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Abstract In [14] we proposed a method to detect outliers in multiveridata based
on clustering and robust estimators. To implement this pteth practice it is nec-
essary to choose a clustering method, a pair of location eaitties estimators, and
the number of clusterk. After several simulation experiments it was possible to
give a number of guidelines regarding the first two choicesvéler the choice of
the number of clusters depends entirely on the structurbeoparticular data set
under study. Our suggestion is to try several valuds(efg. from 1 to a maximum
reasonablé which depends on the number of observations and on the nuohber
variables) and seledt minimizing an adapted AIC. In this paper we analyze this
AIC based criterion for choosing the number of clustefand also the clustering
method and the location and scatter estimators) by applyiogseveral simulated
data sets with and without outliers.

1 Methodology

The procedure most commonly used to detect outliers in vauvitite data sets is
based on the Mahalanobis distances.— ;])Tifl(xi —[),i=1,...,n. To avoid
the masking effect it is recommended to use robust estimataad 5, instead of
the classical estimates, i.e. the sample mean vector arghthple covariance ma-
trix (see e.g. [12, 5]). However the performance of that pcage is still highly
dependent of multivariate normality of the bulk of the dat§ pr on the data be-
ing elliptically contoured. To avoid this dependency, amoetto detect outliers in
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multivariate data based on clustering and robust estimatas introduced in [14].
A somehow similar method designed to work with non-overaglusters was
proposed later in [4]. Both [14] and [4] have been refererreeently in relation to
robust clustering [8, 3].

Consider a multivariate data set withobservations irp variables. The basic
ideas of the method proposed in [14] are described in theviillg steps.

1. Segment the points cloud (of perhaps complicated shapekismaller sub-
clouds using a partitioning clustering method with the htipgs each subcloud
(cluster) looks “more normal” than the original cloud.

2. Then apply a simultaneous multivariate outlier detectigde to each cluster by
computing Mahalanobis-type distances from all the obgiemsa to all the clus-
ters. An observation is considered an outlier if it is anieutior every cluster.
All the observations in a cluster may also be consideredeustlf the size of
that cluster is small taking into account the number of \@eia (our proposal
is less than P+ 2, since in that case the covariance matrix estimates aye ver
unreliable).

3. Remove the observations detected in 2 and repeat 1 and Baintore observa-
tions are detected.

4. The final decision on whether all the observations belun¢p a given cluster
(not previously removed, that is with size at leapt{22) are outliers is based on
a table of between clusters Mahalanobis-type distances.

In [14] we presented results from a simulation study withesaldistributional situ-
ations, three clustering methodsrieans pam andmclust) and three pairs of loca-
tion and scatter estimators (classical and two robusty frdnich it was possible to
conclude that for normal data all the methods behave wekreds for non-normal
data the best performance is usually achievednblyst, without large differences
between the classical and the robust estimators of locatimhscatter. A general
conclusion from [14] is that the exploratory method propbfe outlier detection
works well both under elliptical and non-elliptical datanfigurations.

The aim of this paper is to propose a criterion for selectimgpropriate number
of clustersk, to use in the above algorithm, and to assess the robusthéisato
criterion. In the next section we introduce the new criteria Section 3 we present
the results of a simulation study and in Section 4 we stateesmmclusions.

2 AIC based criterion

One of the difficulties encountered in the implementatiorthef method, was the
choice of the number of clusteils,as well as the clustering method and the location
and scatter estimators. In [14] it is suggested to try séwafaes ofk (e.g. from 1
to a maximum possibl& which depends on the number of observations and on
the number of variables) and decide after a careful anabfsike results. A less
subjective way for choosink (and also the clustering method and the location and
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scatter estimators) is to minimize an adapted AIC (see [13])

AIC = —Z_ilog f(x;) + 2k (p+ p(p; 1)) .

(1)

The full specification of AIC need§. This can be either a nonparametric estimate
or the density from a parametric model with estimated patareeThe model we
consider in this paper is a finite mixture of multivariate mat densities:

. K n . k
fx)=S LN, %), andnr = Y nj, 2
(x) glnT NG H, 2 ) T gl i 2)

where . R
fn(x; 1, 2) is the density oNp(f1,2). (3)

The number of components of the mixture (i.e., the numbelusters)k, is limited
in practice Knax). As a generic guidance we can take the advise given in [}, th
one should have at least 5 to 10 observations per variabls.méans to choose
kmax Somewhere betweenih/p and 02n/p.

In this paper we assess the robustness of the AIC basedani(é) for choosing
the number of clusterg, Thisis done by comparing results of simulations with and
without outliers, for some non-normal distributional sitions described in [14].

3 Simulation Study

In order to evaluate the robustness of this AIC based aitefl) for choosing the
number of clusters, we conducted a simulation study with:

e Three clustering methodk;means pam (partitioning around medoids [7]) and
mclust (model based clustering for gaussian distributions [Hyheof them with
k=2,3,4,5,6. The cas&=1, for which the clustering method is irrelevant was
also considered.

e Three pairs of location and scatter estimators: classic&) (with asymptotic
detection limits; RMCD25 [11] and OG (0.9) [9] with detection limits deter-
mined previously by simulation with 10000 normal data sets.

e Four distributional situations:

1. Non-normal fp = 2) without outliers, 50 observations froh(p1,27), 50
observations fronNy( L, Z2) and 50 observations frol,(0, X1), with pg =
(0,12)T, 5, =diag(1,0.3)u = (1.5,6)T and>,= diag(0.2,9).

2. Non-normal ¢ = 2) with outliers, 150 observations as in the previous case
plus 10 outlying observations froik((—2,6)T,0.011).

3. Non-normal p = 2) without outliers, 75 observations froNy(0, 23) and 75
observations fronNz(0, 24), with 23 = diag(1,81) and,= diag(81,1).
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4. Non-normal p = 2) with outliers, 150 observations as in the previous case
plus 20 outlying observations frohiy(10,0.1l).

We have not considered normal data in this simulation st@tyabse we have con-
cluded in [14] that in that case the choicekab not critical. For each distributional
situation one hundred data sets were generated.

In each distributional situation we recorded (in each satioh) the choseh for
each clustering< estimator combination (that is, the valuelofminimizing AIC),
and also the overall minimizing combination (that is, theafic values of (clus-
tering, estimatork) which minimizes AIC, at each simulation). Tables 1 to 4 give
for the four distributional situations, respectively, th@portion of simulations for
which eachtk was chosen (within each clusteringestimator combination).

Table1 Proportion of simulations for which ea&twas chosen within each clusteringestimator
combination (distributional situation 1).

k MCD Classical OGK
k-means1 0.00 0.00 0.00

0.00 0.00 0.00
061 048 0.66

0.30 0.28 0.24
0.06 0.15 0.08
0.03 0.09 0.02

2 0.01 0.00 0.02
3 028 0.01 0.32
4 026 028 0.14
5 015 0.26 0.19
6 030 045 033
pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 029 0.02 0.27
4 020 0.23 0.19
5 014 0.23 011
6 037 052 043
mclust 1 0.00 0.00 0.00
2
3
4
5
6

The overall minimizing combination was always timelust x classical, which
agrees with the simulations in [14] and shows that this @hoan be recommended
irrespective of the characteristics of the data sets. Tdniglasion, which may look
unexpected can be justified as follows: the algorithm eitbaates or removes the
outliers, leaving almost exclusively “good” observatipaad it is well known that
in this case the classical estimators are more efficient.

For themclust cases, the value &fchosen more often is the expected according
to the distributional situation (see Fig. 1 and Fig. 2). Nibt&t k must be increased
by 1 when the outliers are introduced and this is captureth&yMC criterion.
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Table2 Proportion of simulations for which ea&twas chosen within each clusteringestimator
combination (distributional situation 2)

k MCD Classical OGK
k-means1 0.00 0.00 0.00

0.00 0.00 0.00

0.13 0.07 0.14

046 040 056

0.27 021 0.14

0.14 032 0.16

Table 3 Proportion of simulations for which ea&twas chosen within each clusteringestimator
combination (distributional situation 3)

2 0.00 0.00 0.00

3 0.03 0.00 0.00

4 0.17 0.18 0.12

5 031 031 0.33

6 049 051 055

pam 1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.27 0.03 0.31

5 043 044 0.30

6 030 053 039
mclust 1 0.00 0.00 0.00

2

3

4

5

6

k MCD Classical OGK
k-means1 0.00 0.00 0.00
0.00 0.00 0.00
0.04 0.00 0.01
0.16 0.09 0.10
041 047 0.38
0.39 044 051

pam 0.00 0.00 0.00
0.00 0.00 0.00
0.14 0.02 0.03
0.13 0.04 0.02
0.30 0.36 0.47
043 058 0.48
mclust 0.00 0.00 0.00

068 046 056

0.12 0.12 0.18
0.06 0.16 0.12
0.09 0.11 0.07
0.05 0.15 0.07

O WNLOORWN LS WN
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Table4 Proportion of simulations for which ea&twas chosen within each clusterisngestimator
combination (distributional situation 4)

k MCD Classical OGK
k-means1 0.00 0.00 0.00

0.02 0.02 0.01
068 047 0.60

0.17 021 0.21
0.08 0.15 0.12
0.05 0.15 0.06

2 0.01 0.00 0.03
3 0.07 0.00 0.02
4 0.05 0.03 0.04
5 019 025 0.25
6 068 072 066
pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.02 0.00 0.01
4 0.02 0.00 0.00
5 0.16 0.05 0.07
6 080 09 092
mclust 1 0.00 0.00 0.00
2
3
4
5
6

4 Conclusions

The results of the limited simulation study presented intiac3 show that the
adapted AIC criterion (1) for selectirigand the clustering method is a useful tool.
Moreover, we can also conclude that this criterion is, irbaisgion with the present
algorithm, robust, since it works well both with and withauttliers. An explanation
for this robust behavior is that the outliers are either @el®r isolated in their own
clusters, before computing the AIC. We this conclude thahis setup there is no

15
15
!
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g. 1 Distributional situations 1 and 2 with contours.
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need to consider other more complicated criteria such aadbpted AIC with M-
estimators, introduced in [10].

In spite of the good results of this promising technique, simal not forget that

outlier detection in multivariate data is a very difficulskaand will always remain
an open problem.
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