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SYNOPSIS 
Sliding friction between meshing teeth can be a very important of noise and vibration 
excitation source in geared systems. This study presents a single degree of freedom torsional 
model for a FZG type C single gear pair. Starting from a base dynamic model with time 
varying mesh stiffness as the only internal excitation, the influence of additional effects is 
gradually considered, namely, constant friction coefficients and time varying output torques. 
In particular, sliding friction is modeled as external and internal linear time varying 
excitation. On the other hand, time varying output torques are also considered as alternative of 
constant driven torque.  

The gear’s rotational vibrations are calculated by Runge-Kutta method for different 
combinations of rational speeds, input torques and friction coefficients. The results indicate 
that dynamic transmission errors calculated from modeling the friction force as external and 
internal excitation are quite different, especially when contact point moves ahead of pitch 
point. However the influence of time variations on output torque is very reduced.  

 

1. INTRODUCTION 
Gears can be found in a wide variety of transmission systems including automotive, 
aerospace, industrial applications, etc. Even though they exhibit considerable technical 
advantages like high power to weight ratio and efficiency, normal operating conditions can be 
seriously affected by a variety of external and internal excitation.   

Dynamic analysis of geared systems is a major consideration in gear design, and essential for 
understanding, controlling and eliminating noise and vibration problems. Excessive dynamic 
loads caused by different sources like inadequate lubrication, manufacturing and/or 
installation problems, inappropriate operating conditions and design insufficiencies can 
originate considerable gear noise and vibration inconvenients. Especially when static loads 
are amplified during gear meshing action generating high gear dynamic meshing loads.  

Besides prior interest of many researchers, the first studies in gear dynamics started in the 
20’s decade (Parey, 2003), mainly to predict the tooth dynamic load for high speed gears. 
Since then, numerous dynamic models have been published in literature concerned with gear 
noise and vibration. A complete and extended review of the mathematical models used in gear 
dynamics was given by Özguven, 1988. The authors classified the mathematical models in 
five groups: Simple Dynamic Factor Models, Models with Tooth Compliance, Models for 
Gear Dynamics, Models for Geared Rotor Dynamics and Models for Torsional Vibrations. In 
general, the proposed models in the literature differ from each other according to the 
following included effects and solution methods: degrees of freedom (one, multi, infinite), 
gear types (spur, helical, bevel, worn), mechanical elements (shafts, bearings, gear housing, 
etc.), solution techniques (direct numerical integration, harmonic balance method, Floquet 
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theory), type of response (steady state or transient), excitation (low or high frequency) and 
other very important effects such as can also be included like gear and mounting errors, 
friction, tooth modifications and wear. However, and besides this huge number of possibilities 
it is assumed that transmission error and variation in mesh stiffness are two fundamental 
primary sources of gear excitation.  

The literature on gear teeth rolling/sliding friction is sparse, although it is believed to be one 
of the primary excitation for noise and vibration in geared power transmissions (Gunda, 
2003). Due to the sense reversion at pitch point, friction can be associated with a large 
oscillatory component especially at high torques and low speeds due to high forces in the 
sliding direction (Vaishya, 2003), even though sliding force amplitudes are small when 
compared to the mean transmitted loads. The sliding friction effects can be modeled as an 
external or internal excitation. As external, sliding friction has the same fundamental period 
of the gear mesh cycle and respective terms are placed in the right-hand side of the equation 
of motion. As internal, sliding friction can be based on the dynamic mesh force resulting in a 
linear dynamic model which also affects the homogenous part of the equation of motion, or 
resulting in a non-linear dynamic model where friction is clearly dependent of the 
instantaneous sliding velocity. Vaishya, 2001 compared dynamic transmission error of 
external and internal friction formulations (linear and non linear time varying systems) and 
concluded that for non-resonant conditions both yield identical results, except in the 
neighborhood of the pitch point zone. Kuang, 2001 proposed a dynamic model with time 
varying friction coefficient along the meshing line which in turn depends of sliding velocity 
and instantaneous viscosity of the lubricant film. Finally, Howard, 2001 considers the 
importance of friction to simulate the motion perpendicular to the meshing line, coupling as 
consequence the torsional and transverse motions of the gears and shafts. 

The aim of this paper is to study the influence of friction effects on the dynamic behavior of a 
FZG type C gear. A single degree of freedom torsional model of gear pair is proposed 
considering firstly the effects of time-varying mesh stiffness and viscous damping, and 
subsequently, the effects of constant friction coefficient and time varying output torques. The 
solutions of the differential equation of motion are obtained through the Runge-Kutta method. 

 

2. DYNAMIC MODEL FOR A SPUR GEAR PAIR 

A spur gear pair is shown in Figure 1, in which Tp and Tw represent the input and output 
torque, respectively (subscripts p and w stand for the pinion and the wheel respectively). Rp 
and Rw are the radii of the base circles, Jp and Jw are the polar moments of inertia while c is 
the total mesh damping. As time-varying parameters θp and θw denote the vibratory angular 
displacement from the mean position, k the total mesh stiffness and ε is the unloaded static 
transmission error. Note that k and ε are here assumed to be explicit functions of time. 

Considering a linear time-varying system with pinion torque as positive, the equations of 
torsional motion can be written as follows : 
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Both equations constitute a semi-definite system with two degrees of freedom θp and θw that 
can be reduced to a single degree of freedom introducing the dynamic transmission error x 
(DTE) as: 
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Here me is the equivalent mass of spur gear pair and F0 the static transmitted load.  

 
Figure 1. Dynamic model of a spur gear pair. 

By definition the friction force is the resistance to motion whenever solid A slides over B, and 
can be expressed as follows 

BA
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vFF
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where µ is the friction coefficient, Fn the normal force and vA/B the sliding velocity. 

Considering now the meshing between pinion and wheel teeth, the friction force may result 
time varying due to variations of sliding velocity term, normal force and/or friction 
coefficient. Even if normal force and friction coefficient are assumed constant along the gear 

meshing line, at least the unitary vector 
BA

BA

v
v

/

/ changes its sign at pitch point (+1 to -1, or -1 to 

+1), being null at pitch point. The analytical analysis of sliding velocities along the meshing 
line is treated on Appendice A. 

Figure 2 shows friction force analysis between pinion and wheel teeth as the contact point(s) 
moves along the meshing line. Normal forces and friction forces acting on pinion and wheel 
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teeth are represented above and bellow of meshing line respectively. Three different situations 
must be highlighted. First, when contact points are at double contact zone, second, when 
single contact point is on right of pitch point and third, when single contact point is on left of 
pitch point. At double contact zone, the normal force is divided by first and second contact 
points. Moreover friction forces acting at first and second contact on pinion (or wheel) are at 
opposite senses. At single contact zones, on left and right of pitch point, the normal force is 
exclusively supported by one teeth pair and friction forces are also at opposite directions, 
regarding pitch point.    

 
Figure 2. Free body diagram of normal and friction forces acting along meshing line. 

Regarding the equations of torsional motion (1) of a spur gear pair, this study considers two 
different friction force’s alternatives. In the first alternative, the friction force is considered as 
external excluding all dynamic effects of normal force, and so,     
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In the second alternative, the friction force has an internal action and normal force is now 
dependent of dynamic transmission error (DTE) as follows    

)()(
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εε −+−= xkxcFn  (7) 

 

2.1 External action of friction force with constant friction coefficient 
This first alternative to the base model considers the action of friction force exclusively as an 
external force, and independent of dynamic response of spur gear.  Although considered as an 
external action, and as seen before for this type of model, friction force may be time varying 
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along meshing line. On the other side, contact points and respective moment arms also change 
over the time, forcing friction torques acting on pinion and wheel as being time varying to.  

The three important time instants of a mesh cycle, ta, tb and tc, are defined as finish of double 
contact zone, instant of pitch point and finish of mesh cycle, respectively. 

A new set of dynamic equations for torsional motion of spur gear pair for each zone (double 
contact and two single contact zones around pitch point), and correspondent final dynamic 
equations with 1 degree of freedom can be written as follows: 

• Double tooth contact zone, 0 ≤ t < ta.  
First tooth contact point P1C lies along ED zone, and second tooth contact point P2C along 
BA zone (see Figure 2): 
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with moment arms determined by, 
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In above equations the term 
2
µ express an equal load sharing amongst the teeth and pb 

represents the base pitch. 

 

• Single tooth contact zone at right of pitch point, ta ≤ t < tb.  
Tooth contact point P1C lies along DC zone (see Figure 2): 
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• Single tooth contact zone a left ofpitch point, tb ≤ t < tc.  
Tooth contact point P1C lies along CB zone (see Figure 2): 
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Looking and comparing the last terms of equations (8), (11) and (13) it is interesting to note 
that pinion and wheel friction torques can be positive or negative. A negative pinion friction 
torque opposes to the pinion’s movement, while a positive wheel friction torque has a similar 
effect for wheel’s movement and vice versa. Additionally, equations (9), (12) and (14) are 
very similar to equation (3) except the 3 terms added and related with friction. As these 3 
terms together represent a piecewise periodic function, a Fourier series representation can 
solve this discontinuity problem (Velex, 2002).  

 

2.2 Internal action of friction the force with constant friction coefficient 
An alternative formulation to external action of the friction force is to consider an internal 
action, where the friction force along meshing line depends now from normal dynamic force, 
instead of static force. As a consequence, the dynamic terms of friction torques of the 
governing equations pass from second to first members. Systems and respective final 
equations for 3 individual contact zones are given by, 

 

• Double tooth contact zone, 0 ≤ t < ta. 
First tooth contact point P1C lies along ED zone, and second tooth contact point P2C along 
BA zone (see Figure 2): 
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The term 
2
µ reveals that two pairs of teeth share equal dynamic loads. 
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• Single tooth contact zone at right of pitch point, ta ≤ t < tb. 
Tooth contact point P1C lies along DC zone (see Figure 2): 
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• Single tooth contact zone at left of pitch point, tb ≤ t < tc. 
Tooth contact point P1C lies along CB zone (see Figure 2): 
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Like as in the case of the external formulation, it is also possible to represent the 3 friction 
torque dynamic expressions through Fourier series. This allows a complete definition of an 
unique dynamic equation for torsional motion with three conditions, each one depending of 
time and position of contact point(s) along the meshing line. 

 

2.3  Alternative output torque for the dynamic model with external action 
of the friction force  

Both formulations employed in this study consider constant output torque which is equal to 
input torque times the gear ratio, i.e., pw TiT ∗= . However the presence of friction 
phenomenon may contradict this assumption, especially when the friction coefficient is 
considerably higher increasing gear power losses and decreasing gear efficiency. To examine 
the influence of friction on the output torque, three new alternative expressions (time varying) 
of wheel torque are derived. In the following proposed expressions an assumption is 
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considered regarding the angular acceleration of the pinion and whell, 
..

pθ  and 
..

wθ . Cancelling 
both accelerations of equations (8), (11) and (13) and equalizing respective dynamic mesh 
forces, after some algebraic manipulations, the output torque functions Tw(t) and respective 
wheel efficiency η(t) for each contact zone can be written in the following form: 

• Double tooth contact zone, 0 ≤ t < ta. 
First tooth contact point P1C lies along ED zone, and second tooth contact point P2C along 
BA zone (see Figure 2): 
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• Single tooth contact zone at right of pitch point, ta ≤ t < tb. 

Tooth contact point P1C lies along DC zone (see Figure 2): 
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• Single tooth contact zone at left of pitch point, tb ≤ t < tc. 
Tooth contact point P1C lies along CB zone (see Figure 2): 
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where i is the gear ratio. 
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An equivalent procedure is usually used to calculate the loaded static transmission error 
(Amabili, 1997). With this set of equations three observations can be drawn. First, the time 
varying output torque Tw(t) must be always lower than nominal output torque Tp*i. Second, 
gear power loss is higher in double contact zone due to presence of highest sliding velocities, 
and third, gear efficiency must be equal to 1 at pitch point, that is at this point wheel torque 
must be equal to input torque times gear ratio. 

 

2.4  Alternative output torque for the dynamic model with internal action 
of friction force  

Following the preceding reasoning, like as for internal action of friction force model, the 
output torque function for each contact zone may be written as 

• Double contact zone, 0 ≤ t < ta. 

First tooth contact point P1C lies along ED zone, and second tooth contact point P2C along 
BA zone (see Figure 2): 
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• Single contact zone at right of pitch point, ta ≤ t < tb. 
Tooth contact point P1C lies along DC zone (see Figure 2):     
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• Single contact zone at left of pitch point, tb ≤ t < tc. 
Tooth contact point P1C lies along CB zone (see Figure 2): 
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3. NUMERICAL EXAMPLE OF A FZG TYPE C SPUR GEAR PAIR. 
RESULTS AND DISCUSSION. 

In this section a numerical simulation of the developed models in the previous sections for a 
FZG type C gear pair is presented. Table 1 shows the main design parameters of a FZG type 
C gear pair (Winter, 1985). Specifically, this gear pair is mainly used in micropitting tests on 
the FZG test rig (Winter, 1985). Limited to a maximum speed of 3000 r/min, the FZG test rig 
allows a maximum torque of 534.5 Nm on the pinion.  

The calculation of the contact stiffness was achieved using the KISSSOFT® software – 
calculation program for machine design (KISS soft AG). All dynamic simulations run under 
the assumptions of constant mesh damping ratio (ζ=0.05), lack of gear errors and no 
transversal movements (infinite transverse flexibility). All gear oscillations are considered 
exclusively along the meshing line. 

 
Table 1. Geometry of the FZG type C gear pair (Winter, 1985) 

Parameter [Units] Pinion Wheel 

Number of teeth 16 24 

Module [mm] 4.5 

Center distance [mm] 91.5 

Addendum diameter [mm] 82.45 118.35 

Pressure angle [º] 20 

Addendum modification [/] +0.182 +0.171 

Face width [mm] 14 

Profile shift factor 0.1817 0.1715 

Polar moment of inertia [kgm2] 3.45e-4 15.24e-4 
 

As referred before, all additional functions added to the base model were expanded into the 
Fourier series up to 150 harmonics to provide an adequate representation. Moreover, this 
procedure was also applied to generate the time varying mesh stiffness function as shown in 
Figure 3. The DTE of FZG type C gear is computed for all combinations of three different 
input variables: three pinion speeds (100, 1000 and 3000 rpm), two pinion torques (239.3 and 
372.6 Nm), and two friction coefficients (0.04 and 0.08). The input torques correspond 
exactly to eighth and tenth stage of the FZG test rig.  
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The solutions of the differential equations of motion with 1 degree of freedom were obtained 
by numerical integration. Fourth and fifth order Runge-Kutta method (Howard, 2003) has 
been employed and executed in MATLAB® software.  
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Figure 3. FZG type C gear mesh stiffness expressed by a Fourier series expansion with 150 harmonics. 
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Figure 4. Example of pinion and wheel friction torques along line the meshing line. 

 
In order to better understand the quantitative influence of tooth friction, we propose a 
representation of friction torques of pinion and wheel along meshing line. For simplicity 
consider the second model proposed above, where friction force is modelled as an external 
action. Based on the respective friction torque expressions Tw(t) according the contact zone,  
Figure 4 shows pinion friction torque loss at double contact zone and single contact zone after 
the pitch point. Meanwhile, wheel friction torque loss takes place at double contact zone and 
single contact zone before the pitch point. It is interesting to verify that a simultaneous torque 
loss occurs at double contact zone, while at single contact zone a friction torque loss on the 
pinion corresponds to a torque gain on the wheel, and vice versa. 
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Figure 5 shows twelve DTE curves for the following presented models: base model, base 
model with friction force acting as an external excitation and base model with friction force 
acting as an internal excitation. All combinations of input torques, input speeds and constant 
mesh friction equal to 0.04 were simulated.  
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Figure 5. Dynamic transmission errors for 6 combinations of pinion velocity and torque with 
friction coefficient equal to 0.04. 
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On the basis of the dynamic responses, the following conclusions can be drawn: 
• Higher input speeds correspond to higher DTE amplitudes and less number of oscillations 

at double and single contact zones; 
• Higher input torques correspond to higher values of DTE; 
• At 3000 rpm the three model’s results seem indistincts, however pitch point transition is 

clearly evident for the other two input speeds;  
• Taking the base model as reference and comparing results before and after the pitch point, 

a DTE’s increase is verified for external model and a decrease for internal model. 
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Figure 6. Dynamic transmission errors for 6 combinations of pinion velocity and torque with friction coefficient 
equal to 0.08. 
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The influence of friction can also be exhibited by doubling friction coefficient and 
maintaining other variables unchanged, as shown in Figure 6. At 3000 rpm noticeable 
differences between three models start to appear. For all speeds DTE oscillations around pitch 
point are now much more obvious, increasing and decreasing for external and internal model, 
respectively. By comparing frictionless model and two friction models with µ=0.04 and 
µ=0.08 the amplitude peaks are very similar. 

Figure 7 shows the dynamic force between gear teeth along line of contact for two extreme 
operating conditions in terms of input torque and friction coefficient. Each graphic represents 
two double and one single (in the centre) contact zones. Having considered equal tooth load 
sharing, this implies that the dynamic force per tooth pair at single contact zone is two times 
larger than at double contact zone. The dynamic force oscillates around the static force along 
mesh  cycle  and  once  again  it  is  clear  the  pitch  point  transition  especially  for the higher  
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Figure 7. Dynamic forces in the gear contact for np=1000 rpm (Tp=239.3 Nm and µ=0.04 on left, and Tp=372.6 

Nm and µ=0.08 on right). 
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friction coefficient. It is also interesting to compare dynamic and static forces along meshing 
line and conclude that former is in the range between 0.2 and 1.4 times the latter. This ratio is 
defined as dynamic factor, i.e. the ratio of maximum dynamic force to the maximum static 
force. Highest values are observed around double to single contact zone transition and lowest 
values from single to double transition. These results (pitch point steps) agree with those 
obtained by Vaishya, 2003 and Gunda, 2003, except for external excitation of friction where 
these authors detected a decrease of DTE around pitch point. 

Other numerical results demonstrated that even if friction coefficient is duplicated, from 0.04 
to 0.08, dynamic force peaks increase less than 2%, and an input speed decreasing causes a 
decreasing in the amplitude range of the dynamic force. 
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Figure 8. Gear efficiencies for external and internal formulations of friction excitation (Tp=239.3 Nm and µ=0.04 

on left, and Tp=372.6 Nm and µ=0.08 on right).  
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Output torque alternatives of Tw=i*Tp for both friction formulations have also been deducted 
and simulated. More specifically, dynamic characteristics of output torques result from 
constant friction parameter and periodically time-varying displacements of contact points 
along meshing line.  In terms of gear efficiency three results may be expected. First, due to 
highest sliding velocity the gear efficiency at double contact zone is smaller than for single 
contact zone. Second, it must be 100% at pitch point because sliding velocity is zero, and 
third, higher friction coefficients may imply higher gear power losses, or lowest gear 
efficiencies. Figure 8 compares gear efficiencies of the three output torque formulations for 
two constant friction coefficients, 0.04 and 0.08. These functions are included in the dynamic 
models using Fourier series expansion with 150 harmonics. After confirming the three 
expected results, it is also important to note that the two curves of the output torque 
formulations are very close to each other, especially for the lower friction coefficient which 
has an average gear efficiency around 99.2%. For µ=0.08 the average efficiency is equal to 
98.4% and 98.43% for external and internal friction formulation, respectively. Furthermore, 
the efficiency of each friction coefficient along the meshing cycle is always inside the interval 
97% < η < 100%. 
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Figure 9. Influence of time varying output torques on FZG type C’s friction dynamic models, 

Tp=372.6 Nm and µ=0.08. 
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Now let us consider the effect of the time-varying output torque on the FZG type C gear 
dynamics. The dynamic responses along gear meshing line for two friction formulations, 
external and internal action, with and without time varying output torques are presented in 
Figure 9.  

From the comparison of graphics it is evident that incorporating time varying effects on 
output torques does not produce significative changes of dynamic responses. This is probably 
due to the fact of small output torque variations along meshing line Tw/Rw ≈ Tp/Rp when 
compared with theoretical one, given by Tw=i*Tp. This can explain why has been frequently 
assumed in literature that output torque presents small dynamic alteration (Kuang, 2001 and 
Gunda, 2003). 

 
4. CONCLUSIONS 
This article proposes a linear time varying dynamic model for studying the effect of friction 
force on FZG type C gear vibrations.  A single degree of freedom torsional model including 
constant mesh damping and time varying mesh stiffness is first presented. Two extensions of 
this model considering external and internal friction force excitation and respective time 
varying output torque’s alternatives are proposed. According to these formulations the 
following conclusions can be made: 
1. Dynamic transmission error is significantly affected by the presence of friction force 

especially at pitch point, while before this point the two curves are very close to each other. 
If friction torque is modeled as an external excitation, the DTE’s amplitudes at pitch point 
increase considerably (ex: 9% for µ=0.08, np=1000 and Tp=239.3Nm), but on the contrary 
decrease for an internal excitation (ex: -9.9% for µ=0.08, np=1000 and Tp=239.3Nm). 
Increasing the friction coefficient increases these pitch point steps. This phenomenon can 
also be easily observed in the dynamic forces between the meshing gear teeth, for example, 
an increase of +11.5% for external formulation and a decrease of -8.1% for internal 
formulation, booth with µ=0.08, np=1000 and Tp=239.3Nm.  

2. Except for low input speeds the inter-teeth dynamic force along the meshing line oscillates 
between 0.2 and 1.4 times the static force, but the influence of friction on highest and 
lowest peaks of dynamic force is, however, weak. 

3. The gear efficiencies were also considered into the dynamic model in order to quantify the 
impact of time varying output torques on gear dynamic transmission error amplitudes. It 
was shown that Tw(t) has a little influence (ex: 1% for µ=0.08, np=1000 and Tp=372.6Nm) 
on both formulations of friction force (external and internal), probably due to small time 
output torque (or gear efficiency) variations along meshing line when compared with 
theoretical output.  

A study of the effects of time varying friction coefficient along meshing line (or dynamic 
friction coefficients), unequal load sharing and gear errors is currently in progress. 
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APPENDIX A   
In this appendix the analytical equations of absolute velocities of first P1C and second P2C 
points of contact, and respective sliding velocities along meshing line are presented. Figure 
1A shows a Cartesian coordinate system Cntz with its origin at the reference point C (pitch 
point). 

 

 
Figure 1A. Coordinate system for velocities of the first P1C and second P2C contact points. 

Consider first the friction force definition between solids A and B,  
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The sliding velocity of first contact point P1C is 
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with absolute velocities of first contact point P1C and respective position vectors defined as  
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The sliding velocity of second contact point P2C contact is 
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with absolute velocities of second contact point P2C and respective position vectors defined 
as   
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Finally the friction forces of pinion and wheel at double contact zone for first P1C and second 
contact point P2C and assuming equal load share are expressed as 
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and for a single contact zone  
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