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Abstract In [14] we proposed a method to detect outliers in multivariate data based
on clustering and robust estimators. To implement this method in practice it is nec-
essary to choose a clustering method, a pair of location and scatter estimators, and
the number of clusters,k. After several simulation experiments it was possible to
give a number of guidelines regarding the first two choices. However the choice of
the number of clusters depends entirely on the structure of the particular data set
under study. Our suggestion is to try several values ofk (e.g. from 1 to a maximum
reasonablek which depends on the number of observations and on the numberof
variables) and selectk minimizing an adapted AIC. In this paper we analyze this
AIC based criterion for choosing the number of clustersk (and also the clustering
method and the location and scatter estimators) by applyingit to several simulated
data sets with and without outliers.

1 Methodology

The procedure most commonly used to detect outliers in multivariate data sets is

based on the Mahalanobis distances,(xi − µ̂)T Σ̂−1
(xi − µ̂), i = 1, . . . ,n. To avoid

the masking effect it is recommended to use robust estimates, µ̂ andΣ̂ , instead of
the classical estimates, i.e. the sample mean vector and thesample covariance ma-
trix (see e.g. [12, 5]). However the performance of that procedure is still highly
dependent of multivariate normality of the bulk of the data [2], or on the data be-
ing elliptically contoured. To avoid this dependency, a method to detect outliers in
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multivariate data based on clustering and robust estimators was introduced in [14].
A somehow similar method designed to work with non-overlapping clusters was
proposed later in [4]. Both [14] and [4] have been referencedrecently in relation to
robust clustering [8, 3].

Consider a multivariate data set withn observations inp variables. The basic
ideas of the method proposed in [14] are described in the following steps.

1. Segment then points cloud (of perhaps complicated shape) ink smaller sub-
clouds using a partitioning clustering method with the hopethat each subcloud
(cluster) looks “more normal” than the original cloud.

2. Then apply a simultaneous multivariate outlier detection rule to each cluster by
computing Mahalanobis-type distances from all the observations to all the clus-
ters. An observation is considered an outlier if it is an outlier for every cluster.
All the observations in a cluster may also be considered outliers if the size of
that cluster is small taking into account the number of variables (our proposal
is less than 2p+ 2, since in that case the covariance matrix estimates are very
unreliable).

3. Remove the observations detected in 2 and repeat 1 and 2 until no more observa-
tions are detected.

4. The final decision on whether all the observations belonging to a given cluster
(not previously removed, that is with size at least 2p+2) are outliers is based on
a table of between clusters Mahalanobis-type distances.

In [14] we presented results from a simulation study with several distributional situ-
ations, three clustering methods (k-means,pam andmclust) and three pairs of loca-
tion and scatter estimators (classical and two robust), from which it was possible to
conclude that for normal data all the methods behave well, whereas for non-normal
data the best performance is usually achieved bymclust, without large differences
between the classical and the robust estimators of locationand scatter. A general
conclusion from [14] is that the exploratory method proposed for outlier detection
works well both under elliptical and non-elliptical data configurations.

The aim of this paper is to propose a criterion for selecting an appropriate number
of clusters,k, to use in the above algorithm, and to assess the robustness of that
criterion. In the next section we introduce the new criterion, in Section 3 we present
the results of a simulation study and in Section 4 we state some conclusions.

2 AIC based criterion

One of the difficulties encountered in the implementation ofthe method, was the
choice of the number of clusters,k, as well as the clustering method and the location
and scatter estimators. In [14] it is suggested to try several values ofk (e.g. from 1
to a maximum possiblek which depends on the number of observations and on
the number of variables) and decide after a careful analysisof the results. A less
subjective way for choosingk (and also the clustering method and the location and
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scatter estimators) is to minimize an adapted AIC (see [13]):

AIC =−2
n

∑
i=1

log f̂ (xi)+2k

(

p+
p(p+1)

2

)

. (1)

The full specification of AIC needŝf . This can be either a nonparametric estimate
or the density from a parametric model with estimated parameters. The model we
consider in this paper is a finite mixture of multivariate normal densities:

f̂ (x) =
k

∑
j=1

n j

nT
fN(x; µ̂ j, Σ̂ j), and nT =

k

∑
j=1

n j, (2)

where
fN(x; µ̂ , Σ̂) is the density ofNp(µ̂, Σ̂). (3)

The number of components of the mixture (i.e., the number of clusters),k, is limited
in practice (Kmax). As a generic guidance we can take the advise given in [6], that
one should have at least 5 to 10 observations per variable. This means to choose
kmax somewhere between 0.1n/p and 0.2n/p.

In this paper we assess the robustness of the AIC based criterion (1) for choosing
the number of clusters,k. Thisis done by comparing results of simulations with and
without outliers, for some non-normal distributional situations described in [14].

3 Simulation Study

In order to evaluate the robustness of this AIC based criterion (1) for choosing the
number of clusters,k, we conducted a simulation study with:

• Three clustering methods,k-means,pam (partitioning around medoids [7]) and
mclust (model based clustering for gaussian distributions [1]), each of them with
k = 2,3,4,5,6. The casek=1, for which the clustering method is irrelevant was
also considered.

• Three pairs of location and scatter estimators: classical (x̄,S) with asymptotic
detection limits; RMCD25 [11] and OGK(2)(0.9) [9] with detection limits deter-
mined previously by simulation with 10000 normal data sets.

• Four distributional situations:

1. Non-normal (p = 2) without outliers, 50 observations fromN2(µ1,Σ1), 50
observations fromN2(µ2,Σ2) and 50 observations fromN2(0,Σ1), with µ1 =
(0,12)T , Σ1 =diag(1,0.3),µ2 = (1.5,6)T andΣ2= diag(0.2,9).

2. Non-normal (p = 2) with outliers, 150 observations as in the previous case
plus 10 outlying observations fromN2((−2,6)T ,0.01I).

3. Non-normal (p = 2) without outliers, 75 observations fromN2(0,Σ3) and 75
observations fromN2(0,Σ4), with Σ3 = diag(1,81) andΣ4= diag(81,1).
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4. Non-normal (p = 2) with outliers, 150 observations as in the previous case
plus 20 outlying observations fromN2(10,0.1I).

We have not considered normal data in this simulation study because we have con-
cluded in [14] that in that case the choice ofk is not critical. For each distributional
situation one hundred data sets were generated.

In each distributional situation we recorded (in each simulation) the chosenk for
each clustering× estimator combination (that is, the value ofk minimizing AIC),
and also the overall minimizing combination (that is, the specific values of (clus-
tering, estimator,k) which minimizes AIC, at each simulation). Tables 1 to 4 give,
for the four distributional situations, respectively, theproportion of simulations for
which eachk was chosen (within each clustering× estimator combination).

Table 1 Proportion of simulations for which eachk was chosen within each clustering× estimator
combination (distributional situation 1).

k MCD Classical OGK
k-means 1 0.00 0.00 0.00

2 0.01 0.00 0.02
3 0.28 0.01 0.32
4 0.26 0.28 0.14
5 0.15 0.26 0.19
6 0.30 0.45 0.33

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.29 0.02 0.27
4 0.20 0.23 0.19
5 0.14 0.23 0.11
6 0.37 0.52 0.43

mclust 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.61 0.48 0.66
4 0.30 0.28 0.24
5 0.06 0.15 0.08
6 0.03 0.09 0.02

The overall minimizing combination was always themclust × classical, which
agrees with the simulations in [14] and shows that this choice can be recommended
irrespective of the characteristics of the data sets. This conclusion, which may look
unexpected can be justified as follows: the algorithm eitherisolates or removes the
outliers, leaving almost exclusively “good” observations, and it is well known that
in this case the classical estimators are more efficient.

For themclust cases, the value ofk chosen more often is the expected according
to the distributional situation (see Fig. 1 and Fig. 2). Notethatk must be increased
by 1 when the outliers are introduced and this is captured by the AIC criterion.
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Table 2 Proportion of simulations for which eachk was chosen within each clustering× estimator
combination (distributional situation 2)

k MCD Classical OGK
k-means 1 0.00 0.00 0.00

2 0.00 0.00 0.00
3 0.03 0.00 0.00
4 0.17 0.18 0.12
5 0.31 0.31 0.33
6 0.49 0.51 0.55

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 0.27 0.03 0.31
5 0.43 0.44 0.30
6 0.30 0.53 0.39

mclust 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.13 0.07 0.14
4 0.46 0.40 0.56
5 0.27 0.21 0.14
6 0.14 0.32 0.16

Table 3 Proportion of simulations for which eachk was chosen within each clustering× estimator
combination (distributional situation 3)

k MCD Classical OGK
k-means 1 0.00 0.00 0.00

2 0.00 0.00 0.00
3 0.04 0.00 0.01
4 0.16 0.09 0.10
5 0.41 0.47 0.38
6 0.39 0.44 0.51

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.14 0.02 0.03
4 0.13 0.04 0.02
5 0.30 0.36 0.47
6 0.43 0.58 0.48

mclust 1 0.00 0.00 0.00
2 0.68 0.46 0.56
3 0.12 0.12 0.18
4 0.06 0.16 0.12
5 0.09 0.11 0.07
6 0.05 0.15 0.07
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Table 4 Proportion of simulations for which eachk was chosen within each clustering× estimator
combination (distributional situation 4)

k MCD Classical OGK
k-means 1 0.00 0.00 0.00

2 0.01 0.00 0.03
3 0.07 0.00 0.02
4 0.05 0.03 0.04
5 0.19 0.25 0.25
6 0.68 0.72 0.66

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.02 0.00 0.01
4 0.02 0.00 0.00
5 0.16 0.05 0.07
6 0.80 0.95 0.92

mclust 1 0.00 0.00 0.00
2 0.02 0.02 0.01
3 0.68 0.47 0.60
4 0.17 0.21 0.21
5 0.08 0.15 0.12
6 0.05 0.15 0.06

4 Conclusions

The results of the limited simulation study presented in Section 3 show that the
adapted AIC criterion (1) for selectingk and the clustering method is a useful tool.
Moreover, we can also conclude that this criterion is, in association with the present
algorithm, robust, since it works well both with and withoutoutliers. An explanation
for this robust behavior is that the outliers are either deleted or isolated in their own
clusters, before computing the AIC. We this conclude that inthis setup there is no
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Fig. 1 Distributional situations 1 and 2 with contours.
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need to consider other more complicated criteria such as theadapted AIC with M-
estimators, introduced in [10].

In spite of the good results of this promising technique, oneshall not forget that
outlier detection in multivariate data is a very difficult task and will always remain
an open problem.
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Fig. 2 Distributional situations 3 and 4 with contours.
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