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Abstract 

Bone is a remarkable tissue that can respond to external stimuli. The importance 

of mechanical forces on the mass and structural development of bone has long been 

accepted. This adaptation behaviour is very complex and involves multidisciplinary 

concepts, and significant progress has recently been made in understanding this 

process. In this review, we describe the state of the art studies in this area and 

highlight current insights while simultaneously clarifying some basic yet essential 

topics related to the origin of mechanical stimulus in bone, the biomechanisms 

associated with mechanotransduction, the nature of physiological bone stimuli and 

the test systems most commonly used to study the mechanical stimulation of bone. 

 

1. Introduction 

 

Understanding the influence of mechanical stimuli on the structure of bone has long 

been a topic of scientific interest. To  the best    of our knowledge, Galilei [1], noticed a 

relationship between body weight and bone size and shape. However, mechanical 

forces were not identified as responsible for shaping the architecture of the skeleton 

until the 19th century, in studies developed by Meyer [2], Culmann [3] and Roux [4]. 

The German anatomist von Meyer identified arched trabecular patterns in a sagittally 

sectioned human first metatarsal and calcaneus, and Culmann, a pioneer of graphical 

methods in engineering, suggested that the patterns appeared to be aligned along 

principal stress directions produced by functional loading [5]. In 1881, Roux proposed 

that the apposition and absorption of bone is a biological stress-controlled process 

[6,7]. 

However, Julius Wolff [8] – influenced by von Meyer–Culmann interactions in 1867 

– became associated to the concept of bone adaptation. He claimed that the shape of 

bone is related to mechanical stress by Wolff’s law of bone transformation. Although 
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this law is an overly simplified mathematical approach, the concept has been 

accepted by the scientific community. Recent interpretations of “Wolff’s Law” have 

proposed that bone mass and architecture are to some extent governed by adaptive 

mechanisms that are sensitive to their mechanical  environment [9–11]. 

Over the years, remarkable work has been done to elucidate bone 

mechanotransduction and its response to mechanical  stimulation.  The first contact 

with this subject can be overwhelming due to the complexity and multidisciplinary 

mechanisms involved. This review paper aims to establish the state of the art of this 

area while simultaneously clarifying some basic yet important questions on which light 

has been shed during recent years, such  as 

 

• What is the origin of the mechanical stimulus? How is it triggered? 

• How does bones mechanotransduction work? 

• What are the normal physiological bone stimuli? 

• What test systems are commonly used to study bone’s mechanical stimulation? 

 

2. Mechanical stimulus 

 

Bone mass is maintained by and adapted to mechanical strain, primarily as the result 

of muscular contraction [12,13]. Some key aspects are currently accepted by the 

scientific community at large and should  be mentioned. 

First, long bones deformation is obtained by an orchestrated muscle activity as 

demonstrated by Duda et al. [14]. Using a finite element strain distributions model, 

these authors concluded that simplified load regimes produced differences in strain as 

high as 26% compared with regiments that included all thigh muscles. Although this 

study focused only on the proximal femur situation, this concept can be generalized 

to other bones in the human body. 

Second, the forces experienced by bone arise from muscle action rather than from 

mere gravitational forces [15]. Hence, muscle mass/strength correlates with bone 

strength [12]. This concept was demonstrated in a study by Sievänen et al. [16]. The 

patella bone mineral apparent density and average strain magnitude were 

measured in a chained event experiment that included one-year unilateral strength 

training interventions, an accidental knee ligament rupture and a two-year 

rehabilitation period. The patella was selected as the target bone because it is a non-

weight-bearing bone that receives mechanical stimuli from only the quadriceps 

activity. Sievänen et al. showed that a decline in muscle mass precedes a decline in 

bone strength under conditions of disuse and that the recovery of muscle mass 

increases before bone mass. In another study, Schönau et al.[17] compared the muscle 

development with age as well as muscle development and bone  strength. 

Disuse can be asserted to cause muscle wasting and bone loss, whereas physical 

activity increases muscle strength and bone mass. However, according to Rittweger et 

al. [15], this relationship only holds to a certain extent. The authors claim that muscular 

exercise can only enhance bone strength up to 1–2% because tendon stiffness may limit 

the musculoskeletal peak forces. 

In several studies [9,12,16,18], a time lag of up to 5 days was registered between a 
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single period of mechanical loading in vivo and the onset of collagen and mineral 

apposition increases on the bone sur- face. This phenomenon is justified by the delay 

between the initial formation of new bone and the establishment  of  fully  mineralized 

and  mature bone. 

The third key aspect was stated in one of the earliest far-reaching interpretations of 

bone loading made by Pauwels [19], who suggested that bending moments are 

transmitted along limbs by  a  combination of tensile forces in the muscle and 

compressive forces on bone. Hence, gravitational forces tend to lower and collapse our 

body segments in any upright posture. However, bending moments are accentuated 

rather than reduced due to the physiological curvature of long bones. In response to 

these external loads, muscles not only provide the necessary moment equilibrium in 

joints, but they counteract the passive bending moments along bones in an 

energetically efficient manner, as stated by Munih et al. [20]. While reducing the 

bending stress, muscles increase the axial compressive load irrespective of the posture 

to ensure minimal bone stress and minimal bone weight [21]. From all registered 

loading modes in long bone, bending is the most significant for bone adaptation  [22–

24]. 

Fourth and last, in addition to mechanical stimuli, bone remodelling may also be 

regulated by hormones, such as estrogen and parathyroid hormone [25,26], and 

induced by the nervous system [18,27]  and inflammatory reactions [28]. 

 

3.Mechanotransduction system 

 

Over the last several years, osteocytes have become generally accepted as the 

mechanosensory cells within the bone. Osteocytes coordinate the remodelling process 

by converting external mechanical forces into biochemical responses – a process 

known as mechanotransduction. However, the mechanism by which these cells sense  

the mechanical loads and facilitate adaptive alterations in bone mass and architecture 

is not yet  completely understood [10,18,29,30]. 

 

3.1. Stimuli perceived by osteocytes 

 

Osteocytes are generally assumed to react to bone deformation or to one of the 

consequences of bone deformation, such as shear stress due to load-induced fluid 

flow, electric fields caused by stress- generated streaming potentials, and hydrostatic 

pressure  [22,31,32].  

 

3.1.1. Cell deformation 

The immediate consequence of mechanical loading is  strain,  which is a small 

deformation throughout the calcified matrix. These stimuli will stretch the osteocytes 

to the same extent as the sur- rounding bone tissue. When stretched in one direction, 

bone tends to slightly contract in the perpendicular direction. Hence, direct biaxial 

osteocyte strain is common [9,33]. Several authors [33–35] suggest that the strains 

experienced by an osteocyte are much higher than those measured on the bone surface, 
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with registered amplification factors that are up to 9 times larger than the applied 

global strain. This difference may be due to a magnification effect caused by the cell’s 

complex surrounding pericellular and extracellular matrix. In a recent study, Wang et 

al. [36] proposed that the strain amplification factor positively correlates with the 

loading frequency and loading strain. 

 

3.1.2. Shear induced by fluid-flow 

Loading the bone first pressurizes the interstitial fluid around the osteocytes before 

flow is initiated [32]. A study developed by Gardinier et al. [37] predicted that in vivo 

osteocytes could experience hydrostatic pressures of up to 5 MPa. The interstitial fluid 

within the lacuno-canalicular (LC) is then driven to flow through the thin layer of non-

mineralized pericellular matrix surrounding the osteocytes and towards the 

Harversian or Volkmann’s channels [22,32]. In this sense, bone can be compared to a 

water-soaked sponge. A compressive force on the sponge will squeeze water out of it. 

Similarly, mechanical loading will result in a flow of interstitial fluid through the LC 

network of bone (see Fig. 1) [38]. The flow of interstitial fluid through the LC net- work 

places shear stress on the cell membranes. This stress is thought to initiate a 

biochemical response from the cells [39]. 

Piekarski [40] was the first researcher to propose that mechanical loading induces 

fluid-flow in bone. He stated that this flow enabled nutrition and waste removal. 

The effect of the three-dimensional LC network complex geometry of bone on the 

fluid flow shear stress stimuli mechanism and its role in osteocyte mechanobiology 

are not yet fully understood. However, a recent study developed by Verbruggen et 

al. [41] showed that individual osteocytes may be subjected to a maximum shear 

stress stimulus of approximately 11  Pa and an average fluid velocity of 60.5 μm/s in 

response to vigorous activity. Mechanosensing bone cells also seem to be able to sense 

low fluid-flow stress values, as demonstrated by Morris et al. [42], Delaine-Smith et al. 

[43], Young  et al. [44]. 

Several studies have also evaluated the responsiveness of bone cells to different flow 

profiles. Of these studies, we would like to highlight the important work developed by 

Jacobs’ group [45–47], in which they studied oscillating, pulsatile and steady fluid flow. 

These studies showed that pre-osteoblast cell lines recognized both steady 

unidirectional and oscillating fluid flow as an  osteogenic  stimulus, but the latter was 

considered to be more realistic in physiologic terms than steady or pulsatile flow. This 

condition occurs because induced flow through the LC network is reversed when the 

bone is unloaded [46,47]. Case et al. [46] also claimed that the flow duration and 

inclusion of rest periods may influence flow  effects. 

 

3.1.3. Streaming potentials 

In the mid-1960s, researchers observed that mechanical strains generated electrical 

potential differences along the lateral and longitudinal axes of compact bone. These 

differences may exert direct effects on bone cells because the in vivo application of an 

electromagnetic field to bone is known to inhibit bone resorption and stimulate bone 

formation. Of all of the mechanisms proposed to explain the strain-generated 
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potentials, two were selected for analysis: streaming potentials and piezoelectricity  

[9,10,48]. 

Streaming potentials are electric fields caused by stress-generated fluid-flow. Initially, 

streaming potentials were thought to be generated by electrokinetic effects that are 

associated with the collagen- apatite porosity system of connected micropores. 

Currently, pores are considered to be the canaliculi in mineralized bone. The bone 

surface is negatively charged; thus, the interstitial fluid cations that are being forced 

through channels are attracted to the surface, producing a surplus of ions in the fluid. 

The voltage that results from this imbalance of ions is positive in the direction of flow. 

The streaming potential produced by interstitial fluid-flow in bone is believed to be able   

to produce a number of responses in osteocytes, including the activation of voltage-

operated channels in the cellular membrane. Thus, this streaming potential serves to 

trigger the mechanotransduction process [32,49–51]. 

 

3.1.4. Piezoelectricity 

Yasuda [52] was the first researcher to observe piezoelectric behaviour in bone 

tissue. Subsequently, Fukada et al. [53] systematically investigated and measured the 

direct and converse piezoelectric effect in dry specimens cut from human and ox 

femurs. The centro- symmetric crystal structure of hydroxyapatite excludes the 

possibility of observing these piezoelectric properties, as demonstrated in de-

collagenated bone [54]. Minary-Jolandan et al. [55] found that isolated collagen 

fibrils have unipolar axial polarizations and behave mainly as shear piezoelectric 

materials with a shear piezoelectric constant of d15  ≈ 1 pm V−1 (or pC N−1). 

In a recent study, Ahn et al. [10] explored the possible influence of bone 

piezoelectricity on streaming potentials. The piezoelectricity of collagen may 

influence the magnitude of the zeta potential and thus the streaming potential. 

Therefore, it may indirectly modify the stiffness and fluid dynamics of bone. The load 

may also create a local fixed charge density that may modify the steady state fluid 

content of the bone and consequently the amount available for transfer from the 

collagen-hydroxyapatite microporosity to the LC system. This influence in turn 

affects the fluid-flow around the osteocytes. In a complementary multiscale 

approach study developed by Lemaire et al. utilized a coupled poro-elastic model 

of cortical tissue to deter- mine that in vivo electric measurements at the organ 

scale are due to streaming currents. 

Although the precise stimuli bone cells experience  in  vivo  are  not yet fully 

understood, a number of theoretical and experimental studies over the past decade 

have uncovered strong evidence favouring direct cell strain and interstitial fluid-flow 

as the most likely stimuli for mechanosensation, instead of streaming potentials or 

hydrostatic pressure. These studies further support that shear stress induced by fluid-

flow is the predominant stimuli recognized by osteocytes, as opposed to direct 

mechanical strain by substrate stretching [32,33,37,39,57,58]. 
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3.2. Mechanism of stimuli perception 

 

Osteocytes may sense loads via several mechanisms. Both cell body and dendritic 

processes have been proven to perceive mechanical forces. Several in vitro studies 

[33,59–61] have attempted to de- cipher the part of the cell – body or dendritic process 

– that is more sensitive to mechanical forces. Although it remains a controversial 

subject, the prevalent, widely accepted, hypothesis proposes that the osteocyte cell 

process is responsible for mechanosensation [62]. 

Several excellent papers on the mechanisms for the initial detection and conversion 

of a mechanical force  into  a  biochemical  signal, such as [21,32,63] and references 

within these papers, have been written, and the reader is referred to these studies for 

many of the details. Integrins, cation non-selective channels and the bone cell primary 

cilium are proposed to be involved in the osteocyte perception process of the 

mechanical  signal. 

One critical transduction pathway consists of strengthening ligand-integrin-

cytoskeleton linkages in response to a force. Integrins are a superfamily of cell adhesion 

receptors that bind to extracellular matrix ligands, cell-surface ligands, and soluble 

ligands. The transfer of forces across cell adhesions allows focused stresses applied on 

the surface membrane to affect distant sites, such as the mitochondria and  nucleus 

[22,56,64,65]. 

Ion channels, which are located in bone cell membranes, form strain-sensitive systems 

that respond to several stimuli, such as ligand binding, voltage changes, stretching and 

fluid shearing, via cellular ion fluxes. Several of these channels have been detected 

in osteocyte cultures: a Gd3+ sensitive non-selective cation channel; the volume 

sensitive epithelial-like Na+ channel ENaC; secondary driven Ca2+ channels, such 

as the voltage-dependent L-type channels or Na+/Ca2+ exchange channels; and 

Cl− and K+ channels. Integrins and stretch-activated channels also seem to be linked. 

Hence, cell stretching may lead to an increase in lateral membrane tension, which 

activates mechanically gated ion channels, i.e., stretch-activated channels. Stretch-

activated cation channels are also thought to be responsible for mechanotransduction 

in osteoblasts. [64,66–68]. 

Primary cilia are structures that project from the cell surface and deflect under fluid-

flow. Currently, research  points  to  the  follow-  ing flow-induced cilia response: 

increase in cox-2 gene expression, prostaglandin E2 release (which is an important 

chemical mediator   in the mechanotransduction process, as outlined in the following 

section) and an increase in the OPG/RANKL ratio. The cilia-based osteocyte response is 

independent of intracellular calcium. Many interesting aspects of the role of primary 

cilia in bone mechanotransduction remain to be studied [30,69,70]. 

Although osteocyte sensing  mechanisms  have  been  individually presented, 

researchers strongly believe that these mechanisms are highly associated; therefore, 

there is no single transduction pathway [9]. 
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3.3. Osteocytes biochemical stimuli-induced responses 

 

The in vivo and in vitro osteocyte responses to load include the production of several 

biochemically relevant messengers [57,71,72], such as Ca2+, nitric oxide and 

prostaglandin  E2. 

One of earliest osteocyte responses to mechanical stimulation is calcium (Ca2+) 

exchange between the  extracellular  and  intracellular medium. This response 

propagates to the neighbouring cells, suggesting that the cellular network 

communicates and synchronizes via this mechanism. This response initiates a number 

of essential down- stream signalling pathways, e.g. ATP, nitric oxide and prostaglandin  

E2 (PGE2) release [9,60,73,74]. 

Nitric oxide (NO) and PGE2 are considered potent anabolic regulators of bone growth. 

Studies have shown [75,76] that the inhibition of only one of the two rapidly released 

small molecules at the time of mechanical stimulation suppresses the osteogenic 

response to mechanical  stimulation. 

NO is responsible for stimulating bone formation by inhibiting osteoclast formation 

and inducing osteoblasts differentiation. This anabolic regulator is also responsible for 

maintaining the viability of osteocytes and enhancing PGE2 [77]. Klein-Nulend et al. 

[78] examined the effect of pulsating fluid flow (0.5±0.02 Pa, 5 Hz and 0.4 Pa/s) 

stimulation on chicken calvarial osteocytes. NO showed a maximum effect after 5 min, 

decreasing afterwards. PGE2 effect was significant after 10 min, which was maintained 

throughout 60 min. 

PGE2 is an important signalling molecule because it not only stimulates osteogenic 

function in existing osteoblasts but also increases the production of osteoblasts by 

recruiting and promoting the differentiation of precursor cells. Another molecule that 

has similar effects to PGE2 on the signalling of the osteogenic process is the insulin-like 

growth factor I [9,32,78–82]. 

During bone remodelling, a cutting cone of osteoclasts, followed by a reversal or 

transition zone of osteoblast precursors and a closing cone of osteoblasts, constitute 

the basic multicellular units (BMU), which move in tandem. In modelling, bone 

resorption driven by osteoclasts and osteoblast-mediated bone formation actuate 

independently on different surfaces of the skeleton as bone is reshaping to adapt to 

different loading conditions  [29,71,83–85]. 

 

4. Bone strain in vivo 

 

The quantification of human normal bone strain is an important step in understanding 

the response of bone to mechanical  stimuli [86]. One of the first contributions to this 

subject was made by Hert   et al. [87], Hert et al. [88]. By applying loads to rabbit tibiae 

diaphysis using transcutaneous pins and Bowden cables, they showed that dynamic, 

but not static strains, increase bone formation. Today, the response of bone cells to 

mechanical stimuli is well accepted to be modulated by the parameters of the applied 

strain, namely, the magnitude, rate and duration of the applied load [9,55,89]. 
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Although Hert et al. [88] could determine the magnitude of the applied load in their 

experiment, they  could  not  determine  either the physiological strains in that region 

or the strains that the loading engendered [86]. The in vivo measurement of strain in 

bone tissue surface was not possible until the development of strain gauges, the gold-

standard for measuring bone strain [90–92]. The use of strain gauges on the bone 

surface was reportedly introduced as early as the mid-twentieth  century [86,93]. 

Following Roux’s footprints, Frost [94] developed an important concept: the 

“mechanostat” for bone adaptation to strain. This theory proposes a mechanical usage 

window and introduces the concept of minimal effective strain (MES). Frost compiled 

his various works  that concern mechanical stimuli for bone regeneration in a 2003 

paper [95], which describes the “mechanostat” as follows (see Fig. 2): he claimed a 

threshold for disuse-mode remodelling (MESr), 50–100 μɛ, below which bone is 

removed and weakened. He defined the modelling region (MESm) between 1000 and 

1500 μɛ, where mechanically controlled modelling begins and could increase if strains 

exceed this upper limit. Frost believed that strain stimuli between MESr and MESm 

could define the region of naturally acceptable whole-bone strength relative to the 

typical peak voluntary mechanical load on a loadbearing bone during typical physical 

activities and the span of a normal “bone-strength/bone-load” ratio. According to this 

theory, the microdamage threshold (MESp) is approximately 3000 μɛ and loads that 

can fracture a healthy young adult bone cause strains centred near 25,000 μɛ (Fx). 

Even though several researchers [23,96–98] support Frost’s MESm concept of an 

increase in bone mass and remodelling when a mechanical load surpasses a threshold, 

criticism has  also  been raised. Some researchers [7,86] claim that Frost’s theory is a 

qualitative theoretical construction of several hypotheses and that the precise 

threshold limits that control bone remodelling remain unknown. A dataset based on 

several studies was created to evaluate the ability of various types of vigorous physical 

activities to “stimulate bone formation” according to the MES concept (see Table 1). In 

all selected studies, the test subjects were healthy, young adult or middle- aged 

humans of both genders, and the peak strains were obtained by directly attaching 

strain gauges to the tibia bone surface. 

An analysis of Table 1 indicates that of the vigorous activities considered, bicycle 

riding at 60 cycles/s produced the lower peak strain values both in compression and 

tension sites,  with  magnitudes on  the order of 291 and 271 μɛ, respectively. Normal 

walking activity, depending on the type of floor or grade (levelled, uphill or downhill 

gait), can lead to compression bone strain values ranging from 308 to 950 μɛ. Table 1 

also shows that, when considering the same type of physical activity and muscular 

contraction, different sites on the tibia present different local  deformations. 

Running can lead to compressive bone strains from 879 μɛ during jogging to 2104 μɛ 

during 17 km/h sprints.  The  highest  strain was registered during a forward jump and 

vertical drop, which led to compressive deformations of up to 3450 μɛ. In addition to 

the maxi- mum strain values mentioned, in vivo measurements of human tibiae strains 

do not seem to exceed 2000 μɛ, even during vigorous running activity. 

The data presented in Table 1 suggest that the peak strain com- pressive values tend 

to be higher than the tension values, with the exception of walking and running 

downhill. 
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Both the strain magnitude and strain rate are considered essential parameters in the 

stimuli process. In Table 1, the strain rates were again lower during bicycle riding at 60 

Hz, with both compressive  and tensile values of approximately 5 Hz. Higher strain rates 

were registered during sprint running, with values of up to 26 and 31  Hz   in 

compression and tension, respectively. These data are in the physiological strain rate 

range claimed in other studies [9,55,89,99,100], between 1 and 60 Hz. 

The data in Table 1 should be considered an approximation of  real values because 

the effect of muscle fatigue on the bone strains and strain rates, as has often been 

identified in vivo, cannot be excluded in all studies. However,  physical activities, such 

as sprinting   or running in a zigzag, forward jumping and vertical dropping, may 

increase bone formation if we consider these data to be physiological values and 1000 

μɛ at 1 Hz cyclic mechanical loading is assumed as the MESm [101–103]. Importantly, 

only tibiae shaft measurements were considered, and conclusions based on these data 

should not be extrapolated to the spine and may or may not be valid for other bones in 

the body [98,104–106]. 

Normally a large portion of human daily routine includes events that are associated 

with far smaller strain magnitudes than vigorous physical activities, such as standing 

and sitting. According to Huang   et al. [107], very low strains, those significantly smaller 

than 5 μɛ, at high frequency strains are constantly bombarding the human skeleton. 

This finding was confirmed by Fritton et al. [90], who counted the daily (12–24 h) strain 

events and showed that large strains (exceeding 1000 μɛ) seldom occur throughout the 

day and that very small strains (less than 10 μɛ) occur thousands of times per day. Thus, 

the importance of small strains in bone adaptation and/or bone maintenance needs to 

be  assessed. 

Rubin et al. [108] asserted that the strain magnitude and strain rate of bone are 

related. In this study, they noticed that cortical bone mass could be maintained via the 

application of a 800 μɛ peak- induced load at a frequency of 3 Hz for 600 s per day. 

Furthermore, only 200 μɛ was necessary to maintain cortical bone mass for the same 

loading regimen if the strain was applied at 30 Hz. In a study by Weinbaum et al. [99], 

250 μɛ at 15 Hz produced a fluid shear stress that was 3.75 times that of a 1000 μɛ at 1 

Hz stimulus and exceeded the threshold for excitation. Moreover, Rubin et al. [108] 

showed that the combination of an even lower strain amplitude than the ones tested by 

[99], i.e., less than 10 μɛ, with a high-frequency physiological strain rate between 10 

and 100 Hz could stimulate bone growth by doubling its formation rate. These findings 

led to the development of several studies based on the potential use of such stimuli 

[109–111]. 

These findings indicate that low-amplitude high-frequency postural strains due to 

muscular contractions could be as or even more effective in maintaining bone mass 

than high-amplitude low-frequency strains due to locomotion. This behaviour may 

explain why astronauts lose bone mass in a microgravity environment, where the 

need to maintain posture is absent, despite rigorous exercise, or why 3 h/day of quiet 

standing has been shown to prevent bone loss in bed rest patients [90,112,113]. 
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5. Test system for mechanical stimulation study 

 

Selecting the most suitable test model for a stimulation study of bone mechanical 

behaviour is very important. Several test systems are available and are grouped in four 

categories: in vivo, in vitro, ex vivo and in silico. 

 

5.1. In vivo 

 

For in vivo testing, although no species fulfils the requirements of an ideal animal 

model, the dog is perhaps described as having the most similar bone structure to 

humans. However, using companion animals for medical research is associated with 

ethical implications. Other species, such as sheep and pigs, have also been suggested. 

Some researchers have also shown a preference for using rats and mice     as 

experimental animal models [114–118]. According to the  literature, rabbits may be the 

least similar to humans in terms of bone structure and properties. When possible, 

other bone study test models should be used prior to in vivo experimentation because 

the latter is expensive, leads to animal sacrifice, presents a large degree of systemic 

complexity and often is not considered satisfactory for the investigation of the 

mechanism that underlies cellular processes in bone [119–122]. 

 

 

5.2. In vitro and ex vivo 

 

In vitro bone research includes three main branches: cell culture, for which cells are 

mechanically or enzymatically harvested from tis- sue and proliferate in a suspension 

or attached to a surface or monolayer; tissue culture, for which tissue fragments are 

maintained with- out not necessarily preserving architecture; and organ culture, for 

which organs (in whole or in part) or tissues are maintained or grown in vitro [123]. 

Several methodologies to provide mechanical stimuli for experimental study are 

reviewed by Ehrlich et al. [86], Brown [124], Brown [125]. 

Since  Glucksmann  [126]  first  used  in vitro bone  cell  cultures to study the effects of 

mechanical stimuli in bone formation, this system has been considered to be an 

acceptable and common approach. This test system was also adapted to meet the 

purposes of more specific research, such as the study of cell responsiveness to fluid 

flow, first  via the development of the parallel plate flow chamber by Frangos et al. [127], 

as well as in a number of other studies [47,128] that developed similar experimental 

devices. The advantage of using cell culture systems is that the local environment can 

be tightly controlled, such as ensuring the absence of growth hormones. A great number 

of molecular and biochemical tools are also available to ensure that experimental 

replicates are almost identical, which simplifies statistical analysis and quantification  

[119,123,129]. 

The  most  common  bone  cell  cultures  used  for  in vitro mechanical stimulation 

experiments are osteoblastic (e.g., MC3T3-E1), osteocytic (e.g., MLO-Y4) and less often, 
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osteoclastic-like cell cultures. Due to their availability and ease of use, osteoblast cell 

lines are used in many studies to infer osteocytes behaviour. While osteocytes are the 

descendants of osteoblasts and similarities would be expected for cells of the same 

lineage, these cells have distinct differences, particularly in their responses to 

mechanical loading  [9,32,33,130]. 

For studies of the osteocyte physiological response to mechanical loading, two-

dimensional cell culture conditions are arguably far too simple and hardly 

representative of the complex bone environment. This approach overlooks many 

parameters known  to  be  essential  for accurately reproducing the 

mechanotransduction process. Three- dimensional cell-growth environments have 

been developed in an at- tempt to overcome some cell culture disadvantages, mimic the 

physiological complexity of real tissue, and avoid the use of bone organ cultures [121]. 

Several materials have been tested as scaffolds, such as collagen glycosaminoglycan 

[131,132] and porous chitosan [133]. Un- der static culture conditions, cell proliferation 

in scaffolds is limited by diffusion, due to increases in the cell mass and decreases in the 

effective porosity resulting from matrix deposition. Fluid transport and cell 

distribution, as well as cell stimulation and differentiation may be improved via the use 

of bioreactors for three-dimensional scaffold systems [134,135]. Flow perfusion 

bioreactors are more commonly used than any other bioreactor for three-dimensional 

bone stimulation studies. These bioreactor systems pump culture medium through the 

scaffold’s interconnected pores, which are held in place across the continuously 

circulating flow. These devices enable the close monitoring and precise control of 

several environmental conditions, such as the temperature, pH, oxygen and nutrient 

supply inside the scaffold and removal of waste products and metabolites. They also 

provide a high degree of reproducibility and automation, which favours the 

development and maturation of bone cells in scaffolds [134,136,137]. 

An understanding of the behaviour and responses of cells cultured on scaffolds should 

guide the scaffold optimization process. The pore size, pore interconnectivity and total 

porosity are essential parameters for scaffold development. The pore size affects cell 

migration into the scaffold and influences the amount of fluid that reaches the cells.  It 

also determines the mechanical load to which the cells are exposed, i.e., the wall shear 

stress and the hydrostatic wall pressure that acts on the cells [138–143]. 

In vivo, osteocytes are attached to their mineralized matrix either via tethering 

filaments or perhaps via integrin-based focal adhesions. When these cells are seeded 

on a stiff two-dimensional surface, they are not surrounded by a pericellular matrix. 

Thus, they will spread out and form only integrin-based  attachments  with  the  

substrate.  In three-dimensional cultures, the pores dimensions of the scaffold will 

influence the initial cell attachment levels and the morphology   of attachment, such as 

a flat morphology (akin to a two-dimensional monolayer culture), which occurs for 

large pores, and a bridging morphology. The pore size affects the cell’s ability to span 

the void space [32,144,145]. 

Cell attachment can influence the dynamics of surface-cell-flow relationships and 

thus impact the magnitude of cytoskeletal deformations. According to Klein-Nulend 

et al. [32], round non-adherent osteocytes are more sensitive to mechanical stimuli 

than adherent ones. In a study by Jungreuthmayer et al. [143], three-dimensional 
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culture conditions required lower fluid flow rates to obtain bone formation than 

two-dimensional culture conditions, i.e., the increased cell deformability leads to 

increased cellular shear stress sensitivity. One advantage of two-dimensional 

systems over three-dimensional cell-scaffolds systems is that cellular loss due to 

fluid shear stress investigations is not a major concern in two-dimensional systems. 

In these systems, the levels of shear stress required to induce cellular detachment 

are orders of magnitude greater than those expected to cause osteogenesis in vivo. 

In three-dimensional cell-scaffolds systems, if a cell adapts a bridging morphology 

type, it will experience greater levels of cytoskeletal deformation than a flat cell 

when subjected to the same flow conditions [146]. Furthermore, according to Klein-

Nulend et al. [32], the flow-induced stimulus for two- dimensional cell cultures is 

the same on the cell process and cell body in nearly all experiments. 

Although tremendous advances have been made in the development of three-

dimensional scaffold-based systems for bone cells studies that could reproduce 

both the formation of an organized bone-like matrix and cell-mediated substrate 

degradation, this methodology is also associated with limitations depending on the 

aim of a study [121,136]. 

To   study  bone’s  physiological  strain  profile  in  vitro,  the bone’s natural 

microenvironment must be mimicked. The osteocyte mechanosensation response 

depends on the type of material  to  which they are attached. Hence, scaffolds that mimic 

the properties   of native bone should be used. However, the osteocyte mechanical 

conditions in vivo are not clearly understood, which precludes the re- liable recreation 

of these conditions in an in vitro experiment. Variables such as the complex lacuna-

canalicular geometry and the distribution of the cell’s focal adhesions play an important 

role in the osteocyte mecanotransduction process  [60,147,148]. 

 The  critical  requirement  for  in  vitro  models  that  represent the physiological 

diversity and complexity of the bone formation process have led to the development of 

different test systems, such as bone organ cultures or ex vivo bone culture systems. 

Organ culture has been used for more than 50 years in  an  at- tempt to bridge the gap 

between cell culture and in vivo models [123,149,150]. The pioneering work of Fell et 

al. [151] in this field is known worldwide. 

Organ culture provides a model that is, in certain aspects, more similar to the in vivo 

situation. This testing system respects the bone’s natural   three-dimensional   structure   

and   retains   the extracellular matrix, which allows normal cell-matrix attachment sites 

to be maintained. The conservation of the tissue architectural organization will most 

likely simulate the physiological distinct mechanical con- sequence of loading, such as 

strain, fluid shear stress, and streaming potentials. Another great advantage of using 

organ culture technology is that they are not as complex as the whole animal and local 

effects, such as mediators and mechanical stress, can be  isolated  from systemic ones, 

such as steroids, other hormones and toxins [89,120,149,152]. 

The main disadvantages of using organ cultures are (1) the loss   of a vascular system, 

which limits the organ sample size that can be harvested; (2) explants cannot be used 

for experiments longer than 24 h; and (3) the artificial environment created requires 

that the investigator exercises caution in the interpretation of the results and their 
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extrapolation to an in vivo situation  [86,89,120,123,149,150]. 

In recent years, the evolution of bioreactor devices for the application of specific 

mechanical stimuli and controlled medium recirculation has favoured cell viability and 

prolonged culture time of bone explants [121]. A system that shows a successful 

applicability of these strategy was developed by Davies et al. [153]. In this ex vivo 

system,   a mechanical loading and measurement system are combined with a 

cancellous bone diffusion culture-loading chamber named ZetOSTM. This bioreactor 

maintains bone biopsy cultures for extended periods of time whilst preserving the 

natural three-dimensional architecture and inter-cellular interactions of several cell  

types. 

 

5.3. In silico 

 

The use of conceptual and mathematical models has already proven valuable in bone 

research [154]. Advances in scientific knowledge, mathematical modelling, and 

computer technology has facilitated the integration of numerical equations into finite 

element models [155]. A variety of computational approaches [156–161] have been 

developed in an attempt to understand the mechanotransduction process and response 

to mechanical stimulus in bone, such as interstitial fluid flow [41,162]  and direct cell 

strain [36]. 

A good example of the integration of in silico analysis with in vivo and in vitro studies 

is the work developed by Yang et al. [163]. The authors studied the strain field in mice 

tibiae using micro CT-based finite element analysis together with diaphyseal strain 

gauge measurements during in vivo dynamic compression loading. Furthermore, as 

suggested by Webster et al. [164], future computational approaches should focus on 

merging models from different scales into a fully integrated multiscale modelling 

approach, which would enhance both the predictive and descriptive ability of 

computationally models and consequently facilitate the generation of new 

hypotheses and new experimental studies. 

 

6. Conclusion 

 

The scientific community has long recognized the importance of mechanical loading 

conditions in defining the mass and structure of bone. Bending moment stimuli are 

experienced by and transmitted along long bones via a combination of its physiological 

curvature, gravitational load (body weight) and the load applied by balanced muscle 

activities. Hence, muscle and bone are coupled as a functional unit. During 

mechanotransduction,  osteocytes  play  the  role  of sensory cells within the bone, and 

their response is most likely mediated by strain-derived fluid flow shear stress through 

the lacuno-canalicular network. Osteocytes will respond to this mechanical stimuli by 

opening stretch-activated ion channels and increasing the levels of intracellular Ca2+ 

and protein Kinase C, which consequently stimulate the release of potent anabolic 

regulators of bone growth, such as NO and PGE2. 
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The mechanical stimulus strain magnitude and rate are  important parameters. Low 

frequency, high magnitude strains occur  during vigorous activities, such as running 

and jumping, and exert a recognized positive effect on bone formation/remodelling. 

Conversely, the relevance of high frequency, low magnitude strains associated with 

events such as standing or sitting as bone mechanical stimuli is now starting to be taken 

into  consideration. 

Isolated cell lines in mechanical stimulation studies are important to investigate the 

behaviour of individual bone cell populations  during mechanotransduction. For 

studies of the  bone  mechanical  and biological environments in vivo, two-dimensional 

osteoblast- or osteocyte-like cell cultures and the use of cells scaffolds do not fully 

mimic the real bone environment, which is an organ system with complex and distinct 

cell interactions. Thus, defining the type  of  study and the variables that need be 

included in the system is important to select the proper test  model. 

With this paper, we attempt to clarify  important  notions  related to the adaptation  

behaviour  of  bone  to  external  load  stimuli. Although mechanical forces clearly affect 

the bone’s behaviour, this relationship remains poorly understood. Continued studies 

of both the mechanical (e.g., bone  muscle  interactions)  and  biological fields (e.g., 

mechanisms and pathways underlying bone remodelling and mechanotransduction) 

are necessary. Moreover, biomechanical cross-talk should not be neglected. New 

research tools, such as advanced algorithms and techniques to assess the mechanical 

environment of bone in vivo, should allow integrated approaches to capture  the  

complex  dynamics  of  bone  biomechanical  behaviour.  A better understanding of 

bone’s response process to mechanical stimuli should provide new insights into 

diseases, such as osteoporosis, hyperparathyroidism, hyperthyroidism, Paget’s disease 

and osteopetrosis. 
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Fig. 1. Schematic representation of mechanical loading that causes interstitial 

fluid flow through bone’s lacuna-canalicular network (adapted from Duncan et 

al. [9]). The tension/compression stresses associated with bending cause a 

pressure gradient that promotes fluid flow along the osteocytes. 

 

 

 

 

 
 

Fig. 2. Mechanical usage window defined by Frost’s “mechanostat” theory of 

bone adaptation to strain (adapted from Duncan et al. [9] and Frost [95]). The 
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horizontal arrow at the bottom shows the typical minimum effective strain 

(MES) levels and the set point values for bone’s thresholds and ultimate strength 

- microstrain (μɛ), stress (MPa) and unit-load (kg/mm2). 

 

 

Table 1 

In vivo humans bone strain values measured during different types of physical 

activities, reported in the literature 

 


