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Abstract 

The research effort described here has focused on incorporation of Lactobacillus 

casei, in whey protein matrices, in the presence of selected salty additives. Those 

matrices were produced via thermal processing of a combination of either ovine 

or bovine whey (or a mixture thereof) with ovine milk, and were inoculated (at 

10%) with L. casei strain LAFTIL26; salt, salt and herbs, or salt and xanthan 

were further added to such matrices, which were then homogenized and stored 

at 7 ºC for up to 21 d. In general, viable cell numbers maintained or even 

increased throughout the storage period, irrespective of the type of salty additive 

considered. Partial depletion of lactose was detected, and concomitant 

production of lactic acid throughout the 21 d-period of storage; lower lactic acid 

concentrations were found in matrices containing salty additives. In matrices  

with  xanthan (SX), the probiotic strain exhibited the lowest metabolic activity.  

Matrices SX  were less soft and firmer than the others, by the end of storage, and 

were similar to matrices with herbs (SH). The incorporation of salty additives 

affected bacterial metabolism, in terms of glycolysis and proteolysis, which in 

turn had a significant impact on the development of textural properties. 

 

1. Introduction 

 

There is an increasingly wider awareness that a sustained state of good health 

is directly associated  with  nutrition  and eating habits. This realization has 

prompted a number of research and development efforts focused on functional 
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foods, so several products have accordingly reached the market  stage—of  which  

ca.  65%  have  been  claimed  to be probiotic foods. Such probiotic strains as 

those belonging to the Lactobacillus, Bifidobacterium and Enterococcus genera can 

indeed prevent health disorders, and even improve health conditions via 

adequate colonization of the lower intestine— thus restoring its original 

microflora, while providing an acidic environment that inhibits proliferation of 

pathogenic bacteria (Santosa, Farnworth, & Jones, 2006). Several attempts to   

incorporate   the   aforementioned   beneficial   bacteria  in foods and therapeutic 

preparations were reviewed elsewhere (Agrawal, 2005); they prompted 

development of a few pro- biotic products on the commercial level, which are 

specifically targeted at human  consumption. 

Incorporation of probiotic bacteria has been successfully performed in whey 

cheese matrices as well (Madureira et al., 2005). Several strains of Lactobacillus 

acidophilus, Lactobacillus casei, Lactobacillus brevis and Bifidobacterium animalis were 

indeed able to essentially maintain a high viability (with numbers above 107 

CFU/g) for 28 d of storage under refrigeration. The experimental matrices were 

manufactured following a traditional recipe that has been for ages in Portugal to 

obtain Requeijão—which entails heat-precipitated proteins from whey. It is 

marketed as such, or following slight topping with salt. Requeijão contains 

moderate fat levels (in the range 8–14%, by mass) coupled with several proteins 

such as α- lactalbumin, β-lactoglobulin, lactoferrin, lactoperoxidase, serum 

albumin and glycomacropeptide; these proteins are acclaimed for their 

nutritional and health-related features. Hence, Requeijão may easily override 

more classical, low- added value uses of whey (Madureira, Pereira, Gomes, 

Pintado, & Malcata, 2007). Therefore, novel functional pro- ducts that combine 

existing nutritional richness with imported health promoting features are thus 

in order— especially if they are organoleptic appealing. 

However, technological selection of probiotic strains for that purpose requires 

not only that they exhibit an intrinsic ability to maintain high viable populations 

(in the typical range 106–108 CFU/g), but also a capacity to withstand additives 

that convey desirable organoleptic features (Klaenhammer & Kullen, 1999); 

acceptability of the final product by the consumer will in fact hinge upon both 

these issues. On the other hand, whey matrices offer excellent conditions for 

survival and growth of probiotic bacteria—because of a high water activity, a pH 

above 5, a low salt content and absence of common preservatives. Furthermore, 

to their putative effect upon viability of probiotic strains, inclusion of additives 

in those matrices may also influence their texture. Examples of common 

additives deserving an in-depth study are salt and herbs (to improve taste), and 

xanthan (to improve texture owing to its stabilizer and binding properties). 
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In general, actively metabolizing microorganisms in dairy matrices play roles 

in lactose consumption and consequent organic acid synthesis; but also in 

proteolysis—i.e. protein hydrolysis, and peptide and amino acid release; and 

further in lipolysis—i.e. triglyceride hydrolysis and free fatty acid release. These 

bacterium-mediated activities contribute in different, but somehow 

complementary ways to the final organoleptic profiles of the dairy product at 

stake—either favorably, or via generation of off-flavors (Fox, Singh, & 

McSweeney, 1994). Incorporation of certain food additives may in turn modulate 

the metabolic pathways of dairy microorganisms—as is the case of several lactic 

acid bacteria, especially in what concerns lactic acid production and proteolysis; 

in some situations, undesirable tastes may be neutralized—or else such texture 

may be adequately modified, via addition of hydrocolloid gums. In all such cases, 

those additives will contribute to overall organoleptic improvements. 

In view of the above considerations the aim of this research effort was to assess 

the influence of salty additives (viz. salt, garlic, aromatic herbs and xanthan) 

upon viability, as well as lactose- and protein-breaking down activities of 

L. casei, when incorporated in whey cheeses. The instrumental texture and 

sensory acceptance of those products were specifically addressed. 

 

2. Materials  and methods 

 

2.1. Microorganism source 

 

Lactobacillus casei LAFTIL26 was obtained as a DELVO-PROfreeze-dried, 

concentrated starter culture from DSM (Moor- ebank, Australia). 

In order to prepare an inoculum suitable for whey cheese matrices, an 

overnight inoculum of the bacteria was first made in MRS broth (Merck, 

Damstadt, Germany), and there- after cultured twice (at 5%) in skim milk 

(Oxford, Hampshire, UK)—and incubated, in both cases, at 37 1C for 24 h. 

 

2.2. Whey cheese manufacture 

 

Experimental production of whey cheeses used whey released, a by-product of 

manufacture of full-fat semi-soft cheese, from a mixture of 90% (by volume) 

ovine and 10% (by volume) bovine raw milks, which was added afterwards with 

raw ovine milk at 10% (by volume)—all of which were provided by Marofa 

(Figueira de Castelo Rodrigo, Portugal); upon arrival, both liquid feedstocks 

were immediately refrigerated to 7 1C,  and stored thereafter at  that temperature. 

Four replicated batches of whey cheese were processed following the recipe 
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described elsewhere (Madureira et al., 2008), so as to generate as many final 

products. In each (duplicated) batch, the resulting curd was inoculated with the 

probiotic culture at 10% (by volume); such an  inoculum  allowed the desired initial  

level of  107 CFU/g of  whey cheese  to be attained. One batch was directly used as 

control (matrix  C); the remaining three batches had added separately: 0.60%  (by 

mass) salt—matrix S; 0.60% (by mass) salt, 0.05% (by mass) aromatic herbs (Margão, 

Vila Franca de Xira, Portugal) and 0.05% (by mass) garlic (Margão)—matrix SH; and 

0.60% (by mass) salt and 0.35% (by mass) xanthan—matrix SX. These  herbs were 

added to improve sensory features, whereas  xanthan was aimed at improving 

texture (creaminess in particular). 

All matrices were vigorously stirred for 5 min with an electric mixer (Kenwood 

Electronics, Hertfordshire, UK), with a whisk adapted to the rotating shaft: then 

they were equally distributed into sterile 100 ml-flasks which were immediately 

sealed (so as to simulate closed packages) and stored at 7 1C for up to 21 d. Aseptic 

conditions were assured throughout manipulation,  in order  to prevent  

environmental contamination. 

 

2.3. Microbiological analyses 

 

Sampling of all whey cheese matrices took place at 0, 3, 7, 14 and 21 d, via 

collection of 8 g-aliquots. The post-manufacture putative contamination by 

aerobic mesophilic bacteria, Staphylococcus aureus, Escherichia coli, Pseudomonas 

spp., Enterococcus spp., molds and yeasts was checked as done previously by 

Madureira et al. (2005, 2008). For enumeration of the viable cell counts of L. casei 

plating was performed on Rogosa agar (Merck), supplemented with acetic acid 

(Sigma) at 96% (by volume) so as to achieve pH 5.2 (Rogosa, Mitchel, & Wiseman, 

1951). All aforementioned media were plated using the Miles and Misra (1938) 

technique—except VRBGA and RBCA, which followed the pour and spread plate 

techniques, respectively (Busta, Peterson, Adams, & Johnson, 1984). 

 

2.4. Chemical analyses 

 

Whey and milk used in the manufacture of the experimental whey cheeses were 

initially submitted to physicochemical analyses in triplicate—which included 

pH, as well as total fat, protein and lactose contents, using a LactoScope 

Advanced FTIR (Delta Instruments, Drachten, The Netherlands). 

Similar physicochemical analyses were also performed on the four types of 

whey cheese matrices (C, S, SH and SX); in addition, dry weight, moisture and 

acidity contents were assessed. The total protein content was determined via 
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Kjeldahl method (IDF, 1985). The fat content was determined using van Gulik’s 

butyrometric determination (Portuguese Standard 2105, 1983). The dry weight 

was determined according to the standard international method (IDF, 1952). 

Measurement of bulk pH was made with a penetration probe, connected to a 

Microph 2001 (Crison, Barcelona, Spain). Finally, the titratable acidity was 

determined according to reference methods (AOAC, 1980). 

 

2.5. Lactic  acid  production assessment 

 

Replicated samples of whey cheese, taken at 0, 7 and 21 d of storage, were 

assayed for organic acids and sugars; these sampling times were chosen based 

on preliminary evidence on the expected time evolution of their concentrations. 

Quantification was by HPLC in a single run, based on calibration curves prepared 

in advance with appropriate chromatographic standards—using a LACHROM 

apparatus (Fullerton CA, USA), with an Aminex HPX-87X cation exchange column 

from BioRad (Richmond CA, USA); the flow rate was 0.5 ml/min; 0.005 N H2SO4 

(Merck) was employed as eluant; and detection was by refractive index at 30 ºC for 

sugars, and UV absorbance at 400 nm for organic acids. Prior to analysis, all samples 

were pretreated as follows: 4 g of each sample was homogenized with 30 ml of 0.5 M 

perchloric acid (Merck), for 3 min in a Stomacher Lab Blender 400, allowed to stand 

for 2 h at a refrigerated temperature in a closed vessel, and then filtered through a  

0.22 m-membrane  Syrfil filter (Nucleopore, Cambridge MA, USA). Samples were 

replicated to estimate experimental variability—which was expressed  in the form 

of an average standard error, for each data set. 

 

2.6. Proteolysis assessment 

 

Replicated samples of whey cheese, taken at 0, 14 and 21 d of storage, were 

assayed for proteolysis (the sampling times were again chosen based on previous 

evidence of the likely progress of that phenomenon with time): water-soluble 

nitrogen (WSN), as well as nitrogen soluble in 12% (by mass) trichloroacetic acid 

(TCA-SN) and in 5% (by mass) phosphotungstic acid (PTA-SN) were  determined 

via  Kjeldhal, as described by  Kuchroo and Fox (1982) and Stadhouders (1960)—

except that a Stomacher Lab Blender was used for homogenization, and that the 

supernatant obtained was filtered through Nr. 42 filter paper. Such proteolysis 

indices as WSN-TN%, TCA-TN% and PTA-TN 

% were then calculated as the ratios of WSN, TCA and PTA to total nitrogen 

(TN), respectively. 
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2.7. Textural analyses 

 

Replicated samples of whey cheese, taken at 0, 3, 7, 14 and   21 d of storage, 

were assayed via measurement of the force– time curve with a TA.XT apparatus 

(Stable Micro Systems, Surrey, UK). A 5 kg-load cell was calibrated with a 2 kg- 

weight. The probe used was P/30c (a 300 conical device, made of perspex), and 

tests were performed directly in  the flasks (in triplicate), at three different  

locations  in  the  sample.  The samples were identical in weight and shape. A 

typical “mastication test” testing profile was followed, which  involves two 

consecutive compressions at controlled room temperature (25 ºC). The  

compression  distance  used  was  20 mm, thus ensuring that the sample would 

not fracture before the second compression. The two consecutive compressions 

were performed automatically, at a test speed of     5 mm/s. This test made it 

possible to measure five attributes: hardness, gumminess, cohesiveness, 

adhesiveness and springiness. To measure softness a single cycle of compression 

was used—at a test speed of 2 mm/s and a compression distance of 20 mm. 

 

2.8. Sensory analyses 

 

An acceptance sensory panel assessed coded experimental whey matrices at 

random. The panel consisted of 15 members, specifically trained for dairy 

product organoleptic analyses, with ages ranging from 25 to 45 year-old. Whey 

cheese pieces were placed into air-tight plastic containers, and conditioned at 

room temperature for 15 min before evaluation (so as to guarantee that samples 

were consumed still fresh). Duplicated samples were evaluated at room 

temperature (20 ºC)—but only after previous confirmation of microbiological 

safety, by the consumer panel using a 9-point hedonic scale (in which 1 

corresponds to “very bad”, and 9 to “very good”). Between analyses, the panel 

took water and unflavored cookies, so as to eliminate the taste of the previous 

analysis. During classification, general remarks about aroma, consistency, flavor 

and acidity were also recorded (Lawless & Heymann, 1999). 

 

2.9. Statistical analyses 

 

Normality tests (Shapiro-Wilke) were applied to all raw experimental data—

and most were found not to satisfy the homoschedasticity hypothesis. Since  data  

transformation was not successful in all cases, non-parametric tests—e.g. 

Friedman’s test, were eventually applied to such data. How- ever, statistical 

significant differences were detected between values; hence, the influence of 
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storage time was assessed via Wilcoxon tests. Differences between the four types 

of whey cheeses  were  assessed using Mann–Whitney  tests.  All tests were 

performed to a 5% significance level, using SPSS v. 20 (Chicago IL, USA). 

Correlations between viable cell counts, physicochemical parameters, lactose 

and lactic acid contents, and  texture  were checked via Pearson’s  test, to  a 1% 

significance level. 

 

3. Results and discussion 

 

3.1. Microbiological profiles 

 

The viable cell numbers of L. casei in the four whey cheeses stored at 7 ºC for 21 

d are tabulated in Table 1. In all matrices, these numbers increased up to ca. 1.5 

log cycles during the whole period. The numbers of viable cells were not affected 

by incorporation of additives, and no statistically significant differences were 

found between viability of the four matrices (P40.05); only the factor storage time 

influenced the viable  cell numbers (Po0.05), especially after 7 d of storage for 

matrices SH and SX. The other matrices C and S only showed statistical 

significant differences after 14 d of storage time. The aseptic conditions used 

during all experimental work resulted in no external contamination of the four 

whey cheeses, since manufacture and throughout the whole storage period (data 

not shown). 

One of the major reasons behind selection of L. casei strain L26 for this work 

was its intrinsically good technological features—viz. good viability profile in 

solid whey matrices; this strain had been reported to increase its viable cell 

counts when inoculated in whey cheeses manufactured with bovine whey and 

milk (Madureira et al., 2005),  and more recently  in similar matrices further 

added with sweet additives (Madureira et al., 2008). Strains of L. casei were also 

shown   to exhibit good viability profiles upon incorporation in such other 

related dairy products as fermented milk (Nighswonger, Brashears, & Gilliland, 

1996), Cheddar cheese (Gardiner, Ross, Collins, & Fitzgerald, 1998; Ong, Henriksson, 

& Shah, 2006), Argentinean fresco cheese (Vinderola, Prosello, Molinari, Ghilberto, 

& Reinheimer, 2009), Brazilian Minas fresh cheese (Buriti, Rocha, Assis, & Saad, 

2005)  and  Argentinean  semi- hard  cheeses (Bergamini,  Hynes,  &  Zalazar, 2006). 

 

3.2. Physicochemical profiles 

 

The evolutions in pH and titratable acidity along storage time are represented 

in Table 1. All whey cheeses underwent a decrease of ca. 1 pH unit (from 5.5 
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to 4.5) along storage time. Acidity was relatively high, irrespective of the 

additive incorporated; hence, no significant  differences  were found in pH and 

titratable acidity among whey cheeses (P40.05), yet significant differences existed 

among storage times (Po0.05). The physiochemical parameters pertaining to the 

raw materials (whey and milk) used in the manufacture of whey cheeses, and 

to the final four matrices manufactured there- fore are represented in Table 2. 

All values encompassing milk and whey composition are in agreement with the 

literature (Morr, 1989). Chemical denaturation of whey proteins usually takes 

place in the pH range 5.5–6.0. The pH of whey and milk used for manufacture of 

the experimental whey cheeses was relatively low, as a consequence of the 

microbial-mediated acidification of milk during cheesemaking; addition of milk 

obviously  increased  the  final  pH  of  the  mixture  during manufacture. 

Significant differences were found in total protein between SX whey cheese and 

the others, which can be attributed to the  reduction  of  water  content  because  

of  the  presence of xanthan (P<0.05). The water content was also influenced by 

addition of salt and herbs (Table  3). 

Significant correlations were found between viable cell counts, pH and acidity: 

the highest correlation (r = 0.98; P<0.01), between viable cell counts and pH, was 

found in whey cheeses S, whereas the lowest (r = 0.91; P<0.01) was found in whey 

cheeses C. 

 

3.3. Influence of additives in lactic acid production 

 

The organic acids produced by L. casei in our whey cheeses, were lactic and 

acetic acids. In all experimental matrices, lactose was partially converted to lactic 

acid; in the case of acetic acid—which is normally a product of the degradation 

of  pentoses,  its  content  was  low  throughout  storage  time (data not shown). 

The consumption of lactose, as well the concomitant production of lactic acid 

are represented in Fig. 1. L. casei is known to be a facultative heterofermentative, 

as it converts lactose as primary substrate into lactic acid, acetic acid and carbon 

dioxide. Lactose was not quantitatively converted, since several parameters may 

have influenced the metabolism of said strain, viz. storage temperature and time, 

and absence of oxygen—all of which play a role upon production of acetic acid 

(Martínez-Anaya, Llin, Macías, & Collar, 1994). At the time of production, the 

incorporation of additives produced significant statistical differences, i.e. 

differences between whey cheeses C and the others whey cheeses (P<0.05). In all 

whey cheeses, the concentration of lactic acid increased along with decrease in 

concentration of lactose during storage, as expected; significant differences were 

found throughout storage time, and between  whey cheeses  C and the others 
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(P<0.05). Consumption of lactose in whey cheeses C and SH was consistent with 

the highest production of lactic acid; by 0 d, lactose concentrations were ca. 20 

mg/g, and these figures decreased ca. 6 mg/g by the end of storage (Fig. 1a). At 

the end storage (21 d), the lower conversion of lactose in lactic acid was found in 

whey cheeses added with salt and xanthan (SX) (Fig. 1b). Surprisingly, a poor 

correlation was found between lactose and lactic acid concentrations, 

throughout storage time  (r =-0.60). 

The aforementioned results show that salty additives  have an influence upon 

the metabolic activity of L.  casei  when inoculated in whey cheese matrices. The 

incorporation of salt in the whey cheeses decreased the concentrations of lactic 

acid produced by L. casei, when compared with those obtained in whey cheeses 

added with sweet additives (Madureira et al., 2008). These phenomena can be 

explained by the effect of salt, and reduction of water activity, which was shown 

to negatively affect the metabolic activity of lactic acid bacteria (Troller & 

Stinson, 1998). Likewise, xanthan appeared to have a great impact on the 

glycolytic activity of such strain, since in these matrices the lowest conversion of 

lactose to lactic acid took place. This gum delayed in time the glycolytic events. 

This phenomena was already seen in other research studies (Soukoulis, 

Panagiotidis, Koureli, & Tzia, 2007), whereas yoghurt manufactured with 

xanthan presented higher fermentation times than the control matrices. 

 

3.4. Influence  of  additives in proteolysis 

 

Proteolytic indices during storage time are represented in Fig. 2. In general,  the 

proteolytic activity  of L. casei  was throughout that period. Nevertheless, higher 

values of all nitrogen fractions (ca. 8%) were found in the case of whey cheeses  

with salt (S). 

The ripening depth (TCA-SN%) evolved in a way similar to WSN (Fig. 2b), 

especially in the case of matrices SX (r = 0.99; Po0.01). Small peptides and even 

free amino acids were also formed; those were soluble in PTA, and led to high 

values of PTA-SN (see Fig. 2c). Statistical significant differences were found for 

WSN%, between matrices S and the others matrices at time 21 d (P<0.05). No 

significant differences were found between TCA-SN% associated with the four 

matrices (P<0.05). In the case of PTA%, matrices SX were statistically different 

(P<0.05), in which, proteolysis was less extensive than in the other whey cheeses. 

The values obtained are similar to those for Cheddar cheeses manufactured with 

milk inoculated with the same L. casei strain, but stored at a low refrigeration 

temperature (4 ºC) and for a ripening period of 8 wk  (Ong et  al., 2006). 

The reasons for such low values may derive from the substrate proteins, which 
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are less available for hydrolysis owing to their denatured and aggregated form. 

Whey cheeses were as well manufactured without addition of rennet or 

coagulant; therefore, the extent of proteolysis (WSN%) observed (Fig. 2a) is likely 

a result of bacterial proteases and peptidases only. In addition, these strains are 

generally assumed to exhibit a relatively low level of caseinolytic activity, and a 

high level of peptidolytic activity (Fernández de Palencia, Peláez, & Martín-

Hernández, 1997; Ztaliou, Tsakalidou, Tzanetakis, & Kalantzopoulos, 1996). The 

additives may also play a role: salt had no effect upon proteolysis (as expected); 

xanthan reduced water activity—and accordingly constrained release of water-

soluble peptides, since matrices SX exhibited lower proteolysis levels than the  

others; and garlic and herbs may possess inhibitory activity upon bacterial  

peptidases and proteases. 

 

3.5. Textural analyses 

 

The evolution of textural parameters is represented in Fig. 3. These probiotic 

whey cheese matrices are spreadable, so no fracturability was detected 

whatsoever. 

Whey cheeses C and S were the softer by the end of storage: until 7 d, they were 

always less soft than the SH and SX ones (Fig. 3a). Conversely, softness decreased 

as storage time elapsed, in the case of whey cheeses SH and SX; by the end of  

storage,  these  were  3-fold  less  soft  than  matrices  C and S. 

Hardness evolved similarly in all matrices up to 7 d (see Fig. 3b); salt-containing 

matrices became harder than matrix C (P<0.05). Whey cheeses SH and SX 

exhibited higher acidification, which could positively influence whey protein 

aggregation as the isoelectric point of whey proteins is approached—so more 

compact, harder matrices would likely result. The former were also the softer at 

the time of manufacture, in contrast with matrices without additive (C) or with 

salt (S). As expected, softness correlated better with hardness (r = 0.526; P<0.01) 

than with the other textural parameters. The values of hardness obtained here 

were higher than those obtained for milk fresh cheeses inoculated with  the  same  

bacterial  species  and  for  refrigerated  28 d (Buriti et al., 2005). Whey cheeses 

with added xanthan were also the harder by the end of storage; this was a 

probable consequence of the use of this gum, since xanthan is a bacterial 

exopolysaccharide (commonly used as a stabilizer, emulsifier, thickener and 

binding agent, e.g. in the preparation of dairy products). The increase in 

hardness of other dairy products incorporated with xanthan, e.g. yoghurt, was 

shown previously (Soukoulis et al., 2007). This gum is also known to bring about 

increases in softness. 
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Whey cheeses S were always less adhesive than the  others. Whey cheeses SH 

and SX became more adhesive along storage time, with some oscillations 

(Po0.05). Gummi- ness  remained  almost  constant  in  matrices  with  salt  and 

herbs (i.e. SH) (see Fig. 3d); this parameter increased in value for whey cheeses 

S and SX, especially toward the end of storage. All matrices were significantly 

different from each other (P<0.05). Adhesiveness and gumminess were inversely 

correlated to a high degree (r =-0.746; P<0.01), as expected; and were much 

higher for these matrices than for milk fresh cheese (Buriti et al., 2005). Moreover, 

addition of xanthan produced matrices characterized by higher adhesiveness 

and gumminess, owing to the natural properties of this gum that were 

mentioned before. 

Springiness was similar for all matrices at the beginning of storage; however, 

by the end of the storage period, differences were found between the four 

matrices. Matrices S were found to be less elastic than the others, whereas the 

most elastic ones were matrices SH. Finally, cohesiveness decreased in all 

matrices during storage, but was always higher in matrices SH and SX. 

Cohesiveness correlated with springiness (r = 0.844, P<0.01) better than with the 

other textural parameters. Both properties were shown to be in agreement with 

those found  for  milk  fresh  cheese  (Buriti et al., 2005). 

The incorporation of additives and the moisture content were shown to be 

rather important for textural parameter evolution throughout storage time. 

Requeijão can be considered as a soft-cheese in its original form—as its moisture 

content lies in the range 48–80%. Softness of these matrices was certainly 

originated by the preliminary homogenization of both inoculum and additives. 

In fact, even without significant changes in moisture contents during storage 

(since they are kept in closed vessels), the initial moisture content is important 

for the eventual evolution of textural parameters: high levels of moisture weaken 

the protein network, thus turning matrices softer (Beal & Mittal, 2000). 

Another important parameter that influences texture is proteolysis, especially 

in terms of hardness (Tunick, Malin, Smith, & Holsinger, 1995). Changes in 

calcium concentrations promoted by pH decrease are also responsible for fragile 

and fragmented matrices (Yasici & Dervisoglu, 2003). In matrices SX, a lower 

degree of proteolysis was indeed detected—and they were firmer than the others; 

a higher acidity was also noted by 21 d of storage. In fact, a high correlation 

resulted between pH, acidity and hardness (r=0.90; P<0.05). Matrices  S and SH 

exhibited the higher proteolysis extent, and were in turn included in the group 

that proved less firm by the end of storage (Fig. 2a and b). 
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3.6. Sensory analyses 

 

The results of the organoleptic assessment of the various whey cheese matrices 

are depicted in Table 4. The sensory analyses were performed at both times of 

storage 3 and 14 d. At these storage times, the higher acidification decrease 

occurs, as shown elsewhere (Madureira et al., 2005). So the impact of such 

acidification in the sensory acceptance, and the impact of the inclusion of 

additives in the whey cheeses was obtained at both times of storage. Matrices 

containing salt, garlic and herbs (SH) received the best scores by 3 d      of storage.  

As  storage  time  elapsed,  all  matrices  tended  to receive poorer and poorer 

scores, except the control matrices (C)—which remained essentially constant.  

The panel  specifically  suggested  that  all  matrices  were  rather creamy. 

Therefore, the (unwanted) presence of granules— initially pointed out in 

traditional Requeijão by Pintado, Lopes da Silva, and Malcata (1996) were 

eventually eliminated via homogenization of the inocula and additives after their 

incorporation in the whey protein clot. Sensory scores of matrices S and SX by 3 

d of storage were indeed lower; this realization can be associated with their 

higher moisture content, 73 and 68%, respectively. By 14 d, the scores received 

by those matrices decreased; despite their harder texture  than by 3 d of storage, 

acidity increased and led to an overall decrease in organoleptic scoring. 

Matrices S and SH underwent a statistically significant decrease by 14 d, relative 

to 3 d of storage—whereas matrices C and SX retained their initial scoring. 

Although incorporation of additives was also planned to improve organoleptic 

texture, the associated effects were not fully reproducible. This was especially 

noticed in matrices S and SH by 14 d: the panel described their taste as saltier 

than that of the others, although they had the same salt concentration—a higher 

acidity possibly enhanced saltiness perception (see Table 1). Furthermore, whey 

cheeses S and SH received the lower sensory scores because of a bitter flavor, 

probably related to the higher release of peptides and amino acids. Acidification 

was lower in matrices SX (see Fig. 3), and was certainly masked by the 

contribution of xanthan—so the salty taste was not potentiated by acidity. 

Nevertheless, the panel detected an unpleasant flour taste in matrices SX. On  the 

other hand, and despite their low amounts, these compounds (peptides and 

amino acids) may be important as growth promoters of L. casei. 

 

 

4. Conclusions 

 

The viable cell numbers of L. casei increased in all inoculated whey cheese 
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matrices throughout storage time, irrespective of the additives used. All matrices 

underwent acidification during storage, mainly due to bacterial-mediated 

production of lactic acid. This production was influenced by incorporation of 

salty additives; lower levels of such acid were indeed found  in  matrices  with  

salty  additives  (especially   salt and xanthan) than those of control matrices (i.e. 

without additives). 

The incorporation of additives, such as those used in matrices  SH  and  SX,  

influenced  the  proteolytic  activity of L. casei, which was low anyway—higher 

values were found in the control matrices (C) and in those with added salt (S). 

Matrices  added  with  salt  also  exhibited  higher proteolysis levels, which 

influenced such textural parameters as hard- ness and softness: matrices SX were 

less soft and firmer than the others, by the end of storage. Sensory assessment  

revealed acid notes; control matrices and those containing gum were clearly 

preferred by the panel by 14 d of storage. Furthermore, whey cheese matrices 

with herbs and with gum appeared similar in terms of texture. Incorporation of 

additives proved an alternative to change the overall organoleptic features, via 

masking (or at least delaying) acidification—and produced a series of events in 

terms of metabolic activities, that can favorably influence textural parameters. 
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