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Abstract. Inductive Logic Programming (ILP) is a Machine Learning
research field that has been quite successful in knowledge discovery in
relational domains. ILP systems use a set of pre-classified examples (pos-
itive and negative) and prior knowledge to learn a theory in which pos-
itive examples succeed and the negative examples fail. In this paper we
present a novel ILP system called April, capable of exploring several
parallel strategies in distributed and shared memory machines.

1 Introduction

There is a strong connection between Inductive Logic Programming (ILP) and
Logic Programming. ILP inherits from Logic Programming its representation
formalism, its semantic orientation, and techniques. It is also common to see ILP
systems implemented in Prolog. The major reason for using Prolog is that the
inference mechanism implemented by the Prolog engine is fundamental to most
ILP learning algorithms. ILP systems can therefore benefit from the extensive
performance improvement work that has taken place for Prolog. On the other
hand, ILP may be seen as challenging Prolog application since it often uses large
sets of ground facts and requires storing a large search tree. Hence, ILP systems
implemented in Prolog challenge the limits of Prolog systems due to their heavy
usage of resources such as database accesses and memory usage.

The expressiveness of first-order logic gives ILP flexibility and understand-
ability of the induced models. However, ILP systems suffer from significant lim-
itations that reduce their applicability. First, most ILP systems execute in main
memory, limiting their ability to process large databases. Second, ILP systems
are computationally expensive, e.g., evaluating individual rules may take con-
siderable time. On complex applications, ILP systems can take several hours, if
not days, to return a model. Therefore, a major obstacle that ILP systems must
overcome is efficiency.

In this paper we succinctly present the April ILP system, a generic purpose
ILP system, implemented in Prolog with a modular design, that aims at being
efficient, scalable, and flexible. April aims to be an efficient system by having
low memory consumption and low response time. To this end it tries to com-
bine and integrate several techniques to maximize efficiency (e.g., query trans-
formations [1], randomized searches [2], coverage caching [3], lazy evaluation of
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examples [4], tabling [5], and parallelism [6,7]). April’s scalability is achieved by
using relational databases to store the examples and ground background knowl-
edge or by exploiting parallelism. April’s ability to explore several parallelism
approaches is the main difference to other systems. April aims to be flexible by
providing a high level of customizations, for instance, allowing the modification
of search method, heuristic, etc.

2 System Description

April can address predictive and descriptive ILP tasks. It addresses predictive
learning tasks by constructing classification rules (using a MDIE-based algo-
rithm [8]). It can also be applied to find association rules (using an algorithm
similar to the one implemented by the Warmr system [9]). The ILP semantics
used by April is the learning from entailment semantics. Therefore, when used
to learn classification rules April follows the normal semantic of ILP [10]. The
notion of coverage used in both tasks is intensional coverage.

April can be classified as an empirical (non-incremental), non-interactive,
single predicate learning system, that does not perform predicate invention and
is capable of handling noise.

April receives as input prior knowledge B (the background knowledge) and
examples E, and induces a theory H that describes (explains) the examples.
The examples E are represented as Prolog ground facts and the background
knowledge as Prolog programs. The predicates in B can therefore be defined
either intensionally or extensionally. The hypothesis language is a subset of the
language of definite clauses. The hypothesis language is constrained through the
use of meta-language declarations. April’s meta-language includes determina-
tion declarations [11], mode and type declarations [8], background predicates’
properties, pruning and constraints declarations, and facilities to change system
parameters that may affect the hypotheses considered and the way that April
operates.

April implements a covering algorithm to build a set of classification rules.
The rules are found by performing a search through an ordered space of rules.
April has two search strategies, namely top-down or stochastic, and different
search methods (e.g., breadth-first, beam-search, randomized rapid restarts [2]).
Several metrics are also available to score the rules, namely coverage, accuracy,
etc.

A main feature of April is its ability to exploit parallelism in distributed
or shared memory machines. April has several parallel algorithms built-in. The
algorithms follow three main strategies: parallel exploration of the search space;
parallel rule evaluation; or data parallelism [7]. One of the algorithms combines
several strategies with pipelining and achieves super-linear speedups in a dis-
tributed memory computer [6]. A summary of the speedups observed in four
applications are presented in the next section on Table 1.

April is implemented in Prolog and runs on top of the YAP Prolog system.
Since April is implemented in Prolog the data is stored on Prolog’s database



April - An Inductive Logic Programming System 3

(i.e., in memory). However, April has some extensions that allow the system
to learn directly from relational databases. For the communication layer April
uses LAM MPI, a high-quality open-source implementation of the Message Pass-
ing Interface (MPI) specification. LAM can be used by applications running in
heterogeneous clusters or in grids, but can also be used in multiple processor
computers.

3 Related Work

Since the initial concept proposal of Inductive Logic Programming, in 1990, many
ILP systems have been developed®. April is specially related to the Aleph [12]
system. Like in Aleph, April’s core algorithm is based on Mode Direct Inverse
Entailment (MDIE), a technique initially used in the Progol [8] system. Besides
the core algorithm, April also implements many features found in Aleph. Due to
this close relation, April attempts to maintain high level of compatibility with
the format of the input files and parameters.
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Fig. 1. Average execution time and memory consumption of April and Aleph systems
in four ILP applications.

A summary of an empirical comparison with Aleph is presented in Figure 1.
It plots the average execution time and memory usage on four ILP applications
(Carcinogenesis, Mesh, Mutagenesis and Pyrimidines) using a 10-fold cross-
validation methodology. The values presented are the average of ten sequential
runs to find a single rule. Figure 1 shows that sequential April is competitive
against Aleph as the sequential execution time is concerned (the quality of the
rules produced is also comparable). Although both systems are implemented in
YAP Prolog, April’s memory usage is considerably lower than Aleph. There-
fore, for larger applications (number of examples or greater search spaces) April
should behave better.

3 Srinivasan pointed out in a presentation at the ILP 2005 conference that around 100
ILP systems have been developed to date.
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The main difference between April and Dataset 2 1 6 3
other systems, including Aleph, resides in the Carc 120 3.04 8.00 11.86
ability to run in parallel using different par- Mesh 1.66 4.58 6.48 7.09
allel algorithms (see [6,7]). A detailed survey —Mut 342695 6.75 8.9

Pyr 2.03 4.15 6.49 8.28

of parallel ILP systems is available in [7]. Ta-
ble 1 shows the speedups observed on a Be- Table 1. Average speedup observed
owulf cluster with one of April’s parallel algo- for 2, 4 , 6 and 8 processors.

rithms, the p? — mdie parallel algorithm [6],

in four ILP applications. One can observe that the speedups are good. It is im-
portant to point out that the improvements in performance obtained using the
p? —mdie parallel algorithm did not affect significantly the quality of the theories
found.
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