
Stable Text Line Detection

Jaime S. Cardoso
INESC Porto, Faculdade de Engenharia, Universidade do Porto

jaime.cardoso@inescporto.pt

Abstract

Text line segmentation in freestyle handwritten docu-
ments remains an open document analysis problem. Curvi-
linear text lines and small gaps between neighbouring
text lines present a challenge to algorithms developed for
machine-printed or hand-printed documents. We investi-
gate a general-purpose, knowledge-free method for the au-
tomatic detection of text lines based on a stable path ap-
proach. Lines affected by curvature and inclination are ro-
bustly detected. The proposed methodology was tested on
a modern set of handwritten images made available on the
ICDAR 2009 handwriting segmentation competition, with
promissing results.

1. Introduction

Text line segmentation is one of the major components
of document image analysis. It provides crucial informa-
tion for skew correction, zone segmentation, and charac-
ter recognition. Although text line segmentation for ma-
chine printed or hand-printed documents is usually seen as a
solved problem, freestyle handwritten text lines still present
a significant challenge. Handwritten document analysis is
difficult mainly due to the irregularity of layout and charac-
ter shapes originated from the variability of writing styles.
Handwritten text lines are often un-uniformly skewed and
curved, and the space between lines is not obvious. Linear
or piecewise linear approximation is not accurate in general.
For unconstrained handwritten documents, text line seg-
mentation and character segmentation-recognition are not
solved though enormous efforts have been devoted to them
and great advances have been made [3, 5, 7].

1.1. Related Works

There are mainly three basic categories that text line seg-
mentation methods lie in: methods making use of the pro-
jection profiles, methods that are based on the Hough trans-
form and, finally, smearing methods. In [4, 5] the authors
review the related work on the text line segmentation prob-

lem.
In spite of the variety of methods available, they all suffer

from some limitations. A problem common is that current
techniques they do not properly incorporate global infor-
mation in the detection process. To our knowledge, none of
the proposed methods in the literature tries to define a rea-
sonable process from the intrinsic properties of text lines,
namely the fact that they are extensive black objects on the
document. Generally, we argue that the most interesting
techniques arise when one defines the detection process as
the result of optimizing some global function. In the fol-
lowing, we suggest a graph-theoretic framework where text
lines are the solutions of a global optimization process.

2. A Stable Path Approach for Text Line De-
tection

The proposed algorithm is an adaptation of an algorithm
for staff line detection in a music score [2]. In the work
to be detailed, the image grid is considered as an weighted
graph with pixels as nodes and arcs connecting neighbour-
ing pixels. The weight of each arc, w(p, q), is a function of
pixels values and pixels relative positions.

2.1. Algorithm outline

To a first approximation, text lines can be considered as
the only extensive objects made from black pixels in the
text document, nearly connected paths of black pixels from
the left side to the right side of the image. Assuming that
paths through black pixels are preferred over paths through
white pixels, lines can then be found among the shortest
paths from the left to the right margin of the image. Text
lines are then best modelled as paths between two regions
Ω1 and Ω2, the left and right margins of the document.

One may assume that text lines do not zigzag back and
forth, left and right. Therefore, one may restrict the search
among connected paths containing one, and only one, pixel
in each column of the image1. Formally, let I be an N1×N2

1These assumptions, 8-connectivity and one pixel per column, impose
a maximum detectable 45 rotation degree.

1
978-1-4244-5496-9/09/$25.00 ©2009 IEEE 89

image and define an admissible line to be

s = {(x, y(x))}N1
x=1 , s.t. ∀x |y(x)− y(x− 1)| ≤ 1,

where y is a mapping y : [1, · · · , N1]→ [1, · · · , N2]. That
is, a text line is an 8-connected path of pixels in the image
from left to right, containing one, and only one, pixel in
each column of the image.

Given the weight function w(p, q), the cost of a line can
be defined as C(s) =

∑N1
i=2 w(vi−1, vi). The optimal text

line that minimizes this cost can be found using dynamic
programming. The first step is to traverse the image from
the second column to the last column and compute the cu-
mulative minimum cost C for all possible connected text
lines for each entry (i, j):

C(i, j) = min


C(i− 1, j − 1) + w(pi−1,j−1; pi,j)

C(i− 1, j) + w(pi−1,j ; pi,j)
C(i− 1, j + 1) + w(pi−1,j+1; pi,j)

,

where w(pi,j ; pl,m) represents the weight of the edge inci-
dent with pixels at positions (i, j) and (l,m). At the end of
this process,

min
j∈{1,··· ,N2}

C(N1, j)

indicates the end of the minimal connected line. Hence, in
the second step, one backtrack from this minimum entry on
C to find the path of the optimal line.

Assume one wants to find all text lines present in a score.
This could be approached by successively finding and eras-
ing the shortest path from the left to the right margin of the
score. The erase operation is required to ensure that a line
is not detected multiple times. A different approach is to try
to detect multiple text lines in a single iteration, instead of
sequentially computing them one at a time. We summarize
now the concept of a stable path in a graph [2], which will
allow us to do precisely that.
Definition. A path Ps,t is a stable path between regions
Ω1 and Ω2 if Ps,t is the shortest path between s ∈ Ω1 and
the whole region Ω2, and Ps,t is the shortest path between
t ∈ Ω2 and the whole region Ω1.

Note that the concept of stable path is valid for any graph
and any two sub-graphs in general.

In Fig. 1(a) the shortest paths between each point on the
left margin and the whole right margin are traced for the
score in Fig. 2(a). As seen, the paths got attracted by the text
lines. Likewise, Fig. 1(b) shows the shortest paths between
each point on the right margin and the whole left margin.
The set of stable paths between both margins result as the
set of paths present in both figures.

Although the computation of the stable paths may be ex-
pensive in general graphs, the computation in the graph de-
rived from an image under the setting adopted in this section
has only roughly twice the complexity of the shortest path

(a) shortest paths from each
pixel in the left column and the
whole right column, superim-
posed on the original image.

(b) shortest paths from each
pixel in the right column and
the whole left column, super-
imposed on the original im-
age.

Figure 1. Illustration of stable paths for Fig. 2(a).

computation. Noticing that the procedure delineated for the
shortest path actually gives the shortest path between the
whole left margin Ω1 and each point on the right margin
Ω2, the first step on the computation of the stable path cor-
responds verbatim to the computation of the shortest path
presented on Section 2.1. In a second step one repeats the
same procedure, traversing now the graph from the right
column to the left. At the end of this process, if the two
endpoints of a direct and reverse path coincide, we are in
the presence of a stable path.

Next, the complete proposed algorithm for text line de-
tection is detailed.

2.2. Proposed Algorithm

The proposed algorithm can be implemented as a se-
quence of a few high-level operations, as presented in List-
ing 1.

PreProcessing:
image width reduction
compute weights of the graph

Main Cycle:
compute stable paths
validate paths with blackness
erase valid paths from image
add valid paths to list of textlines
end of cycle if no valid path was found

PostProcessing:
uncross textlines
smooth textlines
find separation-path between consecutive text lines

Listing 1: Main operations of the proposed method.

2.2.1 Preprocessing

The white margins on the document and the gaps between
words behave like ‘noise’ to the algorithm, and do not con-

90

stitute any useful information. Therefore, the proposed al-
gorithm starts by reducing the width of the image with the
elimination of vertical paths through white pixels only [1,6].
The procedure to resize the image is totally equivalent to
the process used to find the text lines. One searches for the
shortest path between the top and bottom margins, this time
penalizing paths through black pixels. The resizing process
stops when it is not possible to find a connected path com-
pletely through white pixels.

In the resulting image, words are more compact and
adapted to the subsequent operations (see Fig. 2). After re-

(a) Original image. (b) Resized image.

Figure 2. Illustration of the reduction of the image width.

sizing the image, the edges’ weights of the graphs are esti-
mated as explained next.

2.2.2 Design of the Weight Function

An immediate approach is to support the design of the
weight function solely on the values of the incident nodes:
if any of the corresponding pixels are black then a low cost
is assigned to the edge; otherwise the edge assumes a high
cost. We call this the baseWeight in Listing 2. However,
the weight function can be generalized to account to other
factors. To incorporate some prior knowledge about a text
line into the shortest path process, we modified the weight
function of the graph.

If a white pixel is part of a long horizontal run of pixels
(an horizontal run is an horizontal sequence of consecutive
pixels with the same value), it is more likely to be part of
a inter-line space rather than a inter-character of inter-word
space. Therefore, a term penalizing such pixels on long runs
is included in the weight function. The pseudo-code for
the weight function is provided in Listing 2, where hRun1

and hRun2 are the run-length of the runs containing the two
pixels.

The quadratic penalizing term was experimentally se-
lected over a set of training documents.

WeightFunction(pixelValue1, pixelValue2, hRun1, hRun2,
NeighbourhoodType)

{
value = min(pixelValue1, pixelValue2);
hRun = min (hRun1, hRun2);
weight = baseWeight(value, NeighbourhoodType);
if(max(pixelValue1, pixelValue2) == WHITE)
weight = weight + (hRun /200)ˆ2;

return weight;
}

Listing 2: Pseudo-code for the weight Function. The base
weight was set to 2 on black pixels and 6 on white pixels for
4-neighbourhoods and to 4 and 12 on for 8-neighbourhoods.
For efficiency, weights were designed with integer values.

2.2.3 Main Cycle

The preprocessing is followed by the main cycle of the
methodology, by successively finding the stable paths be-
tween the left and right margins, adding the paths found
to the list of text lines, and erasing them from the image.
Note that the algorithm computes all stable paths between
margin points from one margin to the other, at each iter-
ation. The erase operation sets to white the pixels on all
connected components intersecting the detected text lines.
The erase operation is necessary to ensure that a text line is
not detected multiple times.

2.2.4 Stopping Rule

To stop the iterative text line search, a rule is used to validate
the stable paths found; if none of them passes the checking,
the iterative search is stopped. A path is discarded if it does
not have a percentage of black pixels above a fixed thresh-
old. The median percentage of blackness of all lines found
in the first iteration of the main cycle provides the neces-
sary reference (a threshold of 15% of the median value was
empirically selected).

2.2.5 PostProcessing

After the main search step, valid text lines are post-
processed. Although true text lines never intersect, the
above algorithm may occasionally create intersecting lines,
detected on different iterations. Local discontinuities can
induce a stable path to zigzag up and down between con-
secutive text lines; on the next iteration, the detected path
is likely to connect the remaining segments, and therefore
intersect with the path detected in first place. To preclude
such final, undesired state, lines are post-processed to re-
move intersections: for each image column, sort on y the
pixels of the detected lines and assign the i-pixel to the i-
line. After this simple process, lines may touch but they do
not intersect.

Finally, lines are smoothed with a standard average low-
pass filter. Considering a text line as a sequence y(x) of y-

91

positions, a one-dimensional averaging filter is applied. A
window size of 4×interlinespace was selected empir-
ically. The baseline value interlinespace is estimated
after the detection of the text lines, as the median y-distance
between consecutive lines.

The text lines found so far are one-pixel thick through
the text characters, but do not assign each and every charac-
ter pixel to a line. Toward that end, we find the shortest path
between the left and right margins, but constrained between
two consecutive text lines. In this search, we favour paths
through white pixels, trying to find the best separation-path
between two consecutive text lines (see Fig. 3): a straight-
forward weight function is used in the graph, penalizing
more black pixels (2) than white pixels (1). At the end, pix-

Figure 3. Detail of the postprocessing. The red paths are the stable
paths found on the main cycle of the algorithm; the blue ones are
the paths found on the postprocessing, separating consecutive text
lines.

els between two consecutive separation-paths are assigned
to the same text line.

3. Results

The proposed methodology was tested on a modern set
of 300 handwritten images made available on the ICDAR
2009 handwriting segmentation competition. None of the
documents include any non-text elements (such as lines,
drawings, pictures and logos) and are all written in several
languages including English, French, German and Greek.
Almost all documents have two or more adjacent text lines
touching in several areas. Some of them have variable skew
angles among text lines. Furthermore, there are document
images having text lines with different skew directions as
well as document images having text lines with converse
skew angles along the same text line. The appearance of
accents is common in Greek and French handwritten docu-
ments. All documents are written from different writers and
in the majority of the documents the distance of adjacent
text lines is very small leading to a highly dense text. For
all images, we have the corresponding groundtruth made
available for the competition (the total number of text lines
is 6276). One hundred images were used for designing the
model (the design encompassed tuning the weight function,
namely the term penalizing long runs of white pixels, and
the threshold of the stopping rule); the performance of the
model was assessed on the other 200 images.

The assessment of the performance of the text line de-
tection was based on the metric introduced in [5], with the

evaluator’s acceptance threshold th defined as 0.95. The
performance evaluation is based on counting the number of
matches between the areas detected by the algorithm and the
areas in the ground truth. A table is contructed with entries
calculated according to the overlap of the labeled pixel sets
as either text lines or words and the ground truth. The detec-
tion rate (DR) and recognition accuracy (RA) are calculated
from the number of one-to-one one-to-many matches ex-
tracted from the table. The proposed stable text line detec-
tion method achieved a detection rate of 97% and a recog-
nition accuracy of 97%.

Figures 4 and 5 contain text line segmentation results of
the proposed methodology. Figure 4 represents the worst re-
sult, while Figure 5 two of the images where lines were per-
fectly segmented. We see that text lines of variable length
and with highly asymmetric character density still pose dif-
ficulties. Moreover, errors in detecting one line tend to
propagate to other lines. Finally, it is worth mentioning the
robustness of the method to skewed and curved text.

(a) Original image, with results
from the main cycle and postpro-
cessing superimposed.

(b) Final segmentation.

Figure 4. Text line segmentation with poor results.

4. Conclusion
This paper presented a robust algorithm for the automatic

detection of text lines in handwritten documents. The pro-
posed method uses a very simple but fundamental principle
to assist detection and avoid the difficulties typically posed
by handwritten documents. The stable path approach for
text line detection algorithm is adaptable to a wide range
of image conditions, thanks to its intrinsic robustness to
skewed images, discontinuities, and curved text lines. The
fact that this same idea has been applied before to the de-
tection of staff lines in music scores confirms the robustness
and generality of the framework.

Our algorithm is to be further improved by refining
the definition of the weight function (incorporating more
knowledge about a text document in it) and the pre- and
post-processing procedure. We also intend to evaluate on
historical documents and on more languages, as in Chinese

92

(a) Original image, with re-
sults from the main cycle and
postprocessing superimposed.

(b) Final segmentation.

(c) Original image, with re-
sults from the main cycle and
postprocessing superimposed.

(d) Final segmentation.

Figure 5. Text line segmentation with perfect results.

documents, via customizing the weight function and train-
ing with document images of specific languages.

Acknowledgments

This work was partially funded by Fundação para a
Ciência e a Tecnologia (FCT) - Portugal through project
PTDC/EIA/71225/2006.

References

[1] S. Avidan and A. Shamir. Seam carving for content-aware
image resizing. ACM Trans. Graph., 26(3):10, 2007.

[2] J. S. Cardoso, A. Capela, A. Rebelo, C. Guedes, and J. F. P.
da Costa. Staff detection with stable paths (online). IEEE
Transactions Pattern Analysis Machine Intelligence, 2009.

[3] Y. Li, Y. Zheng, D. Doermann, and S. Jaeger. Script-
independent text line segmentation in freestyle handwritten
documents. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 30:1313–1329, 2008.

[4] L. Likforman-Sulem, A. Zahour, and B. Taconet. Text line
segmentation of historical documents: a survey. International
Journal on Document Analysis and Recognition, 9:123–138,
2007.

[5] G. Louloudis, B. Gatos, I.Pratikakis, and C. Halatsis. Text line
and word segmentation of handwritten documents. Pattern
Recognition, 2009.

[6] H. Oliveira and J. S. Cardoso. Image retargeting using sta-
ble paths. In Proceedings of the International Conference
on Computer Vision Theory and Applications, pages 40–47,
2009.

[7] F. Yin and C.-L. Liu. Handwritten chinese text line segmen-
tation by clustering with distance metric learning. Pattern
Recognition, 2009.

93

