequencies and modal mass for isotropic plates  
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Supporting Conditions Natural 
Frequency 

Modal Mass 
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Table 7-2: Natural frequencies and modal mass for beams  

 

7.4.2 Simple calculation methods for eigenfrequencies of 
orthotropic floors 

Orthotropic floors as e.g. composite floors with beams in the longitudinal 
direction and a concrete plate in the transverse direction, see Figure 7-1, have 
different stiffness in length and width  xy EIEI   
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Figure 7-1: Dimensions and axis of an orthotropic plate  

 

The first natural frequency of the orthotropic plate being simply supported at all 
four edges can be determined from 
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where: 

  is the mass per m² in kg/m², 

  is the length of the floor in m (in x-direction), 

b  is the width of the floor in m (in y-direction), 

E  is the Young’s Modulus in N/m², 

xI  is the moment of inertia for bending about the x-axis in m4, 

yI  is the moment of inertia for bending about the y-axis in m4. 

 

7.4.3 Natural frequencies from the self-weight approach  

  

The self-weight approach is a very practical approximation in cases where the 

maximum deflection max  due to self-weight loads has been determined, e.g. by 

finite element calculation. 

The natural frequency may be obtained from  
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f

maxmax

18

3

4

2

1

2

1


  

 

where the following assumptions have been made:  

max4
3 

gM
K


  

 

where:  

M is the total mass of the vibrating system,  

281.9
s
mg   is gravity and  

max4
3   is the average deflection. 
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7.4.4 Natural frequency from the Dunkerley approach  

 

The Dunkerley approach is an approximation for the case that the relevant mode 
shape is complex and can be considered as a superposition of simple modes, for 
which the natural frequencies can be determined, e.g. according to section 7.4.1 
and 7.4.2.  

 

Figure 7-2 gives an example for a composite floor with two simply supported 
beams and a concrete plate without stiff supports. 

 

Initial System:

Mode of concrete slab:

Mode of composite beam:

 
Figure 7-2: Example for mode shape decomposition  

 

The expected mode shape may be divided into a beam mode with the frequency 
f1 for the composite beam and a plate mode with the frequency f2 for the concrete 
slab.  

 

The natural frequency accounting for the interaction of the beam mode and the 
plate mode would be  

2
2

2
1

2

111

fff
  
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7.4.5 Modal mass from mode shape  

Where an approximation of the mode shape by a normalized function  yx,  with 

  0,1,
max

yx  is available, e.g. from calculation of deflection due to a 

distribution of mass forces, see Figure 7-3, the modal mass may be obtained 
from:  

 

dF(x,y)δμM
F
 2

mod  

 

where:  

 is the distribution of mass 

(x,y) is the vertical deflection at location x, y 

 

Application of loads:

Expected mode shape:

 
Figure 7-3: Example for the application of mass load distributions to obtain an 
approximation of mode shape  

 

In case of FEM calculations the modal mass results from:  

 
iNodes

ii dMδM 2
mod  

 

where: 

i is the vertical deflection at node i (normalised to the maximum deflection) 

dMi is the mass attributed to the node i  of the floor.  

 

Examples for the use of these approximations, that in the case of exact solution 
for the mode shape give the exact modal mass, are given in Table 7-3. 
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 Example Approximation of mode shape Mass  
distribution  

Modal mass  

1  
Ly

Lx

L   Ly x  

    0,1,;sinsin,
max

 yx
yx

yx
yx




 
yx

totalM

 
     dFyxM ,2

mod   

4
sinsin 22 total

yly xlxyx

total M
dydx

yxM



















   


 

2  
Ly

L  >> Ly x

Lx

 

1.
2

0 xly   and y
x

y ly
l

l 
2

 

    0,1,;sinsin,
max

 yx
yx

yx
yx




 

2. 
22
x

y
x l

ly
l

  

    0,1,0,1sin,
max

 yx
x

yx
x




 

yx

totalM

 
     dFyxM ,2

mod   

 

















   dydx

yxM

yxyx

total
x x



   2
2/,

2 sinsin2  

  





















x xy

y

xtotal

x

M
dydx

x
 





2

4
sin

2/,

2 
 

3  
Ly

Lx

 
 
Plate and beams simply 
supported 

    0,1,;sinsinsin,
max

 yx
yx

yx
y

y

x

x 







 

where: 

x  = deflection of the beam  

y  = deflection of the slab 

 assuming stiff supports by  
  the beams  0x  

yx    

yx

totalM

 
     dFyxM ,2

mod   

dydx
yxM

x yl l y

y

x

x

yx

total  













2

sinsin









 








 





222

22
8

2 



 yxyx

totalM  

Table 7-3: Examples for the determination of modal mass by hand calculation 
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7.4.6 Eigenfrequencies and modal mass from FEM-analysis  

 

Various FEM-programs can perform dynamic calculations and offer tools for the 
determination of natural frequencies. Many programs also calculate the modal 
mass automatically in the frequency analysis.  

 

If FEM is applied for determining the dynamic properties for vibration, it should 
be considered that the FEM-model for this purpose may differ significantly from 
that used for ultimate limit state verification as only small deflections in the 
elastic range are expected.  

 

A typical example is the selection of boundary conditions in vibration analysis 
compared with that for ULS design. A connection which is assumed to be hinged 
in ULS may be assumed to provide a full moment connection in the vibration 
analysis (due to initial stiffness).  

 

7.5 Values for damping  

Independently of the way of determining the natural frequency and modal mass, 
damping values for vibration systems can be determined using Table 7-4 for 
different construction materials, furniture and finishing in the condition of use.  

 

The system damping is obtained by summing up the appropriate values for D1 to 
D3.  
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Type Damping 
(% of critical damping) 

Structural Damping D1 

Wood 6% 

Concrete 2% 

Steel 1% 

Composite 1% 

Damping due to furniture D2 

Traditional office for 1 to 3 persons with 
separation walls 

2% 

Paperless office 0% 

Open plan office 1% 

Library 1% 

Houses 1% 

Schools 0% 

Gymnastic  0% 

Damping due to finishings D3 

Ceiling under the floor  1% 

Free floating floor 0% 

Swimming screed 1% 

Total Damping D = D1 + D2 + D3 

Table 7-4: Determination of damping 

 

 

 

7.6 Determination of the appropriate OS-RM90-value 

 

When frequency and modal mass are determined, the OS-RMS90-value can be 
obtained with the design charts given in Figure 7-4 to Figure 7-12. The 
relevant diagram needs to be selected according to the damping characteristics 
of the floor.  



 

41 

 

The diagrams also contain an allocation of OS-RMS90 values to the floor classes.  

 

In case various natural frequencies are relevant, the total (combined) OS-RMS90-
value may be determined from  

 

 2
9090 i

i

RMSOSRMSOS    
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Figure 7-4: OS-RMS90 for 1 % damping 
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Figure 7-5: OS-RMS90 for 2 % damping  
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Figure 7-6: OS-RMS90 for 3 % damping 
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Figure 7-7: OS-RMS90 for 4 % damping 
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Figure 7-8: OS-RMS90 for 5 % damping 
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Figure 7-9: OS-RMS90 for 6 % damping 
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Figure 7-10: OS-RMS90 for 7 % damping 
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Figure 7-11: OS-RMS90 for 8 % damping 
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Figure 7-12: OS-RMS90 for 9 % damping 
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7.7 Vibration performance assessment  

 

In the serviceability assessment for the vibration performance, the performance 
requirement expressed in terms of floor-class according to Table 7-5 should be 
compared with the performance capacity resulting from the OS-RMS90-value in 
Figure 7-4 to Figure 7-12. 

 

The performance requirement as well as the use of this guidance should be 
agreed with the designer and the client. 
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A 0.0 0.1              

B 0.1 0.2              

C 0.2 0.8              

D 0.8 3.2              

E 3.2 12.8              

F 12.8 51.2              

                

    Recommended      

    Critical      

    Not recommended      

          

 

Table 7-5: Recommendations for performance requirements  
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8 Design examples  
 

8.1 Filigree slab with ACB-composite beams (office 
building)  

 

8.1.1 Description of the floor  

 

In the first worked example a filigree slab with false-floor in an open plan office 
is checked for footfall induced vibrations. 

 
Figure 8-1: Building structure 

 

It is spanning one way over 4.2 m between main beams. Its overall thickness is 

160 mm. The main beams are Arcelor Cellular Beams (ACB) which act as 

composite beams. They are attached to the vertical columns by a full moment 

connection. The floor plan is shown in Figure 8-2. In Figure 8-2 the part of the 
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floor which will be considered for the vibration analysis is indicated by the 

hatched area.  

 
Figure 8-2: Floor plan (dimensions in [m]) 

 

For the main beams with a span of 16.8 m ACB/HEM400 profiles made of 
material S460 have been used. The main beams with the shorter span of 4.2 m 
are ACB/HEM360 made of S460. 

The cross beams which are spanning in global x-direction may be neglected for 
the further calculations, as they do not contribute to the load transfer of the 
structure.  

The nominal material properties are 

 

- Steel S460:   Es = 210 000 N/mm²,   fy = 460 N/mm² 
- Concrete C25/30: Ecm = 31 000 N/mm²,   fck = 25 N/mm² 
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As required in section 7 of these guidance the nominal Elastic modulus of the 
concrete will be increased for the dynamic calculations: 

 

²/100341.1, mmNEE cmdync   

 

The expected mode shape of the part of the floor considered which corresponds 
to the first eigenfrequency is shown in Figure 8-4. From the mode shape it can 
be concluded that each field of the concrete slab may be assumed to be simply 
supported for the further dynamic calculations. Regarding the boundary 
conditions of the main beams (see beam to column connection, Figure 8-3), it is 
assumed that for small amplitudes as they occur in vibration analysis the beam-
column connection provides sufficient rotational restraint, so that the main 
beams may be considered to be fully clamped. 

 
Figure 8-3: Beam to column connection 
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Figure 8-4: Mode shape expected for the part of the floor considered 
corresponding to the first eigenfrequency 

 

Section properties 

 

- Slab: 

The relevant section properties of the slab in global x-direction are:  

mm

mm
A xc

2

, 160  

mm

mm
I xc

4
5

, 1041.3   

 

- Main beam: 

Assuming the first vibration mode described above the effective width of 
the composite beam may be obtained from the following equation: 

m
ll

bbb effeffeff 94.2
8

8.167.0
2

88
00

2,1, 


  

The relevant section properties of the main beam for serviceability limit 
state (no cracking) are: 

2
, 21936mmA nettoa   

229214mmA bruttoa   

298320mmAi   
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4910149.5 mmIi   

 

Loads 

- Slab: 
 Self-weight (includes 1.0 kN/m² for false floor):  

2
3 50.12510160

m

kN
gslab    

 Live load: Usually a characteristic live load of 3 kN/m² is 
recommended for floors in office buildings. The fraction of the 
live load considered for the dynamic calculation is assumed to 
be approx. 10% of the full live load, i.e. for the vibration 
check it is assumed that 

2
3.00.31.0

m

kN
qslab   

 

- Main beam: 
 Self-weight (includes 2.00 kN/m for ACB):  

m

kN
gbeam 00.230.22

2

2.4
0.5   

 Live load:  

m

kN
qslab 26.12

2

2.4
3.0   

 

8.1.2 Determination of dynamic floor characteristics  

 

Eigenfrequency 

 

The first eigenfrequency is calculated on the basis of the self-weight approach. 
The maximum total deflection may be obtained by superposition of the deflection 
of the slab and the deflection of the main beam, i.e. 

 

beamslabtotal    

 

with 

 

mmslab 9.1
1041.334100384

420010)3.00.5(5
5

43








  
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mmbeam 5.4
10149.5210000384

16800)26,10.23(1
9

4





  

 

The total deflection is 

 

mmtotal 4.65.49.1   

 

Thus, the first eigenfrequency may be obtained from the self-weight approach 
(section 7.4.3): 

 

Hzf 1.7
4.6

18
1   

 

Modal mass 

 

The total mass of the slab is 

 

kgM total 373972.48.1610)3.05( 2   

 

According to Table 7-3, example 3, the modal mass of the slab considered may 
be calculated as 

 

kgM 17220
4.6

5.49.18

4.62

5.49.1
37397

222

22

mod 






 








 

 

Damping 

 

The damping ratio of the steel-concrete slab with false floor is determined 

according to Table 7-4: 

 

%3%1%1%1321  DDDD  

 

with 
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D1 = 1.0 % (composite slab) 

D2 = 1.0 % (open plan office) 

D3 = 1.0 % (false floor) 

 

8.1.3 Assessment  

Based on the modal properties calculated above, the floor is classified as class C 

(Figure 7-6). The expected OS-RMS90 value is approx. 0.5 mm/s. 

According to Table 7-5 class C is classified as being suitable for office buildings, 

i.e. the requirements are fulfilled. 

 

 

8.2 Three storey office building 

8.2.1 Description of the floor  

 

The floor of this office building, Figure 8-5, has a span of 15 m from edge beam 

to edge beam. In the regular area these secondary floor beams have IPE600 

sections and are laying in a distance of 2.5 m. Primary edge beam which span 

7.5 m from column to column have also IPE600 sections, see Figure 8-6. 

 

 
Figure 8-5: Building overview 
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Figure 8-6: Steel section of the floor 

 

The floor is a composite plate with steel sheets COFRASTRA 70 with a total 

thickness of 15 cm, as represented in Figure 8-7. 

 

 
Figure 8-7: Floor set up 

 

The nominal material properties are: 

 

- Steel S235:   Es = 210 000 N/mm²,   fy = 235 N/mm² 
- Concrete C25/30: Ecm = 31 000 N/mm²,   fck = 25 N/mm² 

²/100341.1, mmNEE cmdync   

 

Section properties 
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- Slab (transversal to beam): 

A = 1170 cm²/m 

I  = 20 355 cm4/m 

g = 3.5 kN/m² 

g = 0.5 kN/m² 

 

- Composite beam (beff = 2,5m; E=210000 N/mm²): 

A = 468 cm² 

I  = 270 089 cm4  

g = (3.5+0.5) x 2.5 + 1.22 = 11.22 kN/m 

 

Loads 

 

- Slab (transversal to beam): 

g + g = 4.0 kN/m² (permanent load) 

q = 3.0 x 0.1 = 0.3 kN/m² (10% of full live load) 

ptotal = 4.3 kN/m² 

 

 

- Composite beam (beff = 2.5m; E=210000 N/mm²): 

g = 11.22 kN/m 

q = 0.3 x 2.5 = 0.75 kN/m 

ptotal = 11.97 kN/m 

 

8.2.2 Determination of dynamic floor characteristics  

 

Supporting conditions 

The secondary beams are connected to the primary beams which have open 

sections with low torsional stiffness. Thus these beams may be assumed to be 

simple supported. 

 

Eigenfrequency 

For this example the supporting conditions are determined in two ways.  
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The first method is the application of the beam formula neglecting the 

transversal stiffness of the floor. 

The second method is the self-weight method considering the transversal 

stiffness. 

 Application of the beam equation (Table 7.2): 

 

Hz
mmkg

mmN

l

EI
f

mkgsmmsmkgmkNp

77.4
][15]/[122049.0

][10270089²]/[1021000032

49.0

32

]/[1220²]/[81.9/]/²/[100097.11]/[97.11

44

486

4














 

 

 Application of the equation for orthotropic plates (section 7.4.2): 

Hz 76.400.176.4

27008921000

203553410

15

5.2

15

5.2
21

151220

1027008910210000

2

21
2

42

4

86

42

41




































































y

xy

EI

EI

l

b

l

b

l

EI
f

 

 

 Application of the self-weight approach (section 7.4.3): 

beamslabtotal    

mmslab 30
100355234100384

250010345
5

43

.
.

.








  

mmbeam 913
10270089210000384

1500097115
4

4

.
.





  

 

mmtotal 21491330 ...   

 

Hzf 784
214

18
1 .

.
  

 

Modal mass 

The determination of the eigenfrequency, as presented above, shows that the 

load bearing behaviour of the floor can be approximated by a simple beam 
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model. Thus, this model is taken for the determination of the modal mass; see 

Figure 7-2: 

 

kglM 91501512205,05,0mod    

 

Damping 

 

The damping ratio of the steel-concrete slab with false floor is determined 

according to Table 7-4: 

 

%3%1%1%1321  DDDD  

 

with 

D1 = 1.0 % (composite slab) 

D2 = 1.0 % (open plan office) 

D3 = 1.0 % (ceiling under floor) 
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8.2.3 Assessment 

 

Based on the modal properties calculated above, the floor is classified as class D 

(Figure 7-6). The expected OS-RMS90 value is approx. 3.2 mm/s. 

According to Table 7-5 class D is classified as being suitable for office buildings, 

i.e. the requirements are fulfilled. 
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