Robust and Efficient Server-Based Communication over Switched Ethernet

R. Santos, A. Vieira, R. Marau, P. Pedreiras, A. Oliveira

DETI/ IEETA
Universidade de Aveiro, Portugal

{rsantos,alexandrevieira,marau,pbrp,arnaldo } @ua.pt

Abstract

Real-Time Ethernet (RTE) protocols have difficulties in
attaining a bandwidth efficient support of aperiodic mes-
sage streams in scenarios where strict timeliness require-
ments have to be met. To overcome such difficulties, the au-
thors proposed recently the Server-SE protocol that deploys
server-based traffic scheduling over switched Ethernet us-
ing the FTT-SE protocol and COTS switches as platform.
This paper extends such work by proposing a new platform,
namely the FTT-Enabled Switch recently developed by the
authors. The resulting framework provides a high level of
determinism, robustness and flexibility, being particularly
suited to open systems as servers can easily be added, com-
posed, adapted and removed at run-time. The framework
is validated with a prototype implementation. Experimental
results show the effectiveness of the framework in guaran-
teeing a correct temporal behavior even in the presence of
traffic with arbitrary arrival patterns and load variations.

1 Introduction

Nowadays, switched Ethernet architectures present at-
tractive features such as large bandwidth, cheap network
controllers, high availability, easy integration with Internet
and a clear path of evolution. These features are fostering
the expansion of switched Ethernet architectures to new ap-
plication areas such as high-speed serving, target tracking in
military systems or even the control of electrical protection
systems in substations. However, COTS Ethernet switches
are not designed to support the timeliness and safety re-
quirements found in many of the application areas afore-
mentioned. These limitations arise from aspects like block-
ing caused by long non-preemptive frames, lack of protec-
tion against errors in time domain, a limited number of pri-
orities and possible memory overflows.

To address these limitations, diverse Real-Time Ether-
net (RTE) protocols have been developed. Some of these
protocols, such as traffic shaping [1], master-slave proto-

Luis Almeida
IEETA - DEEC/University of Porto
4200-465 Porto, Portugal
lda@fe.up.pt

cols FTT-SE [2], EtherCAT [3], Powerlink [4] and Ether-
netIP [5] rely strictly on Commercial Of-The-Shelf (COTS)
Ethernet components. However, by relying in COTS hard-
ware, the sphere of control of these protocols is limited to
the nodes that strictly comply with the associated protocol
and the system becomes vulnerable to malfunction nodes.
A way to address these problems consists in integrating
the traffic management and control mechanisms within the
switch itself, creating a modified Ethernet switch. This di-
rection, followed in proposals such as PROFINET [6] and
TTEthernet [7], allows obtaining gains in terms of perfor-
mance and timeliness guarantees. This approach yields a
relatively low level of intrusion because it is still possible
using COTS hardware and standard software stacks in the
end nodes, possibly with specific layers just for accessing
the real-time services.

Independently of the particular mechanisms employed,
most of the RTE protocols above mentioned share a com-
mon difficulty in efficiently handling together real-time
messages with diverse arrival patterns, such as periodic
and aperiodic, treating them in different ways, frequently
with static resource allocation for each case. In this scope,
the authors have previously proposed the Server-SE proto-
col [8], integrating the FTT-SE [2] and Server-CAN [9] pro-
tocols, the former providing a master/slave architecture that
supports operational flexibility and the latter providing an
integrated server-based traffic scheduling paradigm. This
paper extends such previous work, addressing some limi-
tations of the Server-SE protocol, namely the requirement
of a cooperative architecture that imposes FTT-type nodes
in the network, exclusively, the lack of tolerance to time-
domain faults in the end nodes and the need for an explicit
aperiodic signaling mechanism that induces some overhead
and limits the responsiveness of the protocol.

These aspects are improved by introducing an FTT-
Enabled Switch that integratres the FTT master and is ca-
pable of confining the incoming traffic to configurable time
windows, whichever its type and arrival pattern. The result-
ing architecture provides a combination of features that are
not present on currently available RTE protocols and that

are particularly well suited for supporting open distributed
real-time systems. Firstly, there is a seamless integration of
real-time and non-real-time services, with strict timeliness
guarantees to the first class. Regarding the real-time traffic,
the system is extremely flexible, allowing arbitrary (server)
scheduling policies and supporting both isochronous as well
as sporadic and aperiodic traffic via servers that can be hi-
erarchically composed. Furthermore, the traffic properties
can be changed dynamically, e.g., to deal with changes in
the application requirements or environment, without com-
promising the timeliness of the real-time services. Finally,
note that an apreiodic explicit signaling mechanism is no
longer needed and the nodes are allowed to transmit such
messages autonomously. Thus, any kind of nodes can now
be connected to the network without negative impact on the
real-time communication.

The paper is organized as follows: Section 2 discusses
server-based traffic scheduling in networks; Section 3 re-
visits the basics of the FTT-Enabled Switch and its FPGA-
based implementation; Section 4 presents the core of the
proposal, detailing the integration of server-based traffic
scheduling into the switch; Section 5 presents a prototype
implementation, showing the plausibility of the proposal
and its capability to guaranteeing the correct server tempo-
ral behavior, even in the presence of interference with arbi-
trary arrival patterns and load variations. Finally, Section 6
presents the conclusions.

2 Server-based traffic scheduling

In the networking domain, probably for historical rea-
sons, the names given to servers are different from those
used in CPU scheduling. For example, a common server
used in networking is the leaky bucket. This is a specific
kind of a general server category called traffic shapers [1],
which purpose is to limit the amount of traffic that a node
can submit to the network within a given time window,
bounding the node burstiness. These servers use techniques
similar to those used by CPU servers, based on capacity
that is eventually replenished. Many different replenish-
ment policies are also possible, being the periodic replen-
ishment as with the Polling Server (PS) or the Deferrable
Server (DS), the most common ones. However, it is hard
to categorize these network servers similarly to the CPU
servers because networks seldom use clear fixed or dynamic
priority traffic management schemes. In fact, there is a
large variability of Medium Access Control (MAC) proto-
cols, some of them mixing different schemes such as round-
robin scheduling, first-come-first-served, multiple priority
queues, etc.

Regarding specifically to RTE protocols, some very lim-
ited forms of server-based traffic handling can be found.
Some protocols enforce periodic communication cycles

with reserved windows for different traffic classes (e.g.
PROFINET-IRT [6], TTEthernet [7] and Ethernet Power-
link [4]), which can be regarded as a combination of several
PS. Other protocols, such as [1], implement a traffic shaper
that behaves similarly to a DS. However, due to infrastruc-
tural limitations, none of these protocols supports arbitrary
server policies nor their hierarchical composition. Con-
versely, the FTT-based Ethernet switch used in this work
allows implementing, within flexible and hierarchical par-
titions, any CPU-oriented server-based scheduling policy,
which are vaster and thus provide more options with well
studied timing behavior.

3 FTT-enabled Ethernet switch
3.1 Brief overview

The FTT-enabled switch is based on the Flexible Time-
Triggered paradigm, with the FTT master included in the
switch (Figure 1). The FTT protocol defines three traffic
classes: 1) periodic real-time messages activated by the mas-
ter (referred to as synchronous since their transmission is
synchronized with the periodic traffic scheduler); 2) aperi-
odic real-time traffic (called asynchronous), autonomously
activated by the application within each node and 3) non
real-time traffic. The synchronous and asynchronous traffic
are transmitted within real-time windows and have guaran-
teed timeliness while the non real-time traffic is scheduled
in background, in the time left within the EC. For the syn-
chronous traffic, a master/multi-slave transmission control
technique is used, according to which a master addresses
several slaves with a single poll message, considerably al-
leviating the protocol overhead when compared to the con-
ventional master-slave techniques. The communication is
organized in fixed duration slots called Elementary Cycles
(ECs). Each EC starts with one poll message sent by the
master, called Trigger Message (TM). The TM contains the
schedule for that particular EC. Only the messages that fit
within an EC are scheduled by the master, thus memory
overflows inside the switch are completely avoided for such
kind of traffic.

Integrating the FTT master in the switch preserves most
FTT attributes while obtaining important gains in the fol-
lowing key aspects:

e A performance boost for the asynchronous traffic that
is now autonomously triggered by the nodes instead
of being polled by the master node, while maintaining
aggregated or per-stream temporal isolation;

e An increase in the system integrity since unauthorized
real-time transmissions can be readily blocked at the
switch input ports, thus not interfering with the rest of
the system.

FTT-Enabled Switch

Master Module

-

SRDB
e 9~ 53
Scheduler § _/Admission Qos !
Control / * Manager ~ =
-~ v
'/ > ad _a ad

Switching Module

TM]< Trigger
AR Message

g I

Figure 1. FTT-enabled Ethernet switch.

e Seamless integration of non-FTT-compliant nodes
without jeopardizing the real-time services.

3.2 Switch architecture

The functional architecture of the FTT-enabled Ether-
net switch has been presented and discussed in earlier work
[10]. It is basically formed by four main blocks, the mas-
ter itself, which includes the System Requirements Data
Base, the admission controller, the synchronous scheduler
and Quality of Service (QoS) manager, the input blocks
that classify, validate and filter the ingress traffic, the global
memory pool that holds the messages of each class in inde-
pendent sections, and the output blocks that include three
pointer queues, one for each traffic class, and assure the
jitter-free transmission of the TM in each EC.

This architecture allows us maintaining a tight control on
the traffic that enters the switch, including enforcing an ad-
equate timing behavior and temporal isolation among traf-
fic classes, whichever is the traffic arrival pattern. There-
fore, nodes producing NRT or asynchronous traffic can use
the switch transparently, as if it was a standard Ethernet
switch, without needing any modification of the node soft-
ware. This is particularly relevant to cope with legacy ap-
plications that were not designed to use the synchronous
services. The former traffic will not interfere with the latter
and both will not interfere with the synchronous traffic that
might be flowing through the switch. This grants a high
flexibility to the proposed solution for real-time commu-
nication, which efficiently combines those heterogeneous
traffic classes with mutual temporal isolation. An appropri-
ate FTT network driver is just required for the synchronous
communication services and for setting up asynchronous
channels dynamically.

4 Integrating server-based scheduling in the
FTT-enabled switch

In [8] the authors have already addressed the integration
of server-based traffic scheduling with the FTT-SE proto-
col, which operates over COTS switches and which led
to the Server-SE protocol. As referred before, this proto-
col already handles message streams with arbitrary arrival
patterns while providing timing guarantees. However, two
main limitations subsist that were pointed out before, the re-
quirement for FTT-compliant nodes, only, and the signaling
mechanism for aperiodic transmissions. These limitations
can be overcome by using an FTT-enabled switch and in-
tegrating server-based traffic scheduling mechanisms sim-
ilarly to what was done with the FTT-SE protocol to put
forward Server-SE. Such integration is logically done in the
same way, resulting in a similar server hierarchy as depicted
in Fig. 2 and presented in [8].

Figure 2. Hierarchy of servers

At the top level the FTT EC structure uses two windows
within each EC to handle the two main traffic classes, i.e.,
synchronous and asynchronous. Both windows are polling
servers with period T, = T,, = FE that are currently
scheduled in a TDMA fashion. However, they can also be
scheduled with fixed priorities with the lower priority asyn-
chronous server reclaiming the space unused by the former.
Such scheduling has a higher bandwidth efficiency but also
a more complex implementation since the start of the asyn-
chronous window varies from EC to EC. The implemen-
tation described further on uses the TDMA approach. The
synchronous server has a maximum capacity C,, = LSW,

resulting in a maximum bandwidth of Uyaz.0 = %‘“ =

% for this type of traffic. The latter inherits a maximum
capacity of Cy, = LAW = E— LSW —§, with delta be-
ing protocol overheads, resulting in a maximum bandwidth
of Unazaw = % = MTW. Note that £ and LSW are
FTT conﬁguratioi'lwparameters that can be tuned to suit the
global application needs in terms of synchronous and asyn-
chronous requirements. The EC period E establishes the
granularity of the remaining servers since their periods are

constrained to be integer multiples of this interval. On the
other hand LSW defines the bandwidth shares assigned to
each of the two servers at this level and can take any value
from 0 to £ — ¢ . Note that a lower LSW smoothes the syn-
chronous load across ECs and improves the responsiveness
to asynchronous requests.

The second level of the hierarchy manages the sporadic
and NRT traffic, the former having real-time requirements
and thus being always scheduled before the latter, which is
handled with a background server. Thus, at this level, the
sporadic window inherits the capacity and bandwidth of its
parent server (Cspw = Caw; Uspw = Uqw) While the NRT
server inherits the remaining capacity in the EC.

The third level of the hierarchy is where additional
application-specific servers can be plugged-in, constituting
virtual channels. These servers can be implemented with ar-
bitrary scheduling policies without preemption at the packet
level. The sole constraints are that the base time granularity
for periods, deadlines and offsets is £ and their aggregated
bandwidth cannot exceed Uspy,.

4.1 Provided services

The server allocation is similar to the old implementa-
tion. All nodes must negotiate with the switch for the cre-
ation of adequate servers in order to handle specific types of
traffic. For that, the nodes use a service that relies on spe-
cific FTT control messages. On the other hand, the response
arrives through the TM, which is sent by the switch, and in-
tegrates the appropriate information. The negotiation of the
server parameters, i.e, the parameters of the desired virtual
channel, is based on admissible ranges of QoS. A suitable
negotiation assures that at any time the switch has enough
resources to satisfy the real-time requirements of the traf-
fic that is conveyed within the negotiated channels. During
the communication process, the nodes can renegotiate the
QoS parameters of any channel using the same service as
for setting up channels. When a node stops using a channel
it should delete the associated server, freeing resources for
further negotiations.

Given the traffic classification and confinement being
carried out transparently by the switch, legacy applications
can communicate through a virtual channel with QoS guar-
antees without being aware. In this case, however, an addi-
tional entity, e.g., another process in the same or other node,
must invoke the creation, negotiation and deletion of the
needed servers. Additionally, legacy applications without
guaranteed QoS needs can quickly communicate using the
NRT background server implemented in each node. This
server is created by default and does not require negotia-
tion. In any case, whatever the amount of traffic transmit-
ted by these applications, it does not interfere with the QoS
guarantees of the real-time channels already negotiated.

4.2 Proposed functional architecture

Figure 3 presents the functional architecture of the
switch with two main modules, the Switching Module and
the Master Module. The former is implemented in hardware
using an FPGA. The traffic arrives via the input ports and is
submitted to the Classifier and Verifier Unit that classifies
and validates the received massages. The data messages
are forwarded directly to the memory unit while FTT con-
trol messages, e.g., negotiation messages, are transferred to
the Master Module. The memory is divided in three inde-
pendent zones, each one for each traffic class, namely syn-
chronous, server and non-real time. The other main block
inside the Switching Module is the Dispatcher Unit that
handles the output queues per traffic type and, according
to the scheduling performed by the master and conveyed in
the Trigger Message, transmits the selected messages from
the memory directly. The Master Module is implemented in
software and executes a complex set of operations, namely
the admission control, QoS manager, scheduler and it also
implements a System Requirements Database to store the
information related to the traffic management.

The integration of these modules can be performed in
two ways, the former being currently used:

e The Master Module runs in an independent CPU and
the communication with the Switching Module imple-
mented in FPGA is carried out by a conventional com-
munication mean available in the development board
(e.g. Ethernet, USB, PCI);

e A processor core embedded in the FPGA, either syn-
thetizable or hardwired (e.g. MicroBlaze, PowerPC),
runs the Master Module.

The integration of server-based mechanisms in the FTT-
enabled switch is carried out by associating one server in-
stance to each asynchronous stream using the stream ID.
Such association is carried out upon a server creation, which
occurs both in the Master and Switching Modules. In the
former, the server creation requests arrive via FTT control
messages (FTT Requests in Fig. 3) and trigger a QoS ne-
gotiation that results in specific server parameters that are
then communicated back to the application via the TM. In
the Switching Module, a FIFO with a requested depth is al-
located to the server from the Servers Memory by the Clas-
sifier Unit.

When a node transmits asynchronous messages, the
Classifier and Verifier Unit reads the stream ID and directs
them to the associated FIFO queue in the memory. If a node
transmits more messages than negotiated during a sufficient
period of time, the corresponding FIFO will fill up. When
its limit is reached, further incoming messages are trashed.

In order to schedule the servers adequately, the Switch-
ing Module informs the Master Module at the beginning of

Master
Module
> 4 - ‘
y Admission, SRDB
4 1 Control ¥ -
Scheduler | QoS
g Manager ~ 1~
> od Be-fl
| &
Switching ﬁ Servers FTT
Module Info. Requests

%" Synch.]
n | M

([[Tserver| omoy

(IINRT

(™
([[ISyre | .
([TTserver|
(IINRT

({Tm
([syne |
([[Tserver| ¥
e

i)
MSyre | o NRT
%erver hl Memory

NRT

Servers
Memory

Onput Ports
Dispatcher Unit

Classifier and Verifier Unit
Input Ports

Figure 3. Switch functional architecture

each Elementary Cycle about the messages that were re-
ceived by the servers, i.e., queued in the respective FIFO,
in the previous EC (Servers Info in Fig. 3). With this in-
formation the Master knows how much of the servers ca-
pacity is requested which is taken into account by the traffic
scheduling for the following EC. The result of the schedul-
ing is communicated back to the Switching Module via the
Trigger Message (TM) where the Dispatcher Unit enforces
the respective transmissions. This process is shown in Fig-
ure 4. Its minimum latency is two ECs. This latency is
the cost to pay for having the servers scheduling carried out
by the Scheduler in an integrated fashion inside the Master
Module. Another alternative would be to have the servers
being scheduled autonomously in the Switching Module but
this would make their dynamic adaptation, e.g., in the scope
of dynamic QoS management, more difficult. Nevertheless,
this issue is still being analyzed.

EC EC +1 EC+2

| | | | 5
| | | ™
The switch receives The switch transmits to the The dispatcher transmits
messages for the serves master the capacity the messages according to
active required and the server the scheduling performed
associated for each in the last EC.
message received in the
last EC. The master
cumputes this information
and make the scheduling to
the next EC, i.e., what
messages can be trasmited
to its destinations

Figure 4. Servers forwarding process

When a communication channel is not needed anymore
it is important to close it. This operation frees the occupied

resources, namely the FIFO in the Memory Unit and the
control structures in the Master.

5 Experimental Results

This section presents some experimental results ob-
tained with a preliminary implementation of the server-
based scheduling in the FTT-enabled switch architecture.
A NetFPGA board [11] is used that integrates a Virtex-II
Pro XC2VP50 FPGA and uses 42% of its total slices with a
maximum frequency of operation of 127.13MHz.

The first experiment was carried out integrating differ-
ent types of traffic in order to validate the switch traffic
classification and confinement according to the servers ca-
pacities and priorities. Figure 5 illustrates the setup. The
Master Module is implemented in a separate computer and
communicates with the Switching Module through an Eth-
ernet link connected on Port 1. The Master Module imple-
ments an elementary cycle of 1ms, 29% of which assigned
to the synchronous window, 54% to the asynchronous win-
dow and 16% for the guarding window. The remaining 1%
is taken by protocol overheads, e.g., the TM transmission.
The guarding window is a period of time at the end of the
EC during which no new transmissions are allowed to start.
Making this window as large as the largest asynchronous
packet in the network assures that the following TM trans-
mission will never suffer blocking.

FTT-Enabled Switch
with Server-ased Scheduling

Switching Module

S

Slave 1 Master Module

Slave 2

Slave 3

Figure 5. Experimental setup.

In this scenario, we considered one node, Slave I,
sending continuously 1500B real-time messages to another
node, Slave 3, with a minimum inter-frame gap, thus gener-
ating a load close to 100% in the respective uplink. A spo-
radic server was created to handle this stream with 3000B
capacity and a period equal to two ECs. Simultaneously,
a third node, Slave 2, transmits continuously non-real-time

1500B messages to Slave 3, also generating a load close to
100% in the respective uplink. A sniffer in the link of Slave
3 allowed analyzing its downlink traffic.

Figure 6 presents the histogram of the time elapsed be-
tween the TM of each EC and the transmission of both
messages, the real-time one (Server) and the non-real-time
(NRT), measured with the sniffer during approxiamtely 31
seconds. The horizontal axis, thus, represents the timeline
of one EC (Ims) with zero at the end of the TM trans-
mission. The first 300us are reserved for the synchronous
window which, in this case, remains empty. The following
window, the asynchronous window, which lasts for approx.
540us, confines the asynchronous traffic submitted to the
switch and it includes the two referred servers, the real-time
sporadic server with higher priority, referred to as Server,
and the non-real-time one running in background and re-
ferred to as NRT.

The histogram clearly shows the higher priority of the
sporadic server traffic that appears at the beginning of the
asynchronous window followed by the NRT traffic, using
the remaining time. Moreover, the sporadic server has a
period equal to two ECs and a capacity equal to two packets,
meaning that in one EC two packets are sent and none in
the following EC. Conversely, the background server uses
the remaining time being able to transmit 3 or 5 packets
depending on whether the sporadic server has capacity or
not. Finally, the EC ends with the guardian window which
enforces a blocking-free transmission of the TM. The TM
transmission itself occurs in the histogram at the end of this
interval.

4 T T

Asynchronous
Window

T
I cerver
| —

Synchronous
Window Guarding
Window

No. of messages
N
!

0 L I L L L L
a 01 02 03 04 05 0B 07 08 09 1

Time elapsed between TM and messages (ms)

Figure 6. Histogram of transmission inside
the EC.

The second experiment involved the same nodes but ad-
dressed a more dynamic scenario, with a variable load situa-
tion. In this case Slave I’ sends 150B real-time messages to
Slave 3 with a variable inter-frame gap that allows control-
ling the generated load. This stream is again handled by the

same sporadic server as before. On the other hand, Slave 2
transmits non-real-time 600B messages also with a variable
inter-frame gap.

Figure 7 presents the throughput curves of each stream
in the downlink of Slave 3. Initially there is no traffic sent to
the switch. At second 2 Slave I starts the transmission of the
real-time traffic with an inter-frame gap of 1ms, decreasing
over time until it reaches its minimum possible value and
thus generating a load that varies gradually from approx.
1Mbit/s to near 100Mbit/s (100% of its uplink). At sec-
ond 12 the non-real-time stream is triggered using a variable
inter-frame gap in a similar way and starting with a load of
approx. SMbit/s and growing to near 100Mbit/s. At second
21 the sporadic server inside the switch reaches saturation at
close to 12% load, arising from the 3000B that it can trans-
mitt in two ECs. After that point, the extra packets accu-
mulate in the respective FIFO and eventually are discarded.
At second 35 the background server also saturates at close
to 41% load for the NRT traffic. This load is the remain-
der of the asynchronous window after having accounted for
the sporadic server traffic. The server traffic is suspended
at second 48, leaving all the asynchronous window in the
downlink of Slave 3 fully available to the NRT traffic. At
second 55 the real-time traffic is reactivated progressively as
before. This causes a decrease in the NRT traffic through-
put. This decrease, however, is not smooth due to discrete
effects of non-preemptive packet transmission and the ar-
rangement of the packets inside the asynchronous window.
The saturation levels are reached again around second 70.

NRT
Serer

Used Bandwidth (Mb/s)

Figure 7. Server and NRT traffic throughputs.

These experiments validate the FTT-enabled switch im-
plementation and particularly the integration of server-
based traffic scheduling. They have also shown the capabil-
ity of the switch to confine different streams using servers,
so that even with overloads at the inputs the servers band-
width is enforced in the outputs. Moreover, the bandwidth
reclaiming by the background servers was also shown, even
in situations of variable load, which is a rather efficient way

of handling non-real-time traffic without jeopardizing the
timeliness guarantees of the real-time one. Finally, the ex-
periments also showed that the traffic control and channels
management carried out inside the switch are completely
transparent for the nodes that can be heterogeneous and use
the network as if they were connected to a COTS switch.
We believe this is the first Ethernet switch exhibiting these
desireable properties of efficient and robust combination of
real-time and non-real-time traffic.

One final aspect that is worth referring is related with
the interconnection of several FTT-enabled switches. In
fact, since each switch establishes a synchronization do-
main, their connection requires special care to determine
who is addressed by which switch and how the forwarding
through multiple switches takes place. This topic, however,
is out of the scope of this paper and will be addressed in
future work.

6 Conclusions

Server-based traffic scheduling is an advantageous tech-
nique to handle heterogeneous traffic types with mutual iso-
lation so that timeliness guarantees can be given even when
some streams transmit over their own specification, e.g.,
in the course of some malfunction. This can be particu-
larly useful to integrate diverse subsystems, legacy appli-
cations and support open systems. A preliminary imple-
mentation of such technique on switched Ethernet lead to
the Server-SE protocol which operated over FTT-SE and
COTS switches. However, such implementation suffered
from a few limitations arising from the lack of control by
COTS switches over the timing behavior of the streams.
To eliminate these limitations this paper proposed integrat-
ing server-based traffic scheduling inside an FTT-enabled
switch. This way, the switch is provided with the needed
information to classify and confine all message streams
at the inputs, thus enforcing the desired mutual isolation
autonomously from the nodes. The paper discussed the
integration of the server-based scheduling mechanisms in
the FTT-enabled switch and presented experimental results
with a prototype implementation that validated the concept.
As a result, the proposed switch is highly efficient and ro-
bust in handling heterogeneous traffic types with heteroge-
nous nodes, in dynamic environments, being thus adequate
to support systems that combine legacy applications and
also to support real-time open systems.

Acknowledgment

This project was partially supported by the Portuguese
Government through grant SFRH/BD/32814/2006 and
project HaRTES - PTDC/EEA-ACR/73307/2006 and by the

European Community through the ICT NoE ArtistDesign -
214373. The authors also would like to thank Xilinx Inc. for
the donation of the Tri-mode Ethernet MAC soft IP core, as
well as ISE and ChipScope Pro FPGA design tools.

References

[1] Loeser, J. and Haertig, H., “Low-Latency Hard Real-
Time Communication over Switched Ethernet,” in
ECRTS ’04: Proceedings of the 16th Euromicro Con-
ference on Real-Time Systems. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 13-22.

[2] R. Marau, P. Pedreiras, and L. Almeida, “Enhanc-
ing Real-Time Communication over COTS Ethernet
Switches,” in WFCS 06 - The 6th IEEE Workshop on
Factory Communication Systems, Turin - Italy, Jun.
2006.

[3] E. T. Group, “EtherCAT - Ethernet for Control Au-
tomation Technology,” http://www.ethercat.org, Dec.

2007.

[4] “Ethernet Powerlink - online information,”
http://www.ethernet-powerlink.org/.

[5] O. D. V. Association, “Ethernet/IP,”

http://www.odva.org/.

[6] PROFInet, “Real-Time PROFInet IRT,”
http://www.profibus.com/pn, Dec. 2007.

[7] TTTech, “TTEthernet,”
http://www.tttech.com/solutions/ttethernet/, Now.
2008.

[8] R. Marau, N. Figueiredo, R. Santos, P. Pedreiras,
L. Almeida, and T. Nolte, “Server-based Real-Time
Communications on Switched Ethernet,” in CRTS
2008: 1st Int Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems - satel-
lite of RTSS 2008, Barcelona - Spain, 2008.

[9] T. Nolte, “Share-driven scheduling of embedded net-
works,” Ph.D. dissertation, Department of Computer
and Science and Electronics, Milardalen University,
Sweden, May 2006.

[10] R. Santos, R. Marau, A. Oliveira, P. Pedreiras,
and L. Almeida, “Designing a Costumized Ethernet
Switch for Safe Hard Real-Time Communication,” in
2008 IEEE International Workshop on Factory Com-
munication Systems, May 2008, pp. 169 — 177.

[11] NetFPGA, http://www.netfpga.org/, May 2009.

