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Abstract

Built on the Keldysh formalism, this work is the link between developing a perturbation expansion

for the nonlinear optical response of a quantum system and obtaining expressions amenable to

numerical calculation using the Kernel Polynomial Method (KPM).
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1 Introduction

Since the advent of the laser in 1960, the �eld of non-linear optics has received considerable

interest. Previously, only weak electric �elds were available. Nonlinear e�ects, which typically only

happen due to very strong �elds, went largely unnoticed. However, 1961 marked the beginning of a

systematic study of this �eld, as P. Franken was able to demonstrate second harmonic generation

(SHG) [1] experimentally. This opened the gateway to a whole new plethora of phenomena.

But how strong a �eld is needed? For the e�ects to be noticeable, this external �eld should be

comparable to the electric �eld inside the crystal, which is typically of the order of 108 V/m. All

around the literature, we �nd many approaches to obtain the nonlinear response of a crystalline

system to an external �eld. Some rely on generalizing Kubo's formula for higher orders [2], others

on developing a perturbation expansion for the density matrix of the system and expressing the

quantities of interest in terms of it [3]. Although undoubtedly useful from a theoretical point

of view, the expressions aren't that useful when we want a general procedure to do numerical

calculations. That is the ultimate goal of this work.

1.1 Structure of the thesis

The second chapter is a set of notes about the various tools that will be used throughout the whole

work. It starts by explaining how an external �eld may be introduced to a quantum system, dis-

cussing the minimal coupling procedure (henceforth also called the A formalism) and the dipolar

procedure (E formalism). Then, we introduce the primary object of study of this work, the elec-

tron current, as the conserved Noether current from the point of view of classical �eld theory. The

remaining sections of this chapter include second quantization, the Schrödinger, Heisenberg and

Interaction pictures of quantum mechanics and some basics about quantum statistical mechanics,

including the generalization of Wick's theorem to systems at �nite temperature.

Chapter three is devoted to the linear response. Starting from Kubo's formula, we obtain the

current in both the A and E formalisms, showing that the two seemingly di�erent expressions

are in fact one and the same using the notation of Gonçalo [3]. Furthermore, the continuum limit

is obtained, alongside with the DC limit ω → 0. The last sections provide a glimpse into what is

going to be developed in the rest of the thesis, as they strive to cast the previous expressions in

a basis-independent way. The Kubo-Bastin formula is re-obtained in this context.

The fourth chapter begins with a generalization of Kubo's formula, but quickly moves on to

to the crux of this thesis, the Keldysh formalism. This is a very general perturbation expansion

procedure which may be used for systems both interacting and time-dependent. Particularizing

11



1.1. STRUCTURE OF THE THESIS

to the non-interacting case, we are able to develop an expansion of the Green's functions, which

are the fundamental piece of machinery used to obtain the conductivity.

The next chapter contains the explicit calculation of the Green's functions up to third order

using the Tight Binding Hamiltonian and shows how to obtain the current and conductivity up

to second order.

Chapter number six is all about the numerical method used in our calculations, the Kernel

Polynomial Method (KPM). Here we show how the aforementioned Green's functions may be

expressed in terms of numerical objects and how they may be used to implement the conductivity

in a very e�cient way [4].

At last, the seventh chapter consists of showcasing some results obtained numerically from

the formulas derived in the previous chapters. We calculate the density of states and �rst-order

conductivity of graphene and the second-order conductivity of hexagonal Boron Nitride.

12



2 Theoretical background

This chapter consists of a series of notes that aim to provide the basic tools which are going to

be used in the subsequent chapters. We begin by explaining how to describe a quantum system

in an electromagnetic �eld. This will allow us to identify the electron current. Then, we do a

brief introduction to second quantization in order to express the current in terms of creation and

annihilation operators. After that, we'll introduce the Schrödinger, Interaction and Heisenberg

Pictures that will later allow us to develop perturbation expansions. Finally, we conclude with

some remarks about quantum statistics, proving Wick's theorem for �nite temperatures. All these

are essential tools that will prove themselves useful when developing the Keldysh formalism.

2.1 Introducing an external �eld to a quantum system

We are interested in studying the optical conductivity of a quantum system when excited by an

external electric �eld E(t). The case of interest will be a crystalline system, but for now we'll

keep the discussion more general. Here we will discuss two distinct ways to endow a system with

an electromagnetic �eld, starting with a classical description of the problem.

2.1.1 Classical motivation

In a classical Lagrangian description[5, 6], we know how to compute the equations of motion

in a very compact and elegant way. Assuming the forces that the particle experiences are due

to a potential V (r), we �nd the Lagrangian from the kinetic and potential terms: L = T − V .
Applying the Euler-Lagrange equation to L then yields the equations of motion. If the particle

is also subject to a more general force Fi, which may depend on both the generalized coordinates

and velocities, it may not be suitable for a potential description. In that case, we can still obtain

the equations of motion from Lagrange's equation

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi. (2.1)

For the case at hand, it su�ces to consider a system without constraints1 in Cartesian coor-

dinates, so the Lagrangian is L = T − V = 1
2mṙ

2 − V (r). We know that a particle of charge q

experiences a Lorentz force F = q (E + v ×B) when exposed to an electromagnetic �eld. This

1From a quantum point of view, all the interactions in which we're interested are electromagnetic, so there are
no constraints in the classical sense.

13



2.1. INTRODUCING AN EXTERNAL FIELD TO A QUANTUM SYSTEM

force then enters the equations of motion through the generalized force in the Euler-Lagrange

equation. It can, however, be inserted in the Lagrangian itself if we express it in terms of the

correct potential. Expressing the electric and magnetic �elds in terms of the scalar and vector

potentials φ and A,

E = −∂A
∂t
−∇φ (2.2)

B = ∇×A (2.3)

we may rewrite the Lorentz force in terms of these potentials:

F = q (E + v ×B) = q

(
−∂A
∂t
−∇φ+ v × (∇×A)

)
. (2.4)

Using the identity v × (∇×A) = ∇(v ·A)− dA
dt + ∂A

∂t , this becomes:

F = q

(
∇(v ·A− φ)− dA

dt

)
= q

[
∇ (v ·A− φ)− d

dt
∇v (v ·A− φ)

]
. (2.5)

Furthermore, eq. 2.1 may be rewritten as

d

dt

∂L̃

∂q̇i
− ∂L̃

∂qi
= 0 (2.6)

for a new Lagrangian L̃

L̃ =
1

2
mṙ2 − V (r) + qṙ ·A− qφ. (2.7)

From this we can obtain the canonical momentum pi = ∂L̃
∂ṙi

= mṙi + qAi and �nd the Hamilto-

nian by Legendre-transforming the Lagrangian:

H(r,p) = p · ṙ − L̃ =
1

2m
(p− qA)2 + V (r) + qφ. (2.8)

Note that these potentials are not uniquely determined, since A′ = A + ∇χ and φ′ = φ − ∂χ
∂t

yield exactly the same electric and magnetic �elds and therefore the same equation of motion

for the charged particle. We may use this so-called Gauge freedom to our advantage. We'll be

interested in spatially homogeneous2 time-dependent electric �elds E(t), which may be obtained

by two di�erent choices of the potentials. The �rst choice is φ = 0 and A(t) spatially uniform,

so E(t) = −∂A(t)
∂t , which means that it is enough to do the replacement p → p − qA in the

original Hamiltonian. This procedure is called the A formalism. The second choice is A = 0 and

φ(r) = −r · E(t), which amounts to adding a dipolar term in the original Hamiltonian and is .

These two procedures are completely equivalent and are merely a re�ection of the Gauge freedom.

2In the quantum scale, the wavelength of the electric �elds may be disregarded when compared to inter-atomic
spacing.
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CHAPTER 2. THEORETICAL BACKGROUND

2.1.2 Quantum case and Gauge invariance

Now that we know how to endow a classical system with an electromagnetic �eld, we can take

this one step further by taking the classical Hamiltonian and quantizing it using canonical quan-

tization. Upon replacing the variables by operators we obtain what we wanted, the Hamiltonian

of a quantum system in the presence of an electric �eld

H0(x,p)→ H0(x,p− qA) + qφ. (2.9)

If the reader is not satis�ed with this justi�cation, there is another more fundamental reason

as to why the Hamiltonian should have that form. Take the Schrödinger equation in the position

representation:

ih̄
∂Ψ(t,x)

∂t
= − h̄2

2m
∇2Ψ(t,x) + V (x)Ψ(t,x). (2.10)

Performing a local Gauge transformation on the wave function, Ψ(t,x)→ Ψ′(t,x) = eiα(t,x)Ψ(t,x),

the Schrödinger equation becomes:

ih̄

(
∂

∂t
+ i

∂α

∂t

)
Ψ = − h̄2

2m
(∇ + i∇α)2 Ψ + VΨ. (2.11)

This means the original equation is not Gauge invariant. To �x this, we introduce two �elds

A(t,x) and φ(t,x) to the equation that follow some transformation law upon being Gauge trans-

formed. If the original Schrödinger equation is replaced by

ih̄

(
∂

∂t
+ i

q

h̄
φ

)
Ψ = − h̄2

2m

(
∇− i q

h̄
A
)2

Ψ + VΨ (2.12)

we see that the transformation

Ψ(t,x) → Ψ′(t,x) = eiα(t,x)Ψ(t,x)

A(t,x) → A′(t,x) = A(t,x) +
h̄

q
∇α(t,x) (2.13)

φ(t,x) → φ′(t,x) = φ(t,x)− h̄

q

∂

∂t
α(t,x)

leaves it invariant! This is equivalent to replacing the momentum operator p → p − qA and

adding a scalar �eld term qφ to the Hamiltonian, just as before. This means that the Gauge

invariance of the Schrödinger equation naturally demands that the Gauge �elds be added, leaving

the Hamiltonian with the familiar form.
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2.2 Current

We have just seen that a quantum system described by a wave function ψ satis�es Schrödinger's

equation if the Hamiltonian is modi�ed to include the Gauge �elds. We may proceed further and

ask if there is a Lagrangian such that the equation of motion is precisely Schrödinger's equation.

If we are able to �nd it, we may use the tools of classical �eld theory to obtain the conserved

currents from Noether's Theorem. This will provide a deeper insight into what we're actually

calculating.

2.2.1 Lagrangian density

The assertion is that the aforementioned system, which is described by Schrödinger's equation,

may be just as well described by a Lagrangian, and that the two descriptions are equivalent [7,

Chapter 3]. Consider the following Lagrangian density for a �eld ψ(~x, t):

L = ψ∗
(
ih̄
∂

∂t

)
ψ − h̄2

2m
∇ψ∗ ·∇ψ − V (x, t)ψ∗ψ (2.14)

At �rst glance, one may wonder where this comes from, but upon closer inspection, we may

recognize the last two terms as coming from the Hamiltonian density after an integration by parts

and the �rst term from the Legendre transform of H. This interpretation suggests that ih̄ψ∗ is

the conjugate momentum of the �eld ψ. As we'll see, this is indeed the case. Since the �eld is

complex, it has independent real and imaginary parts, say ψ(x, t) = u(x, t) + iv(x, t), which are

to be considered the independent �elds indexed by r, φr, in Euler-Lagrange's equation for �elds:

∂L
∂φr
− ∂

∂xµ
∂L

∂
(
∂φr

∂xµ

) = 0 (2.15)

where the index µ runs over both spatial and time coordinates. Instead of expressing the La-

grangian in terms of u and v, we use the E-L equation for one of them and use the chain rule to

have derivatives with respect to the ψ.

0 =
∂L
∂u
− ∂

∂xµ
∂L

∂
(
∂u
∂xµ

) =
∂L
∂ψ

∂ψ

∂u
− ∂

∂xµ

 ∂L

∂
(
∂ψ
∂xµ

) ∂ ∂ψ
∂xµ

∂ ∂u
∂xµ

 (2.16)

Since ∂ψ
∂u = 1 and

∂ ∂ψ
∂xµ

∂ ∂u
∂xµ

= 1, this yields E-L equations for ψ. This can similarly be done for ψ∗

and results in an equivalent equation of motion. Applying E-L's equation to ψ∗, we get

∂L
∂ψ∗

−∇ · ∂L
∂ (∇ψ∗)

− ∂

∂t

∂L

∂
(
∂ψ∗

∂t

) =

(
ih̄
∂

∂t

)
ψ − V (~x, t)ψ +

h̄2

2m
∇2ψ = 0 (2.17)
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or, simplifying,

ih̄
∂

∂t
ψ = − h̄2

2m
∇2ψ + V (~x, t)ψ. (2.18)

This is just Schrödinger's equation for the �eld ψ! The Euler-Lagrange's equations for the

speci�ed Lagrangian density reduce to Schrödinger's equation, so the �eld has the same dynamics

and the descriptions are equivalent. The other Euler-Lagrange equation gives the complex con-

jugate of eq. 2.18. We have thus achieved our goal of obtaining Schrödinger's equation from a

Lagrangian for the �eld ψ. This means Noether's theorem can be used to obtain the conserved

current!

2.2.2 Gauge invariant Lagrangian

As discussed before, demanding that Schrödinger's equation be Gauge invariant led to the in-

troduction of Gauge �elds through a few extra terms in the Hamiltonian. Doing this for the

Lagrangian density consists of precisely the same substitutions and leads to

L = ih̄ψ∗
(
∂

∂t
− i e

h̄
φ

)
ψ − h̄2

2m

(
∇− i e

h̄
A
)
ψ∗ ·

(
∇ + i

e

h̄
A
)
ψ − V (~x, t)ψ∗ψ. (2.19)

Applying Euler-Lagrange's equation as before results in

ih̄

(
∂

∂t
− i e

h̄
φ

)
ψ = − h̄2

2m

(
∇ + i

e

h̄
A
)2
ψ + V (~x, t)ψ. (2.20)

This is precisely the Gauge invariant Schrödinger equation (eq. 2.12), so we may use this

Lagrangian density for our calculations.

2.2.3 Conserved Noether current

As we've seen before, the transformation that leaves the Lagrangian invariant is

ψ(t,x) → ψ′(t,x) = eiα(t,x)ψ(t,x)

A(t,x) → A′(t,x) = A(t,x) +
h̄

q
∇α(t,x)

φ(t,x) → φ′(t,x) = φ(t,x)− h̄

q

∂

∂t
α(t,x).

The respective in�nitesimal transformation for the �eld is

δψ = iψδα (2.21)

δψ∗ = −iψ∗δα. (2.22)
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2.3. SECOND QUANTIZATION

We can now explicitly calculate the Noether current

Jµ =
∑
a

∂L
∂(∂µφa)

δφa

δα
(2.23)

where α is the in�nitesimal transformation parameter and φa stands for the various �elds. The

spatial component of J is

J =
∂L

∂(∇ψ)

δψ

δα
+

∂L
∂(∇ψ∗)

δψ∗

δα
=
−ih̄2

2m

[
ψ

(
∇− ie

h̄
A

)
ψ∗ − ψ∗

(
∇ +

ie

h̄
A

)
ψ

]
(2.24)

and the temporal component is

J0 =
∂L

∂(∂tψ)

δψ

δα
+

∂L
∂(∂tψ∗)

δψ∗

δα
= −h̄ψ∗ψ. (2.25)

These are, up to multiplicative factors, the electromagnetic current and the charge density,

respectively. Noether's theorem tells us that Jµ follows a conservation law ∂µJ
µ = 0, which in

this case is no more than the continuity equation for the charge density ρ = ψ∗ψ. This current

therefore represents the electrical current that passes through the material, so it is the object that

we're interested in calculating. Note that if we take the derivative of the Lagrangian density with

respect to the Gauge �eld, we get the current again

∂L
∂
(
e
h̄A
) = J .

This may be used as a shortcut to obtaining the current. Now, we want to express the Gauge-

invariant Hamiltonian in second quantization, so we can more easily perform the calculations.

2.3 Second quantization

Second quantization is a way to describe a quantum system with various particles. Instead of

working with a multi-variate wave function, we exploit the statistics of the particles to introduce

a set of operators that represent a particle in a certain quantum state. As we'll see, this simpli�es

notation greatly, while simultaneously providing a natural interpretation of the phenomena at

hand. The results here presented also stand for bosons, although the derivation is slightly more

complicated. As we're going to be dealing exclusively with non-interacting fermions, it seems

appropriate to focus on that case. Although the calculations for the interacting case aren't done

with detail, the �nal result which is also valid in the interacting case is still presented.

2.3.1 General many-body expansion

Consider a quantum system of one particle [8]. This particle can be in any linear combination of

eigenstates of the single particle Hamiltonian H. So, if {|ψn〉} is a complete set of eigenstates of
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H, then in general |ψ〉 =
∑

n an |ψn〉. This means that any function ψ(x1) can be expanded in

terms of a complete basis of functions ψn(x1). The quantity x1 is the coordinate of particle 1,

which may include its spin or any other quantity needed to uniquely characterize the state of the

particle.

Now consider a system of N particles, described by the wave function ψ (x1, · · · , xN ). Since the

eigenfunctions of the single particle Hamiltonian form a complete basis of functions, this function

may be expanded in all its variables in terms of this basis of functions

ψ (x1, · · · , xN ) =
∑

E′1,···,E′2

C(E′1, · · · , E′N )ψE′1(x1) · · ·ψE′N (xN ). (2.26)

The E′i label the eigenstates of the Hamiltonian. This is a very important result that forms the

basis of second quantization.

2.3.2 Constructing the fermion wave function

Now let's introduce the fermion statistics ψ (· · · , xi, · · · , xj , · · ·) = −ψ (· · · , xj , · · · , xi, · · ·). Swap-
ping ψE′i(xi) and ψE′j (xj) and relabeling the summation variables, we get a similar relation for

the coe�cients:

C(· · · , Ei, · · · , Ej , · · · , t) = −C(· · · , Ej , · · · , Ei, · · · , t). (2.27)

We are thus summing over many con�gurations which have the same coe�cients. If the number

of particles in each state is the same, those states will have the same coe�cient up to an overall

sign. This interchangeability means we need only care about the number of particles in each

state, not which particle is in which state. So, �x an ordering of the states and swap the entries

of C until they respect that ordering. This allows us to de�ne the coe�cient C̄(n1n2 · · ·n∞, t) =

C(· · ·Ei < Ej < Ek · · · , t) up to a minus sign. Let's make this explicit by summing �rst over all

the con�gurations which have the same C̄ coe�cients, leaving the minus sign as a permutation

coe�cient σE′1,···,E′2 in the remaining sum:

ψ (x1, · · · , xN ) =
∑

n1···n∞
C̄(n1n2 · · ·n∞, t)

∑
E′1, · · · , E′2
(n1 · · ·n∞)

σE′1,···,E′2ψE′1(x1) · · ·ψE′N (xN ). (2.28)

The �rst sum is restricted by the number of particles N =
∑

i ni. The second sum is to be

understood as a sum over all the states {E′i} compatible with the occupation numbers. This

turns out to be merely permutations of the positions of the E′i in the equation. σE′1,···,E′2 is the

sign of this permutation. As an illustrative example, take the case N = 3 with one particle in

state 1, another in state 3 and another in state 4. The previous argument allows us to write the

most general wave function compatible with the fermion statistics as the anti-symmetrized sum
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of single-particle wavefunctions

C̄(10110 · · · 0, t) [ψ1(x1)ψ3(x2)ψ4(x3)− ψ1(x1)ψ4(x2)ψ3(x3)+ (2.29)

−ψ3(x1)ψ1(x2)ψ4(x3) + ψ3(x1)ψ4(x2)ψ1(x3) +

−ψ4(x1)ψ3(x2)ψ1(x3) + ψ4(x1)ψ1(x2)ψ3(x3)] .

This term is completely antisymmetric, as required by the statistics. The same can be done

for any N if we �x the ordering of the states and de�ne the minus sign to be the sign of the

permutation. This can be neatly expressed in terms of a Slater determinant:

∑
E′1, · · · , E′2
(n1 · · ·n∞)

σE′1,···,E′2ψE′1(x1) · · ·ψE′N (xN ) =

∣∣∣∣∣∣∣∣
ψE1(x1) · · · ψE1(xN )

...
...

...

ψEN (x1) · · · ψEN (xN )

∣∣∣∣∣∣∣∣ . (2.30)

This will be used as the basis with which to expand fermionic wave functions, so it has to be

normalized. De�ne

Φn1,···,n∞(x1, · · · , xN ) =
1√
N !

∣∣∣∣∣∣∣∣
ψE1(x1) · · · ψE1(xN )

...
...

...

ψEN (x1) · · · ψEN (xN )

∣∣∣∣∣∣∣∣ . (2.31)

This introduces an extra factor in the coe�cients, so de�ne a new coe�cient

f(n1n2 · · ·n∞, t) =
√
N !C̄(n1n2 · · ·n∞, t). (2.32)

We thus obtain an elegant expansion that only depends on the occupation number in each

state. All the anti-symmetry is captured by the Φn1,···,n∞(x1, · · · , xN ):

Ψ(x1, · · · , xN ) =
∑

n1···n∞
f(n1n2 · · ·n∞, t)Φn1,···,n∞(x1, · · · , xN ). (2.33)

Note that the all the time dependency falls on the f coe�cient.

2.3.3 Schrödinger equation

In most cases of interest (including the one in this work), the many-body Hamiltonian is described

by

H =

N∑
n

T (xn) +
1

2

N∑
n6=m

V (xn, xm). (2.34)

Here T denotes the single-particle component of the Hamiltonian (which includes the kinetic
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energy) and V takes into account the interaction between the particles. Note that the interaction

between particles is symmetric, so the double sum over all the particles introduces repeated terms.

These are taken into account by the 1
2 term and by the restriction n 6= m, since n = m is already

considered in T . Since the coe�cients C completely determine the quantum state, we want to

obtain an equation of motion for them. For that matter, apply Schrödinger's equation to the

general wave function 2.26, multiply on the left by ψ†E1
(x1) · · ·ψ†EN (xN ) and integrate over all

the coordinates. Since the basis functions are normalized, this yields the following for the kinetic

term:

∫
dx1 · · · dxNψ†E1

(x1) · · ·ψ†EN (xN )
N∑
n

T (xn)

 ∑
E′1,···,E′2

C(E′1, · · · , E′N )ψE′1(x1) · · ·ψE′N (xN )


=

N∑
n=1

∑
W

C(E1, · · · , W︸︷︷︸
n-th position

, · · · , EN )

∫
dxnψ

†
En

(xn)T (xn)ψW (xn). (2.35)

Plugging this back into Schrödinger's equation and omitting the interaction term, we get

ih̄
∂

∂t
C(E1, · · · , EN , t) =

N∑
n=1

∑
W

C(E1, · · · , En−1,W,En+1, · · · , EN ) 〈En|T |W 〉+ · · · . (2.36)

We want to apply this to fermions. In order to do that, we �rst need to reorder the coe�cients

in each side of the equation so that they obey the �xed ordering of states. Start by treating W

as if it were En and reorder both sides of the equation simultaneously until they're in the correct

sequence. We may then assume without loss of generality that the E1 · · ·EN are already ordered

according to E1 < E2 < · · · < EN . Now, W is out of place and has to be moved into the correct

position. If W = En, the problem is solved. The remaining cases introduce a phase factor. We

pick up a factor of −1 each time W is swapped.

(−1)nW+1+nW+2+···+nEn−1 if W < En (2.37)

(−1)nEn+1+nEn+2+···+nW−1 if W > En (2.38)
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Remember that these states have a �xed ordering, so E + 1 should be understood as the next

state in the ordering. With this factor in mind, all the coe�cients become ordered and may be

expressed solely in terms of the state occupation number.

ih̄
∂

∂t
C̄(n1n2 · · ·n∞, t)

=

N∑
n=1

∑
W>En

(−1)nEn+nEn+1+···+nW−1C̄(n1n2 · · ·nEn − 1 · · ·nW + 1 · · ·n∞, t) 〈En|T |W 〉

+

N∑
n=1

∑
W<En

(−1)nW+nW+1+···+nEn−1C̄(n1n2 · · ·nEn − 1 · · ·nW + 1 · · ·n∞, t) 〈En|T |W 〉

+
N∑
n=1

C̄(n1n2 · · ·nEn · · ·n∞, t) 〈En|T |En〉+ interaction term. (2.39)

There is still a summation over the index of the particles. This may be replaced by a sum over

states
∑

E if we specify the number of times nE that the variable En has the value E, since they

all contribute equally to the sum:

∑
E

∑
W>E

(−1)nE+nE+1+···+nW−1C̄(n1n2 · · ·nE − 1 · · ·nW + 1 · · ·n∞, t) 〈E|T |W 〉nE . (2.40)

Multiplying both sides of the equation by
√

N !
n1!···n∞! allows us to bring in the f(n1n2 · · ·n∞, t)

coe�cients

∑
E

∑
W>E

(−1)nE+nE+1+···+nW−1f(n1n2 · · ·nE − 1 · · ·nW + 1 · · ·n∞, t)
√
nW + 1

√
nE 〈E|T |W 〉 .

(2.41)

The other kinetic terms are analogous and the interaction terms follow a similar treatment.

Since this work focuses on non-interacting systems, the emphasis falls into the non-interacting

terms. All the explicit dependency on the speci�c particles has disappeared and only the number

of particles in each state remains.

2.3.4 Occupation-number base

In the previous section, we were able to describe the system with regard only to the occupation

number. This has very important repercussions. Because we are no longer able to tell which

particle is which if both are in the same state, the number of particles in each state becomes enough

to completely characterize the system. Furthermore, the Hamiltonian preserves the number of

particles, so the occupation number basis is a perfectly valid one in which to describe the states.

Notice that in the fermion case, if there are two states which are the same, C is automatically

zero. This means there can be no more than one particle in each state and that Pauli's exclusion

principle comes naturally from the anti-commutation relations! In fact, the indistinguishability
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of the particles is enough to allow for the wave function to be expanded in a basis of completely

symmetric (or anti-symmetric, in the case of fermions) wave functions. For bosons, the basis wave

functions are

Φn1,···,n∞(x1, · · · , xN ) =

√
n1! · · ·n∞!

N !

∑
ψE1(x1) · · ·ψEN (xN ) (2.42)

where the sum is over all the E1, · · · , EN compatible with the number of particles in each state

n1, · · · , n∞. This is just the permutations of the Ei. For fermions, we need to �x an ordering for

the states to �x the overall sign. Therefore, assuming we have already chosen an ordering, the

anti-symmetric basis wave functions are built from a Slater determinant, as we've seen before.

Φn1,···,n∞(x1, · · · , xN ) =
1√
N !

∣∣∣∣∣∣∣∣
ψE1(x1) · · · ψE1(xN )

...
...

...

ψEN (x1) · · · ψEN (xN )

∣∣∣∣∣∣∣∣ . (2.43)

These explicit constructions serve to illustrate the fact that there is a way to build the basis

wave functions from the original single-particle states. But the important message here is that

the occupation numbers are enough to completely characterize a system of bosons or fermions.

Let us now de�ne the occupation basis {|n1 · · ·n∞〉}. This is to be understood as a state with

n1 particles in state 1, n2 particles in state 2 and so on. Due to the orthogonality of the single-

particle states, these too are orthogonal, and will be chosen to be normalized to 1. This basis is

complete because the occupation number alone is enough to determine the system, so this basis,

like any good basis, satis�es the orthogonality relation

〈
n′1n

′
2 · · ·n′∞

∣∣n1n2 · · ·n∞
〉

= δn′1n1
δn′2n2

· · · δn′∞n∞ (2.44)

and the closure relation

∑
n1n2···n∞

|n1n2 · · ·n∞〉 〈n1n2 · · ·n∞| = 1. (2.45)

As an example, we've already explicitly calculated a completely anti-symmetric wave function

for the case N = 3 with particles in states 1, 3 and 4 (see eq. 2.29). In this new basis, it is simply

expressed as |10110 · · · 0〉. In fact, in the position representation,

Φn1,···,n∞(x1, · · · , xN ) =

√
n1! · · ·n∞!

N !

∣∣∣∣∣∣∣∣
ψE1(x1) · · · ψE1(xN )

...
...

...

ψEN (x1) · · · ψEN (xN )

∣∣∣∣∣∣∣∣ = 〈x1x2 · · ·xN |n1 · · ·n∞〉 .

(2.46)

Now we need a way to decrease or increase the number of particles in each state, and this will

be di�erent for bosons and fermions. Since the systems in this work consist of fermions, we'll
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focus on the latter case. De�ne the fermion destruction and creation operators (also called ladder

operators) ai and a
†
i , respectively, which satisfy the following anti-commutation relations:{

a†i , aj

}
= δij (2.47)

{ai, aj} = 0 (2.48){
a†i , a

†
j

}
= 0. (2.49)

There relations alone don't do anything. By further requiring that their product yields the

number operator n̂i = a†iai we are able to de�ne their action on the states. The number operator

is de�ned by returning the number of particles in the state i when applied to a general state

|n1 · · ·n∞〉 as such: n̂i |n1 · · ·n∞〉 = ni |n1 · · ·n∞〉. It is perfectly well de�ned since we already

know that the Hamiltonian preserves the number of particles. In fact, the association of the

creation and destruction operators with the number operator seems fortuitous because

n̂2
i =

(
a†iai

)2
= a†iai = n̂i. (2.50)

This shows that ni can only have eigenvalues 1 or 0, as is expected for fermions, and that is

now a direct consequence of the properties of the ladder operators. Furthermore, these properties

alone are enough to completely determine their action on a general state. For example, take the

action of a creation operator in a state which is already �lled:

a†i |1i〉 = a†ini |1i〉 = a†ia
†
iai |1i〉 = 0. (2.51)

This means we cannot add a particle in state i to the system if one already exists! Similar

considerations yield the action of both these operators in single particle states

a†i |1i〉 = 0 (2.52)

a†i |0i〉 = |1i〉 (2.53)

ai |1i〉 = |0i〉 (2.54)

ai |0i〉 = 0. (2.55)

This allows us to de�ne any state only in terms of the creation and annihilation operators. Recall

that a �xed order for the a†i is induced from the ordering chosen for the Slater determinant. The

general state is written as

|n1n2 · · ·n∞〉 =
(
a†1

)n1
(
a†2

)n2

· · ·
(
a†∞

)n∞
|0〉 (2.56)

where |0〉 is the vacuum, a state without any particles. How do these operators act on a general

state? Let's apply ai to |n1n2 · · ·n∞〉. This operator will anti-commute with all the aj and a
†
j

that appear before a†i so we pick up a phase factor (−1)Si where Si = n1 + · · ·+ ni−1.
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ai |n1n2 · · ·ni · · ·n∞〉 = (−1)Si
(
a†1

)n1
(
a†2

)n2

· · · ai
(
a†i

)ni
· · ·
(
a†∞

)n∞
|0〉 . (2.57)

If ni = 0, then ai can be anti-commuted all the way to the vacuum where it gives zero,

so ai |n1n2 · · · 0i · · ·n∞〉 = 0. Otherwise, we get aia
†
i = 1 − a†iai and we may apply the same

reasoning to yield zero in the second term. The �rst term remains, so

ai |n1n2 · · · 1i · · ·n∞〉 = (−1)Si
(
a†1

)n1
(
a†2

)n2

· · ·
(
a†i

)0
· · ·
(
a†∞

)n∞
|0〉 = (−1)Si |n1n2 · · · 0i · · ·n∞〉 .

(2.58)

Similar reasoning works for a†i , so in summary

ai |n1n2 · · · 1i · · ·n∞〉 = (−1)Si
√
ni |n1n2 · · · 0i · · ·n∞〉 (2.59)

ai |n1n2 · · · 0i · · ·n∞〉 = 0 (2.60)

a†i |n1n2 · · · 0i · · ·n∞〉 = (−1)Si
√
ni + 1 |n1n2 · · · 1i · · ·n∞〉 (2.61)

a†i |n1n2 · · · 1i · · ·n∞〉 = 0. (2.62)

The square root terms here are actually irrelevant, but were only placed to appeal to the

similarity between the fermion and the boson cases. These relations further imply the known

properties of the number operator acting on an empty state

n̂i |n1n2 · · · 0i · · ·n∞〉 = a†iai |n1n2 · · · 0i · · ·n∞〉 = 0 (2.63)

and on a �lled state

n̂i |n1n2 · · · 1i · · ·n∞〉 = (−1)Sia†i |n1n2 · · · 0i · · ·n∞〉

= (−1)2Si |n1n2 · · · 1i · · ·n∞〉 = |n1n2 · · · 1i · · ·n∞〉 . (2.64)

This gives the expected result for the number operator for a general state

n̂i |n1n2 · · ·ni · · ·n∞〉 = ni |n1n2 · · ·ni · · ·n∞〉 . (2.65)

All this e�ort will now pay o� because the second-quantized Hamiltonian will have a very simple

form.

2.3.5 Back to Schrödinger's equation

Now we want to express Schrödinger's equation in terms of these vectors. As we've seen, any

boson or fermion wave function can be expanded in terms of them:

|ψ(t)〉 =
∑

n1···n∞
f(n1 · · ·n∞, t) |n1n2 · · ·n∞〉 . (2.66)

The time dependency falls into the coe�cients because the single particle wave functions do
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not change. Applying the Schrödinger equation to this, we get for the kinetic term

ih̄
∂

∂t
|ψ(t)〉 =

∑
n1···n∞

∑
E

∑
E<W

(−1)nE+1+···+nW−1f(n1n2 · · ·nE − 1 · · ·nW + 1 · · ·n∞, t)

×δnE ,1δnW ,0

√
nW + 1

√
nE 〈E|T |W 〉 |n1n2 · · ·n∞〉+ · · · . (2.67)

The Kronecker deltas have been introduced to assert the fact that the occupation number can

only be 0 or 1. Allow for the change of notation E = i, W = j :

ih̄
∂

∂t
|ψ(t)〉 =

∑
n1···n∞

∑
i<j

(−1)ni+1+···+nj−1f(n1n2 · · ·ni − 1 · · ·nj + 1 · · ·n∞, t)

×δni,1δnj ,0
√
nj + 1

√
ni 〈i|T |j〉 |n1n2 · · ·n∞〉+ · · · . (2.68)

and relabeling n′i = ni − 1, n′j = nj + 1, n′k = nk:

ih̄
∂

∂t
|ψ(t)〉 =

∑
n′1···n′∞

∑
i<j

(−1)n
′
i+1+···+n′j−1f(n′1n

′
2 · · ·n′i · · ·n′j · · ·n′∞, t) (2.69)

δn′i,0δn′j ,1

√
n′j

√
n′i + 1 〈i|T |j〉

∣∣n′1n′2 · · ·n′i + 1 · · ·n′j − 1 · · ·n∞
〉

+ · · · .

In light of the calculations done in the previous section, let's express the state vector in terms

of the creation and annihilation operators, assuming j > i:

a†iaj
∣∣n′1n′2 · · ·n′i · · ·n′j · · ·n′∞〉 = (−1)Si

√
nja
†
i

∣∣n′1n′2 · · ·n′i · · ·n′j − 1 · · ·n′∞
〉

= (−1)Sj
√
nj(−1)Si

√
ni + 1

∣∣n′1n′2 · · ·n′i + 1 · · ·n′j − 1 · · ·n′∞
〉
. (2.70)

The phase factors actually simplify, because (−1)2ni = 1, so repeated factors in S = Si +Sj do

not contribute. This means

(−1)Si+Sj = (−1)(n
′
1+···+n′i−1)+(n′1+···+n′j−1) = (−1)n

′
i+n

′
i+1···+n′j−2+n′j−1 (2.71)

Furthermore if n′i = 1, we get no contribution from a†iaj

∣∣∣n′1n′2 · · ·n′i · · ·n′j · · ·n′∞〉 = 0, so we

might as well use n′i = 0, simplifying the phase factor to (−1)n
′
i+1···+n′j−2+n′j−1 . Eq. 2.70 takes the

form:

a†iaj
∣∣n′1n′2 · · ·n′i · · ·n′j · · ·n′∞〉

= δn′i,0δn′j ,1(−1)n
′
i+1···+n′j−2+n′j−1

√
nj
√
ni + 1

∣∣n′1n′2 · · ·n′i + 1 · · ·n′j − 1 · · ·n′∞
〉
. (2.72)

This �ts like a glove in Schrödinger's equation.
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Rewriting 2.69 in terms of the creation and annihilation operators, we are able to factorize

|ψ(t)〉 and obtain a very compact expression:

ih̄
∂

∂t
|ψ(t)〉 =

∑
n′1···n′∞

∑
i<j

f(n′1n
′
2 · · ·n′i · · ·n′j · · ·n′∞, t) 〈i|T |j〉 a

†
iaj
∣∣n′1n′2 · · ·n′i · · ·n′j · · ·n∞〉+ · · ·

=
∑
i<j

〈i|T |j〉 a†iaj
∑

n′1···n′∞

f(n′1n
′
2 · · ·n′i · · ·n′j · · ·n′∞, t)

∣∣n′1n′2 · · ·n′i · · ·n′j · · ·n∞〉+ · · ·

=
∑
i<j

〈i|T |j〉 a†iaj |ψ(t)〉+ · · · . (2.73)

A similar argument holds for the remaining cases and for the interaction V so the full expression

of the Hamiltonian in second quantization is

H =
∑
ij

〈i|T |j〉 a†iaj +
1

2

∑
ijkl

〈ij|V |kl〉 a†ia
†
jalak. (2.74)

The Hamiltonian has a very simple form and suggests a simple interpretation. The term

〈i|T |j〉 a†iaj may be understood as a particle in state j being destroyed while a particle in state

i is created, while the coe�cient is the transition probability.

2.3.6 Fermion Fields

There is another way to express the Hamiltonian in second quantization if we know the ladder

operators in a particular basis. De�ne the �eld operators

ψ̂†(~x) =
∑
k

ψ∗k(~x)c†k (2.75)

ψ̂(~x) =
∑
k

ψk(~x)ck (2.76)

where the ψk are the single particle wave functions of the states k and the ck and c†k are their

respective annihilation and creation operators. Their algebra follows from that of ck and c
†
k. This

is valid for both bosons and fermions.

[
ψ̂(~x), ψ̂†(~x′)

]
∓

=
∑
kk′

ψk(~x)ψ∗k′(
~x′)
[
ck, c

†
k′

]
∓

=
∑
k

ψk(~x)ψ∗k(
~x′) = δ(~x− ~x′)[

ψ̂(~x), ψ̂(~x′)
]
∓

=
∑
kk′

ψk(~x)ψ∗k′(
~x′) [ck, ck′ ]∓ = 0.

The lower sign refers to the anti-commutator of fermion operators and the upper sign to the

commutator of boson operators. The last equality follows from the completeness of the wave

functions ψk. These operators allow us to write the second-quantized Hamiltonian in a more

27



2.3. SECOND QUANTIZATION

suggestive way:

H =

∫
d3xψ̂†(~x)T (~x)ψ̂(~x) +

1

2

∫ ∫
d3xd3x′ψ̂†(~x)ψ̂†(~x′)V (~x, ~x′)ψ̂(~x′)ψ̂(~x). (2.77)

Let us verify that this is the same expression as 2.74. Unwinding the de�nitions,∫
d3xψ̂†(~x)T (~x)ψ̂(~x) =

∫
d3x

∑
i

ψ∗i (~x)c†iT (~x)
∑
j

ψj(~x)cj =
∑
ij

(∫
d3xψ∗i (~x)T (~x)ψj(~x)

)
c†icj .

(2.78)

Letting 〈i|T |j〉 =
∫
d3xψ∗i (~x)T (~x)ψj(~x) we obtain precisely the same kinetic term and the

interaction term can also be shown to yield the expected result. We have merely re-written the

Hamiltonian in the context of a �eld theory.

2.3.7 Current in second quantization

The primary object of study in this work is the conductivity σ(t), which is the response coe�cient

of the current with respect to the electric �eld:

Jα(t) =

∫ ∞
−∞

dt1σ
αβ
1 (t− t1)Eβ(t1) +

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2σ
αβγ
2 (t− t1, t− t2)Eβ(t1)Eγ(t2) +O(E3).

(2.79)

So, in order to �nd the conductivity we must �rst de�ne the current. Consider the Hamiltonian

with an electromagnetic �eld in second quantization in terms of fermion �elds:

H =

∫
d3xψ̂†(x)

[
h̄2

2m

(
∇
i

+
e

h̄
A(x, t)

)2

+ V (x)− eφ(x, t)

]
ψ̂(x). (2.80)

Expand this to unravel the powers of A(x, t):

H =

∫
d3xψ̂†(x)

[
− h̄2

2m
∇2 + V (x)

]
ψ̂(x) +

e2

2m

∫
d3xψ̂†(x)A(x, t)2ψ̂(x)

+
eh̄

2im

∫
d3x

[
ψ̂†(x)

(
A(x, t) ·∇ψ̂(x)

)
+ ψ̂†(x)∇ ·

(
A(x, t)ψ̂(x)

)]
− e

∫
d3xφ(x, t)ψ̂†(x)ψ̂(x).

Now perform an integration by parts to remove the divergence operator from A and disregard

the term which is a total divergence since we may consider the �elds to fall o� su�ciently rapidly

at in�nity. The Hamiltonian splits into two parts: the Hamiltonian in zero �eld H0

H0 =

∫
d3xψ̂†(x)

[
− h̄2

2m
∇2 + V (x)

]
ψ̂(x) (2.81)
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CHAPTER 2. THEORETICAL BACKGROUND

and the interaction HA

HA =
h̄2

2m

∫
d3x

{
−i
[
ψ̂†(x)∇ψ̂(x)−

(
∇ψ̂†(x)

)
ψ̂(x)

]
· e
h̄
A(x, t) +

e2

h̄2A
2(x, t)ψ̂†(x)ψ̂(x)

}
(2.82)

We may de�ne this to be a coupling to the zero-�eld Hamiltonian by introducing the current

operator as a functional derivative of HA. Let

JA(x, t) = − δH

δA(x, t)
(2.83)

ρ(x, t) = − δH

δφ(x, t)
. (2.84)

Applying this to HA, we get the familiar expression for the current operator

JA(x, t) = − e
V

h̄

2mi

[
ψ̂†(x)~∇ψ̂(x)−

(
∇ψ̂†(x)

)
ψ̂(x)

]
− e2

mV
A(x, t)ψ̂†(x)ψ̂(x) (2.85)

Now that we have de�ned the operator of interest, let's consider the case of a homogeneous

electric �eld E(t). This can be obtained from the minimal coupling if we choose a homogeneous

gauge �eld A(t) such that E(t) = −∂A(t)
∂t . A may therefore be removed from the integral in x:

H =

∫
d3xψ̂†(x)

[
− h̄2

2m
x2 + V (x)

]
ψ̂(x) +

e2

2m
A(x, t)2

∫
d3xψ̂†(x)ψ̂(x)

+
eh̄

2im

∫
d3x

[
ψ̂†(x)∇ψ̂(x) + ψ̂†(x)∇ψ̂(x)

]
·A(t).

The functional derivative becomes a simple derivative of H with respect to A

JA(x, t) = − e
V

h̄

2mi

[
ψ̂†(x)∇ψ̂(x)−

(
∇ψ̂†(x)

)
ψ̂(x)

]
− e2

mV
A(t)ψ̂†(x)ψ̂(x). (2.86)

Replace ψ by the creation and annihilation operators and integrate over x

JA(t) =
1

V

∫
d3xJA(x, t) = − e

2V

∑
nm

c†ncm

∫
d3x

[
ψ∗n(x)

(
h̄

i

∇
m
ψm(x)

)
−
(
h̄

i

∇
m
ψ∗n(x)

)
ψm(x)

]
− e2

mV
A(t)

∑
nm

c†ncm

∫
d3xψ∗n(x)ψm(x)

Using the normalization of the wave functions and de�ning the velocity operator

vnm =

∫
d3x

[∫
ψ∗n(x)

(
h̄

i

∇
m
ψm(x)

)
− ψm(x)

(
h̄

i

∇
m
ψ∗n(x)

)]
(2.87)
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we arrive at

JA(t) = − e
V

∑
nm

vnmc
†
ncm −

e2

mV
A(t)N (2.88)

This is the expression of the current using the minimal coupling procedure. The current may

also be obtained in the E formalism through a Gauge transformation on the current in minimal

coupling [3, Chapter 2]

JE(t) = − e
V

∑
nm

vnmc
†
ncm (2.89)

It is important to note that the current operators are di�erent, but their expected values are the

same. That's to be expected because the �nal result cannot depend on the Gauge.

2.4 Schrödinger, Heisenberg and Interaction pictures

Here we explore the three main pictures of Quantum Mechanics, which will play a fundamental

role in developing a perturbation expansion for the systems that we're studying.

2.4.1 Schrödinger Picture

In the usual description of Quantum Mechanics, we de�ne wave functions whose time evolution

is given by Schrödinger's equation:

ih̄
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 . (2.90)

We de�ne the time evolution operator to be the relation between the wave function at a time t0

and at a later time t:

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (2.91)

Furthermore, when we want to calculate expected values and transition probabilities, we make

use of operators which act on the wave functions. These may be explicitly time-dependent,

but their time evolution is not regulated by the quantum system itself, so they do not have an

equation of motion. Time is just an external parameter. Usually, these are the observables of the

system, such as the position or momentum. This is the so-called Schrödinger picture of Quantum

Mechanics. The evolution of the system relies on the time dependency of the wave functions,

while the operators are usually constant in time.
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2.4.2 Interaction picture

Here we consider a di�erent stance. We're going to assume we already know how to solve some

part of the problem and try to use that to simplify the full problem. We want to achieve a

separation of the solvable Hamiltonian H0 and the perturbation V (t) in the time evolution of the

system. Consider a general Hamiltonian H which may depend explicitly on time and that can

be written as the sum of an exactly solvable time-independent Hamiltonian H0 and a (possibly)

time-dependent perturbation V (t):

H(t) = H0 + V (t). (2.92)

Its time evolution is given by Schrödinger's equation:

ih̄
∂

∂t
|ψS(t)〉 = H(t) |ΨS(t)〉 = (H0 + V (t)) |ψS(t)〉 (2.93)

where the subscript in ψS denotes the Schrödinger Picture. We're going to incorporate the fact

that we already know how to solve H0 by considering a set of transformations on both the wave

functions and the operators. This simultaneous transformation guarantees that the expected

values are unchanged:

|ψI(t)〉 = ei
H0t
h̄ |ψS(t)〉 wave functions

AI(t) = ei
H0t
h̄ ASe

−iH0t
h̄ operators.

(2.94)

The subscript I in ψI denotes the Interaction Picture. This gives us an equation of motion for

the new operators:

−ih̄ ∂
∂t
AI(t) = eiH0(t−t0)/h̄ [H0, AS ] e−iH0(t−t0)/h̄ = [H0, AI(t)] . (2.95)

and for the new wave functions

ih̄
∂

∂t
|ψI(t)〉 = VI(t) |ψI(t)〉 . (2.96)

2.4.2.1 Time evolution operator

This last expression lends itself to a formal solution by integrating both sides of the equation in

time from t0 to t:

ih̄

∫ t

t0

∂

∂t
|ψI(t)〉 dt =

∫ t

t0

VI(t) |ψI(t)〉 dt. (2.97)
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Unwinding this, we get a self-consistent equation for |ΨI(t)〉:

|ψI(t)〉 = |ΨI(t0)〉+
1

ih̄

∫ t

t0

VI(t1) |ψI(t1)〉 dt1. (2.98)

Note how |ΨI(t)〉 appears in the right side of the equation again. It remains valid to insert this

same expression back again in the integral:

|ψI(t)〉 = |ψI(t0)〉+
1

ih̄

∫ t

t0

VI(t1)

[
|ψI(t0)〉+

1

ih̄

∫ t1

t0

VI(t2) |ΨI(t2)〉 dt2
]
dt1 (2.99)

= |ψI(t0)〉+
1

ih̄

∫ t

t0

dt1VI(t1) |ψI(t0)〉+

(
1

ih̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2VI(t1)VI(t2) |ψI(t2)〉 .

If we keep doing this, we'll obtain a series in powers of VI at di�erent times. Assuming that

this series converges if we keep doing this to in�nity, we obtain an expression that only depends

on the initial wave function |ψI(t0)〉 and VI :

|ψI(t)〉 = |ψI(t0)〉+
1

ih̄

∫ t

t0

dt1VI(t1) |ψI(t0)〉+

(
1

ih̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2VI(t1)VI(t2) |ψI(t0)〉

+

(
1

ih̄

)3 ∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3VI(t1)VI(t2)VI(t3) |ψI(t0)〉+ · · · . (2.100)

Let's focus our attention on the second term. We can cast it into a more symmetric form by

changing the order of integration and relabeling the integration variables:

∫ t

t0

dt1

∫ t1

t0

dt2VI(t1)VI(t2) =

∫ t

t0

dt2

∫ t

t1

dt1VI(t1)VI(t2) =

∫ t

t0

dt1

∫ t

t1

dt2VI(t2)VI(t1). (2.101)

Notice that in the left expression t2 < t1 and in the right one t2 > t1 and also that the order of

the operators was swapped. This can be neatly taken into account by de�ning the time-ordering

operator, which acts on a set of operators by ordering them according to their time label:

T{A(t1)A(t2)} =

A(t1)A(t2) if t1 > t2

±A(t2)A(t1) if t1 < t2.
(2.102)

The upper sign refers to boson operators and the lower one to fermion operators. Now, for

bosons, the equation reads

∫ t

t0

dt1

∫ t1

t0

dt2T{VI(t1)VI(t2)} =

∫ t

t0

dt1

∫ t

t1

dt2T{VI(t1)VI(t2)}. (2.103)

This yields no loss of generality because these interaction operators consist of an even number

of creation/annihilation operators, which acts as a boson operator under time ordering. These are

just integrations over di�erent halves of the t1t2 plane, and they're exactly the same! Therefore,
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if we sum them and divide by two, we get exactly the same result, but now the integrals run all

the way from t0 to t:

∫ t

t0

dt1

∫ t1

t0

dt2T{VI(t1)VI(t2)} =
1

2

[∫ t

t0

dt1

∫ t

t1

dt2T{VI(t1)VI(t2)}+

∫ t

t0

dt1

∫ t1

t0

dt2T{VI(t1)VI(t2)}
]

=
1

2

∫ t

t0

dt1

∫ t

t0

dt2T{VI(t1)VI(t2)}. (2.104)

This argument may be generalized for all the following orders of the expansion and we get the

Dyson series of VI(t):

|ψI(t)〉 =

[
1 +
−i
h̄

∫ t

t0

dt1T {VI(t1)}+
1

2!

(
−i
h̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2T {VI(t1)VI(t2)}

+
1

n!

(
−i
h̄

)n ∫ t

t0

dt1 · · ·
∫ t

t0

dtnT {VI(t1) · · ·VI(tn)}+ · · ·
]
|ψI(t0)〉 . (2.105)

The time ordering operator may be factored out, which means that this series may be repre-

sented by

|ψI(t)〉 = T

{
exp

(
−i
h̄

∫ t

t0

dtVI(t)

)}
|ψI(t0)〉 . (2.106)

This is to be understood as no more than the series expansion derived previously. However, it

does have one very important property. Note that for fermions or bosons

T
{

[c1(t1), c2(t2)]∓
}

= T {c1(t1)c2(t2)∓ c2(t2)c1(t1)} = T {c1(t1)c2(t2)} ∓ T {c2(t2)c1(t1)} = 0.

(2.107)

This means that while considered inside the time ordering operator, we need not care about

commutators/anticommutators for bosons and fermions respectively. Therefore, the product of

exponentials reduces to the exponential of the sum. Using this formal solution, we can de�ne the

time evolution operator as

S(t, t0) = T

{
exp

(
−i
h̄

∫ t

t0

dtVI(t)

)}
. (2.108)

This expression was derived under the assumption t > t0. In order to accommodate for results

that will be obtained later on, we also need the case t < t0. In that case, this deduction follows

the exact same lines if we de�ne the anti-time ordering operator, which does exactly what its

name suggests. Therefore,

S(t < t0, t0) = T̃

{
exp

(
−i
h̄

∫ t0

t
dτV ext

I (τ)

)}
. (2.109)

It has the same formal expression as the regular time evolution operator, except for the limits

of integration and the anti-time ordering operator instead of the time-ordering one.
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2.4.2.2 Density matrix

In general, we do not know the form of the density matrix after the time-dependent interaction is

turned on at t = t0, because the system is no longer in equilibrium so it will no longer be e−βH .

However, we may �nd its time evolution and relate it with its expression at a time prior to the

interaction since we know how the states evolve.

ρI(t) =
∑
n

pn |nI(t)〉 〈nI(t)| =
∑
n

pnS(t, t0) |nI(t0)〉 〈nI(t0)|S†(t, t0)

= S(t, t0)ρI(t0)S†(t, t0) (2.110)

This is the density matrix in the Interaction Picture.

2.4.3 Heisenberg Picture

The Heisenberg picture takes the polar opposite stance of the Schrödinger picture. The wave

functions are constant in time, while all the time dependency is left to the operators. This is

used implicitly in second quantization, since each state is actually built by the creation operators

acting on the vacuum, which is time independent. Take the evolution operator in the Schrödinger

picture:

|ψS(t)〉 = U(t, t0) |ψS(t0)〉 . (2.111)

Since |ψS(t)〉 satis�es the Schrödinger equation, U(t, t0) satis�es

ih̄
∂

∂t
U(t, t0) = H(t)U(t, t0). (2.112)

This equation can be integrated to yield

U(t, t0) = 1− i

h̄

∫ t

t0

dt1H(t1)U(t1, t0). (2.113)

Just like in the Interaction picture, this procedure can be iterated to give a series expansion of

the evolution operator.

U(t, t0) = T

{
exp

(
−i
h̄

∫ t

t0

dtH(t)

)}
. (2.114)
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We can use this to de�ne the Heisenberg picture, by demanding that the expectation values be

the same

|ψH(t)〉 = |ψS(t0)〉 wave functions

AH(t) = U †(t, t0)ASU(t, t0). operators

(2.115)

The time evolution of operators is given by

ih̄
∂

∂t
AH(t) = [HH , AH(t)] . (2.116)

And the density matrix by

ρH(t) =
∑
n

pn |nH(t)〉 〈nH(t)| =
∑
n

pn |nH(t0)〉 〈nH(t0)| = ρ(t0). (2.117)

The density matrix is actually independent of time since it is built from the states themselves.

2.4.4 Relating the descriptions

We can relate all these descriptions by remembering that they all coincide at t = t0. Following

this guideline, we can �nd a relation between S(t, t′) and U(t, t′):

S(t, t0) |ψS(t0)〉 = S(t, t0) |ψI(t0)〉 = |ψI(t)〉 = eiH0(t−t0)/h̄ |ψS(t)〉 = eiH0(t−t0)/h̄U(t, t0) |ψS(t0)〉 .
(2.118)

Since this is valid for an arbitrary state,

S(t, t0) = eiH0(t−t0)/h̄U(t, t0). (2.119)

And for operators

AS(t) = U(t, t0)AH(t)U †(t, t0) = e−iH0(t−t0)/h̄AI(t)e
iH0(t−t0)/h̄. (2.120)

Which yields a relation between the Heisenberg and the Interaction pictures in terms of the

evolution operator of the Interaction picture:

AH(t) = U †(t, t0)e−iH0(t−t0)/h̄AI(t)e
iH0(t−t0)/h̄U(t, t0) = S†(t, t0)AI(t)S(t, t0). (2.121)

These results can be summarized in a table for later reference
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Schrödinger Heisenberg Interaction

|ψ〉 U(t, t0) |ψS(t0)〉 |ψH(t0)〉 S(t, t0) |ψI(t0)〉

A AS U †(t, t0)ASU(t, t0) eiH0(t−t0)/h̄ASe
−iH0(t−t0)/h̄

ρ U(t, t0)ρ(t0)U †(t, t0) ρ(t0) S(t, t0)ρ(t0)S†(t, t0)

Table 2.1: Summary of the comparison between Schrödinger, Heisenberg and Interaction pictures.

2.5 Expected value of an operator

Consider a statistical ensemble of quantum systems, each in an eigenstate of the Hamiltonian H

at time t1. Given that ensemble, the probability to �nd a system with energy En is given by

the Boltzmann weight e−βEn , so the whole ensemble can be represented by the density matrix

ρ =
∑

n e
−βEn |n〉 〈n|, where the sum is over all eigenvectors |n〉 of the Hamiltonian at time t1.

From this, we can obtain the thermodynamic properties of the system. In fact, the expected

value of an operator A is simply the sum of its expected value in each state multiplied by the

corresponding probability to �nd the system in that state:

〈A〉 =

∑
n e
−βEn 〈n|A |n〉∑
n e
−βEn =

∑
n 〈n|

∑
m e
−βEm |m〉 〈m|A |n〉∑

n 〈n|
∑

m e
−βEm |m〉 〈m|n〉

=

∑
n 〈n| ρA |n〉∑
n 〈n| ρ |n〉

=
Tr (ρA)

Tr (ρ)
.

(2.122)

Here we can see the role of ρ when studying the thermodynamic properties of a system. It

contains all the information about the ensemble. Also, Tr (ρ) can be identi�ed with the partition

function Z. Note that in this case, ρ =
∑

n e
−βEn |n〉 〈n| =

∑
n e
−βH |n〉 〈n| = e−βH

∑
n |n〉 〈n| =

e−βH . However, if the Hamiltonian depends on time, this expression is no longer true because

|n(t)〉 may no longer be a state with energy En. This is a subtle but crucial point about thermal

averages of a quantum system. If one wants to calculate 〈A〉, eq. 2.122 seems to suggest that

the way to do it is by tracing over all the eigenstates of the system with the Boltzmann weight.

That is, every time we wanted to calculate the average value at a �xed time t, we would take

the Hamiltonian at that time Ht with eigenstates |n〉 of energy En, each of which appearing

with a probability e−βEn . This would indeed make the previous expression take the form 〈A〉 =
Tr(e−βHA)
Tr(e−βH)

. However, that is the wrong interpretation. What we're actually doing is starting with

a given ensemble of systems and allowing them to evolve in time with the Hamiltonian H. Each

system evolves independently of the others. The Boltzmann weight is simply the probability to

�nd that particular system, so it remains unchanged. In particular, the partition function used

to evaluate this average also remains unchanged.
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2.6 Wick's Theorem at �nite temperature

Consider a typical term in a perturbation expansion, where the α may be creation or destruction

operators in second quantization. Begin commuting (or anti-commuting if it's a fermion operator)

α1 through:

Tr [ρα1α2 · · ·αn] = Tr
[
ρ [α1, α2]∓ · · ·αn

]
± Tr [ρα2α1 · · ·αn] =

= Tr
[
ρ [α1, α2]∓ · · ·αn

]
± Tr

[
ρα2 [α1, α3]∓ · · ·αn

]
+ · · · ± Tr [ρα2 · · ·αnα1]

= Tr
[
ρ [α1, α2]∓ · · ·αn

]
± Tr

[
ρα2 [α1, α3]∓ · · ·αn

]
+ · · · ± Tr [α1ρα2 · · ·αn] . (2.123)

It would be very convenient if we were able to commute α1 and ρ. To do that, we employ a

trick similar to determining an operator in the interaction picture:

d

dβ

(
eβH0α1e

−βH0

)
= eβH0 [H0, α1] e−βH0 . (2.124)

SinceH0 =
∑

n εnα
+
nα
−
n (the plus sign denotes a creation operator and the minus an annihilation

operator), the commutator can be explicitly calculated, and yields [H0, α
±
m] = ±εmα±m, from

which:

d

dβ

(
eβH0α±1 e

−βH0

)
= ±ε1eβH0α±1 e

−βH0 . (2.125)

This is a di�erential equation that is readily solved with the initial condition
(
eβH0α±1 e

−βH0
)
β=0

=

α±1 :

eβH0α±1 e
−βH0 = e±βε1α±1 . (2.126)

Multiplying both sides on the left by e−βH0 , we get the desired commutation:

α±1 ρo = e±βε1ρoα
±
1 . (2.127)

Let λ1 = 1 if α1 is a creation operator and −1 if it's a destruction operator. Then,

Tr [ρoα1α2 · · ·αn] = Tr
[
ρ0 [α1, α2]∓ · · ·αn

]
±Tr

[
ρ0α2 [α1, α3]∓ · · ·αn

]
+· · ·±eλ1βε1Tr [ρ0α1α2 · · ·αn] .

(2.128)

The last term is identical to the left-hand side of the equation so they may be joined and their

coe�cient divided through:

Tr [ρ0α1α2 · · ·αn] = Tr

[
ρ0

[α1, α2]∓
1∓ eλ1βε1

α3 · · ·αn
]
± Tr

[
ρ0

[α1, α3]∓
1∓ eλ1βε1

α2 · · ·αn
]

+ · · · . (2.129)

Dividing through by Tr (ρ0), this can be expressed in terms of an average over non-interacting
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states:

〈α1α2 · · ·αn〉0 =

〈
[α1, α2]∓
1∓ eλ1βε1

α3 · · ·αn
〉

0

±
〈

[α1, α3]∓
1∓ eλ1βε1

α2 · · ·αn
〉

0

+ · · · . (2.130)

These commutators (or anti-commutators) are merely c-numbers, but are kept inside the aver-

age symbol for reasons that will soon become clear. If there were only two operators, the previous

result would allow us to �nd their average directly.

〈α1α2〉0 =
[α1, α2]∓
1∓ eλ1βε1

. (2.131)

Use this to de�ne the Wick contraction between two operators:

α1α2 = 〈α1α2〉0 =
[α1, α2]∓
1∓ eλ1βε1

. (2.132)

This notation turns the previous expression into

〈α1α2 · · ·αn〉0 =
〈
α1α2α3 · · ·αn

〉
0
±
〈
α1α3α2 · · ·αn

〉
0

+ · · · . (2.133)

Wick's contraction only makes sense when two operators are adjacent, for then it can be simply

interpreted as a c-number that may be taken outside of the average. Now we're going to give

the Wick contraction a new property that simpli�es the notation. When you contract any two

operators, wherever they may be, you commute (or anti-commute for fermions) the contracted

operators with the operators in the middle (even if these are already contracted with something

else themselves), until you can join them. For example:

α1α2α3 = ±α1α3α2 (2.134)

and

α1α3α2α4 = ±α1α2α3α4. (2.135)

This allows for the averages to be cast in a very elegant way because it takes care of the awkward

minus signs

〈α1α2 · · ·αn〉0 =
〈
α1α2α3α4 · · ·αn

〉
0

+
〈
α1α2α3α4 · · ·αn

〉
0

+
〈
α1α2α3α4 · · ·αn

〉
0

+ · · · . (2.136)

We can thus see that the �rst iteration of our result corresponds to contracting the �rst operator

with all other operators, one at a time, resulting in n− 1 terms.
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Iterating this process means that the average is the sum over all possible contractions of all the

operators:

〈α1α2 · · ·αn〉0 =
〈
α1α2α3α4 · · ·αn

〉
0

+

〈
α1α2α3α4 · · ·αn+

〉
0

+ · · · . (2.137)

This is Wick's Theorem for �nite temperatures. As an explicit example, for four operators, this

is

〈α1α2α3α4〉0 =
〈
α1α2α3α4

〉
0

+
〈
α1α2α3α4

〉
0

+
〈
α1α2α3α4

〉
0

=
〈
α1α2α3α4

〉
0

+

〈
α1α2α3α4

〉
0

+

〈
α1α2α3α4

〉
0

=
〈
α1α2α3α4

〉
0
±
〈
α1α3α2α4

〉
0

+
〈
α1α4α2α3

〉
0
. (2.138)

Since the contractions are averages themselves, this is also:

〈α1α2α3α4〉0 = 〈α1α2〉0 〈α3α4〉0 ± 〈α1α3〉0 〈α2α4〉0 + 〈α1α4〉0 〈α2α3〉0 . (2.139)

This is a remarkable result. An average over non-interacting states of any number of operators

may be simply calculated using averages of two operators!

2.6.1 Wick's theorem and time-ordering

Suppose that instead we wanted to calculate an average over time-ordered operators 〈Tα1α2 · · ·αn〉0.
Taking as an example eq. 2.139, under time-ordering, we may simultaneously reorder the terms

on both sides of the equation without any additional minus signs. After reordering, we are still

summing over all the possible contractions, which are precisely the same contractions as before

reordering, although the order of each contraction may be inverted. That is, we may �nd α1α2

instead of α2α1. Bearing this in mind and knowing that after time-ordering, all the contractions

are necessarily time-ordered, we might as well do the contractions before time-ordering and then

order each contraction. The �nal result is the same. Let us then rede�ne the Wick contraction

to take this into account:

α1α2 = 〈Tα1α2〉0 . (2.140)

Wick's theorem now also holds with time ordering

〈Tα1α2 · · ·αn〉0 =
〈
α1α2α3α4 · · ·αn

〉
0

+

〈
α1α2α3α4 · · ·αn+

〉
0

· · · . (2.141)

This result will very considerably simplify our perturbative calculations.

39



2.6. WICK'S THEOREM AT FINITE TEMPERATURE

2.6.2 Examples - Fermions

This short section is to be used as a reference point, because these expressions will be used

copiously in the next chapter.

Averages of two operators

The �rst result is very straightforward and has already been considered while deriving Wick's

theorem:

〈
a†1a2

〉
0

=

{
a†1, a2

}
1 + eβε1

= δ12f(ε1). (2.142)

The second one is easy if we consider the anti-commutation relations:

〈
a1a
†
2

〉
0

=
〈{
a†1, a2

}
− a†1a2

〉
0

= δ12 [1− f(ε1)] (2.143)

Averages of four operators

This too has already been calculated using Wick's theorem:

〈
a†1a
†
2a3a4

〉
0

= −
〈
a†1a3

〉
0

〈
a†2a4

〉
0

+
〈
a†1a4

〉
0

〈
a†2a3

〉
0
.

= f(ε1)f(ε2) [δ14δ23 − δ24δ13] (2.144)

This concludes the theoretical background needed to understand the following chapters.
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3 Linear order response

In most of Physics, it becomes hopeless to expect an exact solution for a given problem. In

the quantum case, for example, this requires diagonalizing the Hamiltonian matrix, which is a

strenuous task and indeed hopeless if it doesn't have some obvious symmetries. It's this di�culty

that led to Perturbation Theory. We may not get an exact result, but we may obtain an arbitrarily

good approximation by considering a series expansion (assuming it converges) in the coupling

between the exact (solvable) Hamiltonian and the perturbation. Even so, the expressions obtained

in this way become very cumbersome very quickly. That's why most of the times, we stick to the

�rst order. One of the fundamental tools to study the linear response of a quantum system to a

coupling is Kubo's formula, which we prove in the �rst section. The next sections are dedicated to

the study of the current in �rst order. We'll do it with both the A and the E formalisms, obtain

basis-independent descriptions and �nally obtain some interesting limiting cases that allow us to

recover some results in the literature.

3.1 Linear Response Theory - Kubo's formula

Consider an ensemble of systems just like the one in the previous sections. Allow for the ensemble

to evolve in time according to the HamiltonianH. While the perturbation isn't turned on (t < t0),

ρ remains unchanged because H = H0 is time independent. For t > t0, the Hamiltonian may

depend on time due to the perturbation V (t). The original eigenstates at time t0 will evolve and

may no longer be eigenstates at later times. The evolution of the ensemble is again captured by

ρ, since ρ(t) =
∑

n e
−βEn |n(t)〉 〈n(t)|. We do not know how to calculate the time evolution of

these states exactly, but we do know how to do it order by order. To do this, it's more useful to

work in the interaction picture. Tracing over the Schrödinger picture or the Interaction Picture

is the same since

Tr (ρA) = Tr
(
e−i

H0t
h̄ ei

H0t
h̄ ρ(t)e−i

H0t
h̄ ei

H0t
h̄ A(t)

)
=Tr

(
ei
H0t
h̄ ρ(t)e−i

H0t
h̄ ei

H0t
h̄ A(t)e−i

H0t
h̄

)
= Tr (ρI(t)AI(t)) (3.1)

where we have made explicit use of the cyclic property of the trace.
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We may now expand this in powers of V . To do so, let |n〉 = |nI(t0)〉 be the eigenstate of

H0 before the perturbation and consider the expansion of the density matrix in the interaction

picture:

ρI(t) =
1

Z0

∑
n

e−βEn |nI(t)〉 〈nI(t)|

=
1

Z0

∑
n

e−βEn
(

1 +
1

ih̄

∫ t

t0

VI(t
′)dt′

)
|n〉 〈n|

(
1− 1

ih̄

∫ t

t0

VI(t
′)dt′

)
+O(V 2). (3.2)

Retaining terms only up to linear order,

ρI(t) =
1

Z0

∑
n

e−βEn |n〉 〈n|+ 1

ih̄

∫ t

t0

dt′
1

Z0

(
VI(t

′)
∑
n

e−βEn |n〉 〈n| −
∑
n

e−βEn |n〉 〈n|VI(t′)

)

= ρ0 +
1

ih̄

∫ t

t0

dt′
(
VI(t

′)ρ0 − ρ0VI(t
′)
)

(3.3)

We want to calculate the expected value of a given operator A for each time t only retaining

terms up to �rst order. Using eq. 2.122, plug the expansion of ρI(t)

〈A〉 (t) = Tr

(
ρ0AI(t) +

1

ih̄

∫ t

t0

dt′
(
VI(t

′)ρ0 − ρ0VI(t
′)
)
AI(t)

)
= Tr (ρ0AI(t)) +

1

ih̄

∫ t

t0

dt′Tr
((
VI(t

′)ρ0 − ρ0VI(t
′)
)
AI(t)

)
.

The �rst term is just the average of AI(t) calculated with respect to the unperturbed Hamil-

tonian, 〈AI(t)〉0. By the same argument as before, since the trace is the same in the Schrödinger

picture and the interaction picture, this is just 〈A〉0. The second term is just the ensemble average

of the commutator

Tr
(
VI(t

′)ρ0AI(t)− ρ0VI(t
′)AI(t)

)
= Tr

(
ρ0

[
AI(t), VI(t

′)
])

=
〈[
AI(t), VI(t

′)
]〉

0
(3.4)

Putting this back together, we obtain the famous Kubo's Formula:

〈A〉 (t) = 〈A〉0 +
1

ih̄

∫ t

t0

dt′
〈[
AI(t), VI(t

′)
]〉

0
(3.5)

This will be our primary tool in the �rst section of this work.
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3.2 Calculation of 〈Jαω 〉 to �rst order - A formalism

We are now in conditions to apply Kubo's formula to our case in study. As discussed in the

Introduction, one of the ways to endow our quantum system with an electric �eld is through the

minimal coupling p→ p+ eA(t). Start with the unperturbed (solvable) Hamiltonian:

H0 =
p2

2m
+ V (r). (3.6)

After minimal coupling, we get some extra terms:

H =
1

2m
(p+ eA(t))2 + V (r) =

p2

2m
+ V (r) +

1

2m

(
e2A(t)2 + 2ep ·A(t)

)
. (3.7)

And so our Hamiltonian splits into H0 and a time-dependent contribution V (t):

V (t) =
e

m
p ·A(t) +

e2

2m
A(t)2. (3.8)

In second quantization, these operators are:

H0 =
∑
n

εnc
†
ncn (3.9)

V (t) = eA ·
∑
nm

vnmc
†
ncm +

e2

2m
A2. (3.10)

The operator we want to calculate is the current

JA(t) = − e
V

∑
pq

vpqc
†
pcq −

e2

mV
NeA(t). (3.11)

First, we're going to need to express the creation and destruction operators in the interac-

tion picture. The interaction picture label of these operators will be dropped because the time

dependency alone is enough to tell them apart. We have to solve

cn(t) = ei
H0t
h̄ cne

−iH0t
h̄ . (3.12)

This can be done by �nding an equation of motion for cn(t). For this purpose, di�erentiate

both sides with respect to time:

d

dt
cn(t) =

d

dt

(
ei
H0t
h̄ cne

−iH0t
h̄

)
=

(
d

dt
ei
H0t
h̄

)
cne
−iH0t

h̄ + ei
H0t
h̄ cn

(
d

dt
e−i

H0t
h̄

)
=

iH0

h̄
ei
H0t
h̄ cne

−iH0t
h̄ + ei

H0t
h̄ cn

−iH0

h̄
e−i

H0t
h̄ .

Since any operator commutes with any function of itself, this is expressed in terms of a com-
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mutator, which is already known:

d

dt
cn(t) =

i

h̄
ei
H0t
h̄ [H0, cn] e−i

H0t
h̄ = − iεn

h̄
ei
H0t
h̄ cne

−iH0t
h̄ = − iεn

h̄
cn(t). (3.13)

Upon solving this di�erential equation for cn(t) using the initial condition cn(0) = cn, we �nd:

cn(t) = cne
− iεn

h̄
t. (3.14)

The process is entirely analogous for the creation operator:

c†n(t) = c†ne
iεn
h̄
t. (3.15)

This allows us to express the previous operators in the Interaction Picture.

VI(t
′) = eA ·

∑
nm

vnmc
†
ncme

i
h̄

(εn−εm)t′ +
e2

2m
A2 (3.16)

JI(t) = − e
V

∑
pq

vpqc
†
pcqe

i
h̄

(εp−εq)t − e2

mV
NeA. (3.17)

Note that each of these operators contains di�erent orders of A. The �rst term in Kubo's

formula already includes one linear factor.

〈JA〉0 =

〈
e

V

∑
pq

vpqc
†
pcq −

e2

mV
NeA(t)

〉
0

=
e

V

∑
pq

vpq

〈
c†pcq

〉
0
− e2

mV
NeA(t)

=
e

V

∑
p

vppf(εp)−
e2

mV
NeA(t) = − e2

mV
NeA(t)

Here we have used
〈
c†pcq

〉
0

= δpqf(εp) and the fact that the zeroth order term is zero1. The

second term requires the calculation of 〈[JαI (t), VI(t
′)]〉0:

〈[
JαI (t), VI(t

′)
]〉

0
=

〈[
− e
V

∑
pq

vαpqc
†
pcqe

i
h̄

(εp−εq)t − e2

mV
NeA

α, eAβ
∑
nm

vβnmc
†
ncme

i
h̄

(εn−εm)t′ +
e2

2m
A2

]〉
0

.

(3.18)

Commuting the c-numbers and ignoring the higher order terms in A:

〈[
JαI (t), VI(t

′)
]〉

0
= −e

2Aβ

V

∑
pqnm

vαpqv
β
nm

〈[
c†pcq, c

†
ncm

]〉
0
e
i
h̄

(εp−εq)te
i
h̄

(εn−εm)t′ . (3.19)

1In fact, the zeroth order term is zero because v = 1
ih̄

[r, H]. The trace of v with f(εp) may be written as∑
p vppf(εp) =

∫∞
−∞ dεf(ε)Tr [vδ(ε−H)]. Therefore, the cyclic property of the trace coupled with the fact that

operators commute with any function of themselves, Tr [vδ(ε−H)] = Tr
[

1
ih̄

[r, H]δ(ε−H)
]

= 0.
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This average of the commutator is calculated in the appendix 8.13 and evaluates to

〈[
c†pcq, c

†
ncm

]〉
0

=
{
cq, c

†
n

}〈
c†pcm

〉
0
−
{
cm, c

†
p

}〈
c†ncq

〉
0

= δqnδpm (f(εp)− f(εq)) . (3.20)

Plugging this back into eq. 3.19 and integrating in time from t0 to t gives us the second term

in Kubo's formula:

1

ih̄

∫ t

t0

dt′
〈[
JαI (t), VI(t

′)
]〉

0

= −e
2

V

∑
pqnm

vαpqv
β
nmδqnδpm (f(εp)− f(εq))

1

ih̄

∫ t

t0

dt′e
i
h̄

(εp−εq)te
i
h̄

(εn−εm)t′Aβ(t′)

=
ie2

h̄V

∑
pq

vαpqv
β
qp (f(εp)− f(εq))

∫ t

t0

dt′e
i
h̄

(εp−εq)(t−t′)Aβ(t′). (3.21)

We have thus found the full expression of the current in �rst order:

〈Jα〉 (t) =
ie2

h̄V

∑
pq

vαpqv
β
qp (f(εp)− f(εq))

∫ t

t0

dt′e
i
h̄

(εp−εq)(t−t′)Aβ(t′) +
−e2

mV
NAα(t). (3.22)

In principle, we are done because this expression gives us everything we need, but we can obtain

a friendlier expression if we go to Fourier space. Introducing the Fourier transform of Aβ(t) and

the shorthand notation ωpq = (εp − εq) /h̄, the Fourier transform of 〈Jα〉 (t) is:

〈Jαω 〉 =
ie2

h̄V

∑
pq

vαpqv
β
qp (f(εp)− f(εq))

∫ ∞
−∞

dteiωt
∫ t

−∞
dt′

×
(∫ ∞
−∞

dω′

2π
Aβω′e

−iω′t′
)
eiωpq(t−t

′) +
−e2

mV
NAαω. (3.23)

Reordering the terms, we obtain a double time integral of imaginary exponentials. This integral

is calculated in the appendix (eq. 8.9) and yields the following result:

∫ ∞
−∞

dt

∫ t

−∞
dt′ei(ω+ωpq)te−i(ω

′+ωpq)t′ =
2πiδ(ω′ − ω)

ω + ωpq + i0+
(3.24)

This puts the current into a much nicer form:

〈Jαω 〉 =
ie2

h̄V

∑
pq

[f(εp)− f(εq)] v
α
pq′v

β
qp

∫ ∞
−∞

dω′

2π
Aβω′

2πiδ(ω′ − ω)

ω + ωpq + iε
+
−e2

mV
NAαω. (3.25)

Integrating over ω′, we arrive at

〈Jαω 〉 =
−e2

V

∑
pq

[f(εp)− f(εq)] v
α
pqv

β
qp

h̄ω + εp − εq + iε
Aβω +

−e2

mV
NAαω (3.26)
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This shall be taken as the fundamental result from which to obtain the consequences, since it's

relatively simple to obtain and it's easier to manipulate than its basis-independent counterpart.

3.3 Calculation of 〈Jαω 〉 to �rst order - scalar potential

We have obtained a formula for the current in Fourier space using A as the source of electro-

magnetic interaction. Now, for completeness, we shall do the same but with a scalar potential

coupling. The non-perturbed Hamiltonian in its eigenbasis is:

H0 =
∑
n

εnc
†
ncn. (3.27)

Recall that the external perturbation is now due to the dipolar interaction eE · r, which in

second quantization is

Hext(t) = eE(t) ·
∑
nm

rnmc
†
ncm. (3.28)

The current in the E formalism is

JE =
−e
V

∑
nm

vnmc
†
ncm. (3.29)

These form all the ingredients necessary to compute the expected value of J . Since we have

an expression for the eigen energies, the description of these operators in the interaction picture

becomes c†n → c†n(t) = eiεnt/h̄c†n. Thus, for the �rst order term, Kubo's formula yields:

〈JαS 〉 (t) = − i
h

∫ t

t0

dt′
〈[
JαI (t), Hext

I (t′)
]〉

0

= − i
h

∫ t

t0

dt′

〈[
−e
V

∑
ab

vαabc
†
a(t)cb(t), eE

β(t′)
∑
cd

rβcdc
†
c(t
′)cd(t

′)

]〉
0

=
ie2

h̄V

∑
abcd

rβcdv
α
ab

∫ t

t0

dt′Eβ(t′)
〈[
c†a(t)cb(t), c

†
c(t
′)cd(t

′)
]〉

0
. (3.30)

This commutator has already been evaluated (eq. 8.13) and turns the current into

〈JαS 〉 (t) =
ie2

h̄V

∑
abcd

rβcdv
α
ab

∫ t

t0

dt′Eβ(t′)
〈[
c†a(t)cb(t), c

†
c(t
′)cd(t

′)
]〉

0
(3.31)

=
ie2

h̄V

∑
abcd

rβcdv
α
ab

∫ t

t0

dt′Eβ(t′)
[{
cb(t), c

†
c(t
′)
}〈

c†a(t)cd(t
′)
〉

0
−
{
cd(t

′), c†a(t)
}〈

c†c(t
′)cb(t)

〉
0

]
.
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Introducing the Fourier transform of the electric �eld E(t) =
∫∞
−∞

dω
2πEωe

−iωt and adopting the

simpler notation ωab = (εa − εb)/h̄, we get:

〈JαS 〉 (t) =
ie2

h̄V

∑
ab

rβbav
α
ab [f(εa)− f(εb)]

∫ t

t0

dt′
[∫ ∞
−∞

dω′

2π
Eβω′e

−iω′t′
]
eiωab(t−t

′). (3.32)

Now we assume the perturbation is turned on at t0 → −∞. Taking the Fourier Transform of

the whole expression:

〈Jαω 〉 =
ie2

h̄V

∑
ab

rβbav
α
ab [f(εa)− f(εb)]

∫ ∞
−∞

dteiωt
∫ t

−∞
dt′
[∫ ∞
−∞

dω′

2π
Eβω′e

−iω′t′
]
eiωab(t−t

′)

=
−e2

h̄V

∑
ab

rβbav
α
ab

f(εa)− f(εb)

ωab + ω + iε
Eβω . (3.33)

We are left with the simple expression for the current:

〈Jαω 〉 =
−e2

h̄V

∑
ab

rβbav
α
ab

f(εa)− f(εb)

ωab + ω + iε
Eβω . (3.34)

3.4 Periodic limit

So far, what we've calculated is valid for a general quantum system. The goal of this section

is to take eq. 3.34 and see what it looks like when it's periodic, so as to be able to compare it

with the expressions in [3]. For a detailed discussion of the origin of all the terms, the reader is

directed to that text. Here we merely apply the de�nitions to our formula and see if it coincides

with those results. First of all, let's assume that the system has translational symmetry, which

allows us to use Bloch's theorem. Now we know that the eigenstates may be speci�ed in terms

of a momentum p and an index s which contains the remaining degrees of freedom unrelated to

the translational symmetry, such as the band. Therefore, split each state n into p, s

〈Jαω 〉 =
−e2

V

∑
psp′s′

rβp′s′psv
α
psp′s′

f(εps)− f(εp′s′)

εps − εp′s′ + h̄ω + iε
Eβω . (3.35)

If the system is taken to be in�nite, we may take the continuum limit
∑

p → V
∫ d3p

(2π)3 , but

we need to be careful when using the position and velocity operators. The de�nition of r in this

basis is [3, 3rd chapter]

rpsp′s′ = −i(2π)3δss′∇pδ(p− p′) + (2π)3δ(p− p′)ξpss′ . (3.36)

Where ξpss′ is the Berry connection de�ned by ξpss′ = i 〈uks′ |∇kuks〉 and uks is the component

of the Bloch waves with the periodicity of the lattice. The derivative of the Dirac delta is

47



3.4. PERIODIC LIMIT

understood as being inside an integral and by acting through an integration by parts, as follows:∫
d3p

(2π)3
f(εps)(2π)3∇β

pδ(p− p′) = −
∫
d3pδ(p− p′)∇β

pf(εps) = ∇β
p′f(εp′s). (3.37)

Replacing in 3.35, we obtain

〈Jαω 〉 = −V e2
∑
ss′

∫
d3p

(2π)3

∫
d3p′

(2π)3

[
−i(2π)3δss′∇β

pδ(p− p′) + (2π)3δ(p− p′)ξβpss′
]

×vαpsp′s′
f(εps)− f(εp′s′)

εps − εp′s′ + h̄ω + iε
Eβω

= ie2V
∑
ss′

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δss′∇β

pδ(p− p′)vαpsp′s′
f(εps)− f(εp′s′)

εps − εp′s′ + h̄ω + iε
Eβω

−e2V
∑
ss′

∫
d3p

(2π)3
ξβpss′v

α
psps′

f(εps)− f(εps′)

εps − εps′ + h̄ω + iε
Eβω . (3.38)

The �rst term in this expression has to be treated carefully because many terms will cancel.

Moving the derivative from the Dirac delta to the rest of the expression through an integration

by parts we get two terms:

ie2V
∑
ss′

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δss′∇βpδ(p− p′)vαpsp′s′

f(εps)− f(εp′s′)

εps − εp′s′ + h̄ω + iε
Eβω (3.39)

= −ie2V
∑
ss′

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δss′δ(p− p′)

(
∇β
pv

α
psp′s′

) f(εps)− f(εp′s′)

εps − εp′s′ + h̄ω + iε
Eβω

+ −ie2V
∑
ss′

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δss′δ(p− p′)vαpsp′s′∇β

p

[
f(εps)− f(εp′s′)

εps − εp′s′ + h̄ω + iε

]
Eβω .

In virtue of the Dirac delta and the Kronecker delta, the �rst term with the di�erence of Fermi

functions disappears and all that remains is the derivative of the quotient. The same argument

can be repeated while acting with the derivative through the quotient, leading to

−ie2V
∑
ss′

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δss′δ(p− p′)vαpsp′s′

∇β
pf(εps)

εps − εp′s′ + h̄ω + iε
Eβω (3.40)

which, after simplifying the deltas is

−ie2V
∑
s

∫
d3p

(2π)3
vαpsps

∇β
pf(εps)

h̄ω + iε
Eβω . (3.41)

Putting it all back together,

〈Jαω 〉 = −e2V Eβω
∑
ss′

∫
d3p

(2π)3

iδss′v
α
psps′∇

β
pf(εps) + ξβpss′v

α
psps′

(
f(εps)− f(εps′)

)
εps − εps′ + h̄ω + iε

. (3.42)

Here, we'll be able to extract two components of the current: one which only considers transi-
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tions between states in the same band s → s and one which only considers transitions between

di�erent bands s→ s′.

3.4.1 Intra-band term

Being diagonal in the band space, this �rst term is:

〈Jαω 〉intra =
−e2V

h̄
Eβω
∑
ss′

∫
d3q

(2π)3
δss′v

α
qs′si∇β

qf(εqs)
1

ω + ωqs′s + iε

=
−e2V

h̄
Eβω
∑
s

∫
d3q

(2π)3
vαqssi∇β

qf(εqs)
1

ω + iε
. (3.43)

Now note that the velocity matrix elements may be written as vαqss′ = 1
h̄

[
δss′∇α

q εqs + iξαqss′
(
εqs − εqs′

)]
(see eq. 3.2.7 in [3]) and that ∇βqf(εqs) = ∇βqεqs

∂f(εqs)
∂εqs

so we get:

〈Jαω 〉intra =
−ie2V

h̄2

Eβω
ω + iε

∑
s

∫
d3q

(2π)3
∇βqεqs

∂f(εqs)

∂εqs
∇αq εqs. (3.44)

Allowing for a change of notation for the derivatives and allowing for the notation V
∫ d3q

(2π)3 →∑
q:

〈Jαω 〉intra =
−e2

h̄2

∑
qs

∂εqs
∂qα

∂εqs
∂qβ

[
−∂f(εqs)

∂εqs

]
−iEβω
ω + iε

. (3.45)

This is the intra-band component of the �rst-order current. By analyzing the expression, we

see two interesting features. First of all, this term has the frequency in the denominator with

only an in�nitesimal factor to balance it out, so it diverges as ω → 0. Secondly, this intra-

band contribution is multiplied by the derivative of the Fermi function, which approaches a Dirac

delta centered at the chemical potential as the temperature goes to zero. The majority of the

contribution to this term therefore comes from energies close to the chemical potential. For this

term to contribute, there need to be states with that energy. This means that if the density of

states has a gap and the chemical potential falls inside that gap, this term will be zero and the

divergence will be gone.

3.4.2 Inter-band term

The second term is o�-diagonal in band space. Letting V
∫ d3q

(2π)3 →
∑
q

〈Jαω 〉inter =
−e2

h̄

∑
ss′

∑
q

vαqs′sξ
β
qss′

f(εqs′)− f(εqs)

ω + ωqs′s + iε
Eβω

= −e2
∑
ss′

∑
q

vαqs′sξ
β
qss′

f(εqs′)− f(εqs)

h̄ω + εqs′ − εqs + iε
Eβω
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This is the inter-band component. So, to �rst order, the current is

〈Jαω 〉 =
−e2

h̄2

∑
qs

∂εqs
∂qα

∂εqs
∂qβ

[
−∂f(εqs)

∂εqs

]
−iEβω
ω + iε

− e2
∑
qss′

vαqs′sξ
β
qss′

f(εqs′)− f(εqs)

h̄ω + εqs′ − εqs + iε
Eβω (3.46)

This is the result obtained in [3] but with an added convergence factor iε.

3.5 Equivalence of the two descriptions

So far we've obtained two seemingly di�erent expressions for the current that should express the

same thing. As we'll see, this is indeed the case. Start with the �rst formula we obtained, eq.

3.26:

〈Jαω 〉 =
−e2

V
Aβω
∑
nm

vαnmv
β
mn

f(εn)− f(εm)

h̄ω + εn − εm + iε
+
−e2

mV
NAαω (3.47)

Using the de�nition of v = 1
ih̄ [r, H] in the energy basis, we �nd vmn = rmn(εn−εm)

ih̄ , which may

be applied in the above formula to remove the second velocity operator:

〈Jαω 〉 =
−e2

V
Aβω
∑
nm

vαnm
rβmn(εn − εm)

ih̄

f(εn)− f(εm)

h̄ω + εn − εm + iε
+
−e2

mV
NAαω (3.48)

=
−e2

ih̄V
Aβω
∑
nm

vαnmr
β
mn

h̄ω + (εn − εm) + iε− h̄ω − iε
h̄ω + εn − εm + iε

(f(εn)− f(εm)) +
−e2

mV
NAαω

=
−e2

ih̄V
Aβω
∑
nm

vαnmr
β
mn (f(εn)− f(εm)) +

−e2

mV
NAαω

+
e2

i2h̄V
i (h̄ω + iε)Aβω

∑
nm

vαnmr
β
mn

f(εn)− f(εm)

h̄ω + εn − εm + iε
.

Now, the �rst term can be re-expressed in terms of
[
vα, rβ

]
, which is simply related to the

canonical commutation relation
[
vα, rβ

]
ab

= 1
m

[
pα, rβ

]
ab

= − 1
m ih̄δabδ

αβ .

−e2

ih̄V
Aβω
∑
nm

vαnmr
β
mn (f(εn)− f(εm)) =

−e2

ih̄V
Aβω
∑
n

f(εn)
∑
m

(
vαnmr

β
mn − vαmnrβnm

)
=

e2

mV
NAαω.

(3.49)

This is valid when the Hamiltonian H0 is of the form p2/2m+V (r). This term precisely cancels

the previous e2

mV NA
α
ω term, so we are left with

〈Jαω 〉 =
−e2

h̄V
i (h̄ω + iε)Aβω

∑
nm

vαnmr
β
mn

f(εn)− f(εm)

h̄ω + εn − εm + iε
. (3.50)
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Finally, we may replace i (h̄ω + iε)Aβω = Eβω :

〈Jαω 〉 =
−e2

h̄V
Eβω
∑
nm

vαnmr
β
mn

f(εn)− f(εm)

h̄ω + εn − εm + iε
. (3.51)

We thus re-obtain eq. 3.34 calculated with the dipolar interaction, showing that the two descrip-

tions indeed reproduce the same results.

3.6 Basis-independent description - vector potential

This current has been calculated in an explicit basis of the non-interacting Hamiltonian. We

seek a result that can be calculated in any basis because this will allow us to choose the most

convenient one when doing calculations. The goal then is to express this in terms of a trace of

operators. Start with equation 3.26:

〈Jαω 〉 =
−e2

V

∑
nm

[f(εn)− f(εm)] vαnmv
β
mn

Aβω
h̄ω + εm − εm + iε

+
−e2

mV
NAαω. (3.52)

Start by swapping the summation labels in order to factor out the Fermi functions:

−e2

V

∑
nm

[f(εn)− f(εm)] vαnmv
β
mn

Aβω
h̄ω + εn − εm + iε

(3.53)

=
−e2

V
Aβω
∑
nm

f(εn)

[
vαnmv

β
mn

h̄ω + εn − εm + iε
− vαmnv

β
nm

h̄ω + εm − εn + iε

]

=
−e2

V
Aβω
∑
nm

f(εn)

[
vαnmv

β
mn

h̄ω + εn − εm + iε
+

vβnmvαmn
−h̄ω + εn − εm − iε

]
.

De�ne the Green operator2 G±(ε) = 1

ε−Ĥ±i0+
and note that

f(εn)

h̄ω + εn − εm + i0+
= 〈m|G+(h̄ω + εn) |m〉 f(εn) =

∫ ∞
−∞

dεf(ε)δ(ε− εn) 〈m|G+(h̄ω + ε) |m〉

=

∫ ∞
−∞

dεf(ε) 〈n| δ(ε− Ĥ) |n〉 〈m|G+(h̄ω + ε) |m〉 . (3.54)

Since vαnm = 〈n| v̂α |m〉, the �rst term of the previous expression reads

∑
nm

f(εn)
vαnmv

β
mn

h̄ω + εn − εm + iε
=
∑
nm

∫ ∞
−∞

dεf(εn) 〈n| δ(ε−Ĥ) |n〉 〈m|G+(ε+h̄ω) |m〉 〈n| v̂α |m〉 〈m| v̂β |n〉 .

(3.55)

2G+ corresponds to the retarded Green's function and G− to the advanced Green's function.
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Now compare this with the following trace:

Tr
[
δ(ε− Ĥ)v̂αG+(ε+ h̄ω)v̂β

]
(3.56)

=
∑
mnab

〈n| δ(ε− Ĥ) |a〉 〈a| v̂α |b〉 〈b|G+(ε+ h̄ω) |m〉 〈m| v̂β |n〉

=
∑
mn

〈n| δ(ε− Ĥ) |n〉 〈n| v̂α |m〉 〈m|G+(ε+ h̄ω) |m〉 〈m| v̂β |n〉 .

These are precisely the matrix elements in eq. 3.55. Therefore

−e2

V

∑
nm

[f(εn)− f(εm)] vαnmv
β
mn

h̄ω + εn − εm + iε
Aβω (3.57)

=
−e2

V

∫ ∞
−∞

dεf(ε)Tr
[
δ(ε− Ĥ)v̂αG+(ε+ h̄ω)v̂β + δ(ε− Ĥ)v̂βG−(ε− h̄ω)v̂α

]
Aβω

and �nally, replacing Aω = Eω
iω we obtain

〈Jαω 〉 =
−e2

V iω

[∫ ∞
−∞

dεf(ε)Tr
[
δ(ε− Ĥ)v̂αG+(ε+ h̄ω)v̂β + δ(ε− Ĥ)v̂βG−(ε− h̄ω)v̂α

]
+
N

m

]
Eβω

(3.58)

This expression makes no reference to any basis and so we have reached our �rst goal.

3.7 Basis-independent description - scalar potential

The same may be achieved with the E formalism. Starting with eq. 3.34,

〈Jαω 〉 =
−e2

h̄V

∑
ab

rβbav
α
ab

f(εa)− f(εb)

ωab + ω + iε
Eβω (3.59)

the procedure is very similar and gives the following result:

〈Jαω 〉 =
−e2

V

∑
ab

∫ ∞
−∞

dεf(ε)Tr
[
vαG+(ε+ h̄ω)rβδ(ε−H) + vαδ(ε−H)rβG−(ε− h̄ω)

]
Eβω .

(3.60)

Compared with the one obtained through the A formalism, this expression is almost identical.

The di�erence resides in replacing one of the v̂ operators by r̂, which eliminates the last term.

Here is a good place to discuss the applicability of both expressions. While eq. 3.60 seems simpler

it su�ers from a very serious problem. Usually, we want to use periodic boundary conditions in

our calculations. This is a simple way to reproduce translation invariance of an in�nite system

in a �nite one. The Hamiltonian operator isn't problematic because it only makes reference to

hoppings between two sites, which is translation invariant. The position itself is not translation

invariant so it cannot be implemented with periodic boundary conditions. What about the velocity

operator? In all the applications considered in this text, we will be working in the position basis,
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CHAPTER 3. LINEAR ORDER RESPONSE

so we may calculate the matrix elements of v from 1
ih̄ [r, H]. In fact, ih̄vij = Hij (ri − rj). It

depends on the di�erence of positions, so it is translation invariant if H is too. As long as we

only use H and v, there is no problem. That's why the preferred expression is actually 3.58.

3.8 DC limit ω → 0

The presence of the frequency in the denominator of eq. 3.58 may suggest that ω = 0 makes the

whole expression diverge. This section is devoted to exploring this limit. In order to obtain the

zero frequency limit, start with eq. 3.53

〈Jαω 〉 =
−e2

V

∑
n 6=m

[f(εn)− f(εm)] vαnmv
β
mn

Aβω
h̄ω + εn − εm + iε

+
−e2

mV
NAαω (3.61)

and expand the denominator in a harmonic series:

1

ω + ωnm + iε
=

1

ωnm + iε

(
1

1 + ω
ωnm+iε

)
=

1

ωnm + iε

(
1− ω

ωnm + iε
+O(ω2)

)
. (3.62)

From the de�nition of Green's function, we may identify this as its Taylor expansion, which

will be useful later.

1

h̄ω + εn − εm ± iε
= 〈m|G±(h̄ω+εn) |m〉 = 〈m|G±(εn) |m〉+ω 〈m| dG

±

dε
(εn) |m〉+O(ω2). (3.63)

The current becomes:

〈Jαω 〉 =
−e2

V h̄
Aβω
∑
nm

[f(εn)− f(εm)] vαnmv
β
mn

[
1

ωnm + iε
− ω

(ωnm + iε)2 +O(ω2)

]
+
−e2

mV
NAαω.

(3.64)

There is no ω in the �rst term, so the imaginary in�nitesimal becomes irrelevant and we may

drop it. This term turns out to cancel the −e
2

mV NA
α
ω term exactly!

−e2

V
Aβω

∑
n6=m

[f(εn)− f(εm)] vαnmv
β
mn

1

εn − εm
=
−e2

V
Aβω
∑
nm

[f(εn)− f(εm)]
rαnm
ih̄

vβmn

=
−e2

V ih̄
Aβω
∑
n

f(εn)
∑
m

[
rαnmv

β
mn − rαmnvβnm

]
=
−e2

V ih̄
Aβω
∑
n

f(εn)
[
rα, vβ

]
nn

=
−e2

V
Aβω
∑
n

f(εn)
1

m
δαβ(−1nn) = −−e

2

V
Aαω
∑
n

f(εn) = −−e
2

V m
AαωN. (3.65)
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So we are left with:

〈Jαω 〉 =
−h̄e2

iV

∑
nm

[f(εn)− f(εm)] vαnmv
β
mn

−iωAβω
(εn − εm + iε)2 (3.66)

=
−h̄e2

iV

∑
nm

f(εn)

[
vαnmv

β
mn

−1

(εn − εm + iε)2 − v
β
nmv

α
mn

−1

(εm − εn + iε)2

]
Eβω

=
−h̄e2

iV

∑
nm

f(εn)

[
vαnmv

β
mn

−1

(εn − εm + iε)2 − v
β
nmv

α
mn

−1

(εn − εm − iε)2

]
Eβω .

This calculation is identical to the one performed in Section 3.6, with the replacement G± →
dG±

dε and ω → 0, which yields

〈Jα0 〉 =
−e2

V

∫ ∞
−∞

dεf(ε)Tr

[
δ(ε− Ĥ)v̂α

dG

dε

+

(ε)v̂β − δ(ε− Ĥ)v̂β
dG

dε

−
(ε)v̂α

]
Eβ0 . (3.67)

This is the Kubo-Bastin formula.

3.9 Real part of the conductivity

Most of the times, what is calculated numerically is just the real part of the conductivity. This

section aims to study this case and to reproduce the result of [9]. Start again with eq. 3.26.

〈Jαω 〉 =
−e2

V

∑
nm

[f(εn)− f(εm)] vαnmv
β
mn

Aβω
h̄ω + εn − εm + iη

+
−e2

mV
NAαω. (3.68)

This can be separated into its real and imaginary parts by using the Sokhotski-Plemelj theorem3

〈Jαω 〉 =
−e2

V

∑
nm

[f(εn)− f(εm)] vαnmv
β
mn

[
P

(
1

h̄ω + εn − εm

)
− iπδ (h̄ω + εn − εm)

]
Eβω
iω

+
−e2

mV
N
Eβω
iω
.

(3.71)

3A simple proof of the result used here is as follows. Given an integral de�ned between a < 0 < b,

lim
ε→0+

∫ b

a

f(x)

x± iεdx = ∓iπ lim
ε→0+

∫ b

a

ε

π (x2 + ε2)
f(x)dx+ lim

ε→0+

∫ b

a

x2

x2 + ε2
f(x)

x
dx (3.69)

The �rst term ε

π(x2+ε2)
approaches a Dirac delta function when ε→ 0+. The second term x2

x2+ε2
approaches

1 for |x|� ε, 0 for |x|� ε and is symmetric about 0, so it turns the integral into a Cauchy principal value
integral. We thus obtain the famous Sokhotski-Plemelj theorem for the real line:

lim
ε→0+

∫ b

a

f(x)

x± iεdx = ∓iπf(0) + P

∫ b

a

f(x)

x
dx (3.70)

Since this is valid for any (well behaved) test function and integral, we may think of this as an identity on
limε→0+

1
x±iε .
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Isolating the electric �eld, we obtain the conductivity

σαβω =
−e2

V

∑
nm

[f(εn)− f(εm)] vαnmv
β
mn

[
P

(
1

h̄ω + εn − εm

)
− iπδ (h̄ω + εn − εm)

]
1

iω
+
−e2

mV
N

1

iω
.

(3.72)

Its real part is

<
〈
σαβω

〉
=
πe2

V ω

∑
nm

[f(εn)− f(εm)] vαnmv
β
mnδ (h̄ω + εn − εm) . (3.73)

Now we want to obtain a basis-independent description of the longitudinal conductivity αα at

zero temperature and �nite frequency, so we employ the same procedure as before. The result is

< 〈σααω 〉 =
πe2

V ω

∫ ∞
−∞

dεf(ε)Tr [δ(ε−H)vαδ (h̄ω + ε−H) vα − δ(ε−H)vαδ (h̄ω − ε+H) vα] .

(3.74)

For the second term in this expression, apply the change of variables ε = ε′ + h̄ω and use the

cyclic property of the trace to swap the order of the two Dirac deltas:∫ ∞
−∞

dεf(ε)Tr [δ(ε−H)vαδ (h̄ω − ε+H) vα] =

∫ ∞
−∞

dε′f(ε′+h̄ω)Tr
[
δ
(
ε′ −H

)
vαδ(h̄ω + ε′ −H)vα

]
.

(3.75)

Dropping the primes and putting it all together, we arrive at

< 〈σααω 〉 =
πe2

V ω

∫ ∞
−∞

dε [f(ε)− f(ε+ h̄ω)]Tr [δ(ε−H)vαδ (h̄ω + ε−H) vα] . (3.76)

Finally, note that at zero temperature, f(ε)− f(ε+ h̄ω) is zero unless µ− h̄ω < ε < µ. Then,

< 〈σααω 〉 =
πe2

V ω

∫ µ

µ−h̄ω
dεTr [δ(ε−H)vαδ (h̄ω + ε−H) vα] . (3.77)

This is precisely the result used in [9].

3.10 Finishing remarks

By now we see that the result obtained from Kubo's formula yields results consistent with the ones

found in the literature. Furthermore, it allows us to compute both the real and the imaginary

parts of the conductivity. However, the most important part of this chapter was obtaining a

basis-independent formula for the current resorting only to the Hamiltonian and the velocity

operator, which allows us to use periodic boundary conditions. This is crucial for numerical

implementations.
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4 Higher order perturbation expansions

So far, we've obtained the �rst term of the expansion using Kubo's formula, which is a fairly

simple formula. However, if we proceed to higher orders, the formula becomes very cumbersome

and it becomes hard to put it to good use. In the �rst section we will nevertheless provide a

derivation just to see what it looks like. The following sections will then be used to develop a

di�erent approach of obtaining a perturbation expansion of the current - the Keldysh formalism.

4.1 Second order Kubo's formula

Start from the formal solution of the interacting Hamiltonian, |ΨI(t)〉

|ΨI(t)〉 = T

{
exp

(
−i
h̄

∫ t

t0

dtVI(t)

)}
|ΨI(t0)〉 . (4.1)

Up to second order, this reads

|ΨI(t)〉 =

[
1 +
−i
h̄

∫ t

t0

dt1VI(t1) +
1

2!

(
−i
h̄

)2 ∫ t

t0

dt1

∫ t

t0

dt2T {VI(t1)VI(t2)}

]
|ΨI(t0)〉 . (4.2)

Or, unfolding the time ordering

|ΨI(t)〉 =

[
1 +
−i
h̄

∫ t

t0

dt1VI(t1) +

(
−i
h̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2VI(t1)VI(t2)

]
|ΨI(t0)〉 . (4.3)

We may now use this to calculate ρI(t) up to second order. To do so, let |n〉 = |nI(t0)〉 be an
eigenstate of H0 before the perturbation.

ρI(t) =
1

Z0

∑
n

e−βEn |nI(t)〉 〈nI(t)|

=
1

Z0

∑
n

e−βEn

(
1 +
−i
h̄

∫ t

t0

dt1VI(t1) +

(
−i
h̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2VI(t1)VI(t2)

)
|n〉 〈n|

×

(
1 +

i

h̄

∫ t

t0

dt1VI(t1) +

(
i

h̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2VI(t2)VI(t1)

)
+O(V 3). (4.4)

The factor
∑

n e
−βEn can pass through the operators (since all the n dependency is now on

|n〉 〈n|) and retrieve the original density matrix ρ0.

57



4.1. SECOND ORDER KUBO'S FORMULA

Collecting the second order terms,

ρI(t) =
1

h̄2

{
−
∫ t

t0

dt1

∫ t1

t0

dt2 [VI(t1)VI(t2)ρ0 + ρ0VI(t2)VI(t1)] +

∫ t

t0

dt1

∫ t

t0

dt2VI(t1)ρ0VI(t2)

}
.

(4.5)

To join terms, we need to take the last integral and separate it into two integrals, one from t0

to t1 and another from t1 to t. Then, change the order of integration and swap the time labels to

get

ρI(t) =
1

h̄2

{
−
∫ t

t0

dt1

∫ t1

t0

dt2 (VI(t1)VI(t2)ρ0 + ρ0VI(t2)VI(t1))

}
+

1

h̄2

{∫ t

t0

dt1

∫ t1

t0

dt2VI(t1)ρ0VI(t2) +

∫ t

t0

dt1

∫ t

t1

dt2VI(t1)ρ0VI(t2)

}
(4.6)

=
1

h̄2

∫ t

t0

dt1

∫ t1

t0

dt2 [−VI(t1)VI(t2)ρ0 − ρ0VI(t2)VI(t1) + VI(t1)ρ0VI(t2) + VI(t2)ρ0VI(t1)] .

The averages are calculated with respect to the system in equilibrium, so the partition function

Z0 is unaltered. These tools allow us to �nally calculate the expected value of an operator in

second order. Using 〈A〉 (t) = Tr (ρA), we arrive at

〈A〉 (t) =
1

h̄2

∫ t

t0

dt1

∫ t1

t0

dt2Tr [−VI(t1)VI(t2)ρ0AI − ρ0VI(t2)VI(t1)AI+

+VI(t1)ρ0VI(t2)AI + VI(t2)ρ0VI(t1)AI ]

=
1

h̄2

∫ t

t0

dt1

∫ t1

t0

dt2Tr (ρ0 [VI(t2), [AI , VI(t1)]]) . (4.7)

Combining this with Kubo's formula (eq. 3.5) we obtain the desired generalization.

〈A〉 (t) = 〈A〉0 +

(
−i
h̄

)∫ t

t0

dt′
〈[
AI(t), VI(t

′)
]〉

0
+

(
−i
h̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 〈[VI(t2), [VI(t1), AI ]]〉0 .

(4.8)

This expansion is starting to reveal a nested commutator structure, so one might expect this

pattern to continue. Although this may be proven, it will not be used. As we arrive at higher

and higher orders, we'll have to compute more and more commutators, which may become rather

cumbersome. Even if we decide to go through that, the resulting expressions will be written in the

energy basis of the solvable Hamiltonian, and if we want to express them in a basis-independent

way, we'll have to go through case by case. This is the reason that leads us to abandon Kubo's

formalism in virtue of a more elegant one, the Keldysh formalism[10]. This will allow us to use

the familiar Feynman diagram techniques, which simplify the calculations immensely, with the

added bonus of being expressed precisely in terms of the numerical objects that we need.
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4.2 Green's functions out of equilibrium - Keldysh Formalism

Suppose we have a system that is described by a time-dependent Hamiltonian

H(t) = H0 + V +Hext(t) = H0 + Vext(t) (4.9)

where H0 is the Hamiltonian that we can solve exactly, V is the interaction term and Hext(t) is the

time-dependent non-interacting external perturbation. In terms of the creation and destruction

operators of second quantization, we may write

H0 =
∑
n

εnc
†
ncn. (4.10)

We want to develop a perturbation theory that neatly takes into account the fact that the

system has a �nite temperature. For reasons that will soon become clear, the object that we need

to calculate is the �nite-temperature Green's function [10].

4.2.1 Green's functions

We want to calculate the following Green's function:

G(1, 1′) = −i
〈
T
[
cH(1)c†H(1′)

]〉
. (4.11)

The subscript H denotes the Heisenberg picture and the labels 1 and 1′ are a shorthand for

the time, space, energy or any coordinates needed to completely describe the particle's state. For

example for a particle with spin in the position representation, c(1) = cx,σ(t). The average 〈· · ·〉
stands for Tr[ρ(t0)···]

Tr[ρ(t0)]
in the grand canonical ensemble. We now express this in the interaction

picture, recalling that the time-ordering operator can be written out explicitly using a Heaviside

function Θ(t). We also make use of the evolution operator in the Interaction Picture S(t, t′)

to transform the creation operators in the Heisenberg Picture to their correspondence in the

Interaction Picture (eq. 2.121):

T
[
cH(1)cH(1′)

]
= Θ(t− t′)cH(1)ψH(1′)±Θ(t′ − t)c†H(1′)cH(1)

= Θ(t− t′)S(t0, t)cI(1)S(t, t′)c†I(1
′)S(t′, t0)

± Θ(t′ − t)S(t0, t
′)c†I(1

′)S(t′, t)cI(1)S(t, t0) (4.12)

which can be written in a neat compact form by de�ning tm = max(t, t′):

T
[
cH(1)cH(1′)

]
= S(t0, tm)T

[
S(tm, t0)cI(1)c†I(1

′)
]
. (4.13)
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Write explicitly the formal expressions for the evolution operators.

iG(1, 1′) =
〈
S(t0, tm)T

[
S(tm, t0)cI(1)c†I(1

′)
]〉

(4.14)

=

〈
T̃ exp

(
−i
h̄

∫ t0

tm

dτV ext
I (τ)

)
T

[
exp

(
−i
h̄

∫ tm

t0

dτV ext
I (τ)

)
cI(1)c†I(1

′)

]〉
.

Note that the time integration runs from t0 to tm and then back from tm to t0. We may imagine

that as a contour followed by the the time integration (�g. 4.1). With that in mind, de�ne the

contour ordering operator TC in analogy to the regular time-ordering operator:

TC [A(t1)B(t2)] =

A(t1)B(t2) t1
c
> t2

±B(t2)A(t1) t2
c
< t1

. (4.15)

We say t1
c
> t2 if t1 is further along the contour than t2. Ordering along

−→
C corresponds to the

regular time ordering and ordering along
←−
C to anti-time ordering.

Figure 4.1: The time contour.

Now the Green's function takes the form:

iG(1, 1′) =

〈
TC exp

(
−i
h̄

∫
←−
C
dτV ext

I (τ)

)
TC

[
exp

(
−i
h̄

∫
−→
C
dτV ext

I (τ)

)
cI(1)c†I(1

′)

]〉
. (4.16)

Since the left-most term is entirely further along the contour than the right-most term, they

may be joined inside the same contour ordering operator.

iG(1, 1′) =

〈
TC

[
exp

(
−i
h̄

∫
C
dτV ext

I (τ)

)
cI(1)c†I(1

′)

]〉
(4.17)

We have assumed t and t′ lie along the forward part of the contour, but this need not be the

case. In fact, there are four possible ways to place t and t′. De�ne the contour-ordered Green's

function as:

iGC(rσt, r′σ′t′) =
〈
TC

[
cH(1)c†H(1′)

]〉
. (4.18)

Depending on how we place t and t′ along the contour, we will obtain several other known

Green's functions as particular cases of this more general one.
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4.2.2 Particular Green's functions

Here we'll see how the contour-ordered Green's function encapsulates the other known Green's

functions.

1. t, t′ ∈
−→
C :

This is the case we have just seen and corresponds to the regular time-ordered Green's

function:

iGC(1, 1′) =
〈
T
[
cH(1)c†H(1′)

]〉
= iGT (1, 1′). (4.19)

2. t ∈
−→
C and t′ ∈

←−
C

This case yields the lesser Green's function. Remember that swapping cI(1) and c†I(1
′) inside

the ordering operator produces a minus sign if they're fermions. Swapping the evolution

operator with any of them will not produce a minus sign because VI always consists of an

even number of fermion or boson operators.

iGC(1, 1′) =

〈
TC

[
exp

(∫
C
dτV ext

I (τ)

)
cI(1)c†I(1

′)

]〉
= ±

〈
S(t′, t0)c†I(1

′)S(t, t′)cI(1)S(t0, t)
〉

= ±
〈
c†H(1′)cH(1)

〉
= iG<(1, 1′). (4.20)

The other two ways are analogous and are summarized as follows:

iGC(1, 1′) =



iGT (1, 1′) =
〈
T
[
cH(1)c†H(1′)

]〉
t, t′ ∈

−→
C

iG<(1, 1′) = ±
〈
c†H(1′)cH(1)

〉
t ∈
−→
C and t′ ∈

←−
C

iG>(1, 1′) =
〈
cH(1)c†H(1′)

〉
t′ ∈
−→
C and t ∈

←−
C

iGT̃ (1, 1′) =
〈
T̃
[
cH(1)c†H(1′)

]〉
t, t′ ∈

←−
C

. (4.21)

Unfolding the de�nitions, we can check that

GT +GT̃ = G< +G>. (4.22)

Furthermore, the retarded Green's function can be obtained from these

iGR = Θ(t− t′)
〈[
cH(1), cH(1′)

]
∓

〉
= iΘ(t− t′)

[
G>(1, 1′)−G<(1, 1′)

]
. (4.23)

Similarly, for the advanced Green's function

iGa = −Θ(t′ − t)
〈[
cH(1), cH(1′)

]
∓

〉
= iΘ(t′ − t)

[
−G>(1, 1′) +G<(1, 1′)

]
. (4.24)

61



4.2. GREEN'S FUNCTIONS OUT OF EQUILIBRIUM - KELDYSH FORMALISM

Some more useful relations can be obtained for the retarded and advanced Green's functions,

which can be checked directly

GR = GT −G< (4.25)

Ga = −GT̃ +G<. (4.26)

These are the relations that will be used extensively while doing the calculations. Their ex-

pressions are calculated in the Appendix (eq. 8.43) to be used as a reference.

4.2.3 Perturbation expansion

So far we've only restated our initial problem in terms of a fancy language. Now we need to re-

express all these operators in terms of something we can calculate: averages over non-interacting

time-independent states. Under time ordering, boson operators commute, so we can replace the

exponential of VI(t) = Hext
I (t) + VI by the exponential of the product

iG(1, 1′) =
〈
TC

[
e
−i
h̄

∫
C dτV

ext
I (τ)cI(1)c†I(1

′)
]〉

=
〈
TC

[
e
−i
h̄

∫
C dτVI(τ)e

−i
h̄

∫
C dτH

ext
I (τ)cI(1)c†I(1

′)
]〉
.

(4.27)

Taking into account this separation, de�ne the operators

SVC = e
−i
h̄

∫
C dτVI(τ) (4.28)

SextC = e
−i
h̄

∫
C dτH

ext
I (τ). (4.29)

Allowing us to rewrite the Green's function

iG(1, 1′) =
〈
TC

[
SVCS

ext
C cI(1)c†I(1

′)
]〉

=
Tr
(
ρHTC

[
SVCS

ext
C cI(1)c†I(1

′)
])

Tr
(
ρHTC

[
SVCS

ext
C

]) . (4.30)

It still remains to expand the density matrix. Recall that

iG(1, 1′) =
Tr
(
ρHTC

[
cH(1)c†H(1′)

])
Tr (ρH)

. (4.31)

The density matrix remains the same even after the interaction has been switched on, so

ρH(t) = ρ(t0). This means we can still treat it as an exponential. Now we employ a trick that

allows us to write ρ in terms of SV . In the grand canonical ensemble, since the Hamiltonian

preserves the number of particles, N commutes with H as well as H0:

ρ(t0) = e−β(H−µN) = e−βHeβµN = e−β(H0−µN)eβH0e−βH = ρ0e
βH0e−βH . (4.32)

Before the interaction is turned on (t < t0), the Hamiltonian has no time dependency so
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the time evolution operator takes the simple form U(t, t0) = e−iH(t−t0)/h̄. Likewise, in the In-

teraction picture, the relation between U(t, t′) and S(t, t′) (eq. 2.119) reduces to S(t, t0) =

eiH0(t−t0)/h̄e−iH(t−t0)/h̄. This has precisely the same form as the factor eβH0e−βH in the previous

expression. Making the identi�cation t = t′ − iβh̄ and t0 = t′, the density matrix becomes

ρ(t0) = ρ0S
V (t′ − iβh̄, t′). (4.33)

So far, the real part is arbitrary, but we want to incorporate it in the time contour, so we take

t′ = t0. Insert this back into the Green's function

iG(1, 1′) =
Tr
[
ρ0S

V (t0 − iβh̄, t0)TC

[
SVCS

ext
C cI(1)c†I(1

′)
]]

Tr
[
ρ0SV (t0 − iβh̄, t0)TC

[
SVCS

ext
C

]] . (4.34)

Now note that SV occurs to the left of TC . Therefore, if we want to include it inside the time

ordering, it must correspond to a time later than all the others. De�ne a new contour C ′ as in

Figure 4.2.

Figure 4.2: Kadano�-Baym three-branch contour.

We may �nally express this Green's function in terms of non-interacting averages:

iG(1, 1′) =
Tr
[
ρ0TC′

[
SVC′S

ext
C cI(1)c†I(1

′)
]]

Tr
[
ρ0TC′

[
SVC′S

ext
C

]] =

〈
TC′

[
SVC′S

ext
C cI(1)c†I(1

′)
]〉

0〈
TC′

[
SVC′S

ext
C

]〉
0

. (4.35)

Expanding SVC′ and S
ext
C order by order, we obtain a perturbation series for G(1, 1′) valid for

all times t and t′. Since the ensemble average is over the non-interacting system, Wick's theorem

applies.

4.2.4 Keldysh contour

Usually, we're interested in studying the system long after the interactions have been turned

on, that is t, t′ � t0. In this regime, assuming a steady state develops, we should expect no

dependency on t0. Alternatively, we may assume that the interactions are turned on adiabatically,
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so ρH(t0 = −∞) = ρ0. Consequently, the contour from t0 to t0 − iβh̄ may be disregarded

altogether. The contour is now the original C contour and extends from −∞ to tm. The time

integration might as well be taken all the way to +∞ because integrating from tm to +∞ and

back will yield exactly zero because in that interval the integrand remains unchanged under the

time ordering operator. We thus �nally arrive at the Keldysh contour, which is depicted in Fig.

4.3 and a simpler expression for the expansion of the Green's function, which is the one that will

be used thoroughly through the next chapter.

iG(1, 1′) =

〈
TC′

[
SVCS

ext
C cI(1)c†I(1

′)
]〉

0〈
TC
[
SVCS

ext
C

]〉
0

. (4.36)

Figure 4.3: Keldysh contour.

We have obtained the expression of Green's function in terms of averages in the non-interacting

system, so in principle our goal has been achieved. There are still some simpli�cations to be had

and the next sections of this chapter are devoted to developing some techniques to simplify the use

of this expansion. The �rst simpli�cation arises from the type of problem we're analyzing. In our

case, the perturbation does not involve interaction between the particles, so SVC = 1 and we need

only care about the time-dependent part. Unless stated otherwise, this will be used implicitly in

the following sections.

4.2.5 Feynman Diagrams

Consider the numerator in eq. 4.36. Upon expanding the exponentials, a typical term of the

expansion is

1

2

〈
TC

[
−i
h̄

∫
C
dτ1H

ext(τ1)

∫
C
dτ2
−i
h̄
Hext(τ2)cn(t)c†m(t′)

]〉
0

. (4.37)

These operators are in the Interaction Picture, but for simplicity of notation, that label has been

dropped. Henceforth, we shall use that notation. De�ning V (t) = −i
h̄ H

ext(t) =
∑

ab Vab(τ1)c†a(τ1)cb(τ1)

and using Einstein's summation convention,

1

2

∫
C
dτ1

∫
C
dτ2Vab(τ1)Vcd(τ2)

〈
TC

[
c†a(τ1)cb(τ1)c†c(τ2)cd(τ2)cn(t)c†m(t′)

]〉
0
. (4.38)

This is a rather unwieldy expression that can be tamed using Wick's theorem (eq. 2.141). To
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simplify our notation for now, let's drop the time-dependency of the operators. Wick's theorem

then provides all the six possible (non-zero) contractions:

〈
TC

[
c†acbc

†
ccdcnc

†
m

]〉
0

=

〈
c†acbc

†
ccdcnc

†
m

〉
0

+

〈
c†acbc

†
ccdcnc

†
m

〉
0

+

〈
c†acbc

†
ccdcnc

†
m

〉
0

+

〈
c†acbc

†
ccdcnc

†
m

〉
0

+

〈
c†acbc

†
ccdcnc

†
m

〉
0

+

〈
c†acbc

†
ccdcnc

†
m

〉
0

.(4.39)

Now denoting the non-interacting green's function by a lowercase gCab(t1, t2) = i
〈
TC

[
ca(t1)c†b(t2)

]〉
0
,

the previous result is

〈
TC

[
c†acbc

†
ccdcnc

†
m

]〉
0

(4.40)

=
(
−igCba(τ1, τ1)

) (
−igCdc(τ2, τ2)

)
igCnm(t, t′) +

(
−igCda(τ2, τ1)

)
igCbc(τ1, τ2)gCnm(t, t′) +

−
(
−igCna(t, τ1)

)
igCbc(τ1, τ2)igCdm(τ2, t

′)−
(
−igCba(τ1, τ1)

) (
−igCnc(t, τ2)

)
igCdm(τ2, t

′) +

+
(
−igCda(τ2, τ1)

) (
−igCnc(t, τ2)

)
igCbm(τ1, t

′)−
(
−igCna(t, τ1)

) (
−igCdc(τ2, τ2)

)
igCbm(τ1, t

′).

The minus signs inside the parenthesis are due to the de�nition of the Green's function: the

annihilation operator must appear �rst inside the time-ordering, which may require an anti-

commutation. The other minus signs appear due to anti-commutations of Wick contractions. In

order to deal with this kind of expressions, we adopt a diagrammatic notation. We may think

about the Green's function gCab(t1, t2) as a particle being created at time t2 with energy εb and

destroyed at time t1 with energy εa. We thus represent the Green's function by a directed line

from the second time argument to the �rst:

τ2

b a
τ1 = igCab(τ1, τ2). (4.41)

A product of Green's functions that share a time argument integrated over is depicted by con-

necting two diagrams like the previous one. In fact, each time label is a vertex on the diagram, to

which multiple objects may be connected. Vertices with more than one edge are to be understood

as being integrated over time:

=
∫
C dτ2ig

C
cd(τ1, τ2)igCab(τ2, τ3).

τ3 τ2 τ1

b a d c

(4.42)
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The interaction is represented by a dotted line with a cross in the end:

=
∫
C dτ2ig

C
cd(τ1, τ2)Vda(τ2)igCab(τ2, τ3).

τ3 τ2 τ1

Vad

b a d c

(4.43)

Using these rules, we may represent schematically eq. 4.38

t′ t

τ1

ab

Vba

τ2

cd

Vdc

m n
+

t′ t

Vba τ1
a

b
τ2

d
c

Vdc

m n
+

+
t′ τ2 τ1 t

Vdc Vba

m d c b a n
+

t′ τ2 t

Vdc
τ1

ab

Vba

m d c n
+

+
t′ τ1 τ2 t

Vba Vdc

m b a d c n
+

t′ τ1 t

Vba
τ2

cd

Vdc

m b a n

These are all the possible ways to arrange three fermion lines and two interactions and they

represent all the non-zero Wick contractions in eq. 4.39. Next, we state without proof some

properties of these diagrams that will simplify the calculations considerably [10].

4.2.5.1 Cancellation of disconnected diagrams, overall minus sign and symmetry factors

1. We haven't taken into account the minus signs that come from the de�nition of the Green's

functions and the anti-commutation due to Wick's contractions. The overall sign of the

diagram is (−1)n` where n` is the number of closed fermion loops.

2. The e�ect of the denominator in eq. 4.36 is to cancel out all the diagrams which are not

fully connected. The only surviving diagrams are the third and the �fth.

3. Topologically identical diagrams have the exact same contribution to the expansion. The

3rd and 5th diagrams are actually identical because they only di�er by dummy variables.

So we only need to draw one diagram and multiply by its multiplicity, that is, the number
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of ways to swap labels and obtain the same result. That number is n! where n is the order

of the expansion. This cancels precisely the factorial coming from the expansion of the

exponential.

This means we only need to consider the third diagram in the previous expression. The expansion

of G(1, 1′) is therefore very simple since there is only one diagram in each order:

iG(1, 1′) =
t′ tab +

t′ τ1 t

Vab

m b a n
+

t′ τ2 τ1 t

Vab Vcd

m b a d c n
+ · · ·

Up to second order,

iGCnm(t, t′) = igCnm(t, t′) +

∫
C
dτigCna(t, τ)Vab(τ)igCbm(τ, t′)

+

∫
C
dτ1

∫
C
dτ2ig

C
na(t, τ1)Vab(τ1)igCbc(τ1, τ2)Vcd(τ2)igCdm(τ2, t

′).

Or, more compactly in matrix notation:

iGC(t, t′) = igC(t, t′) +

∫
C
dτigC(t, τ)V (τ)igC(τ, t′)

+

∫
C
dτ1

∫
C
dτ2ig

C(t, τ1)V (τ1)igC(τ1, τ2)V (τ2)igC(τ2, t
′). (4.44)

4.2.6 Langreth Rules

Despite the previous sections allowing us to obtain a perturbation expansion of the full Green's

function in terms of contour integrals, these are not the quantities we want. Our goal is to express

everything in terms of real Green's functions like the ones in section 4.2.2. Langreth's rules are a

prescription to do just that. A typical term in the expansion is of the form

C(τ, τ ′) =

∫
C
A(τ, τ1)B(τ1, τ

′)dτ. (4.45)

where both A and B are contour-ordered functions. Just like Green's functions, they have a

real-time counterpart

A(τ, τ ′) =



AT (t, t′) τ, τ ′ ∈
−→
C

A<(t, t′) τ ∈
−→
C and τ ′ ∈

←−
C

A>(t, t′) τ ′ ∈
−→
C and τ ∈

←−
C

AT̃ (t, t′) τ, τ ′ ∈
←−
C

. (4.46)
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And the retarded and advanced functions are de�ned just like before

AR(t, t′) = θ(t− t′)
[
A>(t, t′)−A<(t, t′)

]
(4.47)

Aa(t, t′) = θ(t′ − t)
[
A<(t, t′)−A>(t, t′)

]
. (4.48)

We'll focus on the case where τ ∈
−→
C and τ ′ ∈

←−
C since that's the one we'll use the most. Now

it's just a matter of dividing the contour into its two parts:

C<(t, t′) =

∫
C
A(
−→
t , τ1)B(τ1,

←−
t′ )dτ =

∫ ∞
−∞

A(
−→
t ,
−→
t1 )B(

−→
t1 ,
←−
t′ )dt1 +

∫ −∞
∞

A(
−→
t ,
←−
t1 )B(

←−
t1 ,
←−
t′ )dt1.

The arrows over the time labels refer to the branch in the contour to which they belong. The

forward (backward) arrow refers to the forward (backward) part of the contour. Swap the limits of

the second integral to yield a minus sign and note that the functions now reduce to their real-time

counterparts:

C<(t, t′) =

∫ ∞
−∞

A(
−→
t ,
−→
t1 )B(

−→
t1 ,
←−
t′ )dt1 −

∫ ∞
−∞

A(
−→
t ,
←−
t1 )B(

←−
t1 ,
←−
t′ )dt1

=

∫ ∞
−∞

(
AT (t, t1)B<(t1, t

′)dt1 −A<(t, t1)BT̃ (t1, t
′)
)
dt1.

Time-ordered quantities are not the most useful to calculate, but we can relate them to other

more useful quantities using eqs. 4.25 and 4.26. In terms of these, the previous expression takes

on its �nal form:

C<(t, t′) =

∫ ∞
−∞

[
AR(t, t1)B<(t1, t

′) +A<(t, t1)Ba(t1, t
′)
]
dt1. (4.49)

The other cases follow an identical derivation and can be checked by the diligent reader. The

results are summarized using a simpli�ed matrix notation [11] where C = AB means C(τ, τ ′) =∫
C A(τ, τ1)B(τ1, τ

′)dτ .

C< = ARB< +A<Ba

C> = ARB> +A>Ba

CR = ARBR

Ca = AaBa
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This notation reveals something very interesting. The Langreth rules actually form a closed

space of >, <, R and a operators, the so-called Keldysh space. If we use T and T̃ instead of R

and a, the rules are slightly di�erent but still follow a pattern:

C> = A>BT −AT̃B>

C< = ATB< −A<BT̃

CT = ATBT −A<B>

C T̃ = A>B< −AT̃BT̃ .

We may further increase the level of abstraction by putting these in a matrix

C =

[
CT C<

−C> −C T̃

]
. (4.50)

And the the rules are simply C = AB in this matrix form, that is

[
CT C<

−C> −C T̃

]
=

[
AT A<

−A> −AT̃

][
BT B<

−B> −BT̃

]
. (4.51)

The other set of rules may be obtained from de�ning a di�erent matrix

C ′ =

[
CR C<

0 Ca

]
(4.52)

which can be con�rmed from C ′ = A′B′:

[
CR C<

0 Ca

]
=

[
AR A<

0 Aa

][
BR B<

0 Ba

]
. (4.53)

Higher order expansions such as

D(τ, τ ′) =

∫
C
dτ1

∫
C
dτ2A(τ, τ1)B(τ1, τ2)C(τ2, τ

′) (4.54)

can be seen as

D(τ, τ ′) =

∫
C
dτ1A(τ, τ1)

∫
C
dτ2B(τ1, τ2)C(τ2, τ

′) =

∫
C
dτ1A(τ, τ1)BC(τ1, τ

′) (4.55)

and thus follow the exact same procedure considering BC as the new object. In matrix notation,

D = ABC, which allows us to calculate D<:

D< = AR (BC)< +A< (BC)a = ARBRC< +ARB<Ca +A<BaCa. (4.56)
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The other relations follow the same derivation and all this may be summarized as follows:

D< = ARBRC< +ARB<Ca +A<BaCa

D> = ARBRC> +ARB>Ca +A>BaCa

DR = ARBRCR

Da = AaBaCa.

This concludes the discussion about the Keldysh formalism and we are now ready to begin the

calculations.
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5 Higher order expansions - explicit

calculation

The previous chapter was devoted to developing the tools needed to do perturbation theory. Now

all our e�ort will pay o� because obtaining the expressions in each order will be easier. This next

section is devoted to obtaining the explicit expression of the primary object of study, the Green's

function, up to third order.

5.1 Green's functions

5.1.1 Zeroth order

This order is trivial but nonetheless very important. The system we will be studying, the Tight

Binding Hamiltonian, has a perturbationHext(t) with terms of all orders, so there will be couplings

with the zeroth order term. Its Feynman diagram is

t′ t

This is, by de�nition,

iGC(t, t′) = igC(t, t′). (5.1)

In most of its applications, this zeroth order term will be evaluated at t′ = t, so we should pay

special attention to that case. In the Appendix (eq. 8.32) we may �nd the expression for the

lesser Green's function in the energy basis:

ig<nm(t, t′) = −δnmf(εn)eiεm(t′−t). (5.2)

Taking the case t′ = t, the time dependency is gone

ig<nm(t, t) = −δnmf(εn) = −
∫ ∞
−∞

dεf(ε)δ(ε−H)mn. (5.3)

In frequency space, it has a very simple expression

ig<(ω) = −2π

∫ ∞
−∞

dεf(ε)δ(ε−H)δ(ω). (5.4)
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This is the term that will be responsible for the Fermi functions.

5.1.2 First order

The diagram that represents the �rst order contribution to the perturbation expansion is

t′ τ1 t

Using Feynman's rules, this translates to

iGC(t, t′) =

∫
C
dτigC(t, τ)V (τ)igC(τ, t′). (5.5)

Using Langreth's rules, this integral is promptly converted into a real-time integral in terms of

known Green's functions. Let t′ = t:

iG<(t, t) =

∫ ∞
−∞

dt1
(
igR(t, t1)V (t1)ig<(t1, t) + ig<(t, t1)V (t1)iga(t1, t)

)
. (5.6)

The Green's function only depends on t, so we may express it in frequency space. In order to

keep track of the minus signs inside the Dirac deltas, we'll use the negative frequency −ω instead

of ω.

iG<(−ω) =

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
2πδ(ω1 + ω2 − ω3)2πδ(ω + ω3 − ω1)

×
(
igR(ω1)V (ω2)ig<(ω3) + ig<(ω1)V (ω2)iga(ω3)

)
(5.7)

In the �rst term, we replace ω1 = ω + ω3 and in the second ω3 = ω1 − ω, eliminating the

second delta. The �rst delta becomes δ(ω+ω2) and may be used to eliminate ω2. Now we relabel

the remaining variables, that is ω′ = ω3 in the �rst term and ω′ = ω1 in the second. These

replacements yield a much simpler expression for the �rst order Green's function:

iG<(ω) =

∫
dω′

2π

(
igR(ω′ − ω)V (ω)ig<(ω′) + ig<(ω′)V (ω)iga(ω′ + ω)

)
. (5.8)

The �nal step is to replace ig<(ω′) by its de�nition (eq. 8.43) in terms of the Fermi function

iG<(ω) = −
∫ ∞
−∞

dεf(ε)
(
igR(−ε/h̄− ω)V (ω)δ(ε−H)+ (5.9)

+δ(ε−H)V (ω)iga(−ε/h̄+ ω)) .

This is the expression of Green's function in �rst order.
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5.1.3 Second order

The diagram that represents this order is

t′ τ1 τ2 t

which in algebraic terms is

iGC(2)(t, t) =

∫
C
dτ1

∫
C
dτ2ig

C(t, τ1)V (τ1)igC(τ1, τ2)V (τ2)igC(τ2, t) (5.10)

Using Langreth's rules we get three contributions

iG<(2)(t, t) =

∫
dt1

∫
dt2
{
igR(t, t1)V (t1)igR(t1, t2)V (t2)ig<(t2, t) (5.11)

+ igR(t, t1)V (t1)ig<(t1, t2)V (t2)iga(t2, t) + ig<(t, τ1)V (τ1)iga(τ1, τ2)V (τ2)iga(τ2, t)
}

In frequency space

iG<(2)(−ω) =

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π

∫
dω5

2π
(2π)3 δ(ω5 + ω − ω1)δ(ω1 + ω2 − ω3)δ(ω3 + ω4 − ω5)

×
{
igR(ω1)V (ω2)igR(ω3)V (ω4)ig<(ω5) + igR(ω1)V (ω2)ig<(ω3)V (ω4)iga(ω5) (5.12)

+ ig<(ω1)V (ω2)iga(ω3)V (ω4)iga(ω5)
}

There are many options as to which variables to eliminate using the Dirac deltas, so we'll choose

the most convenient one. The lesser Green's functions will give us the Fermi function, so we'll

want to keep the variable inside g< in each term. This means we'll keep ω5 in the �rst term, ω3

in the second and ω1 in the third. The frequencies in which the perturbation V depends (ω2 and

ω4) will also be kept because we'll use them to de�ne the higher order conductivity. All other

frequencies may be eliminated. The remaining Dirac delta shall be δ(ω + ω2 + ω4), which will

�t nicely with the de�nition of the conductivity. After some relabeling, these considerations turn

the previous expression into

iG<(2)(ω) =

∫
dω1

2π

∫
dω2

2π
2πδ(ω1 + ω2 − ω)

∫
dω′

2π
(5.13)

×
{
igR(ω′ − ω1 − ω2)V (ω1)igR(ω′ − ω2)V (ω2)ig<(ω′)+

+igR(ω′ − ω1)V (ω1)ig<(ω′)V (ω2)iga(ω′ + ω2) +

+ ig<(ω′)V (ω1)iga(ω′ + ω1)V (ω2)iga(ω′ + ω1 + ω2)
}
.
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Again, replacing ig<(ω) we get

iG<(2)(ω) = −
∫
dω1

2π

∫
dω2

2π
2πδ(ω1 + ω2 − ω)

∫ ∞
−∞

dεf(ε)

×
{
igR(−ε/h̄− ω1 − ω2)V (ω1)igR(−ε/h̄− ω2)V (ω2)δ(ε−H)+

+igR(−ε/h̄− ω1)V (ω1)δ(ε−H)V (ω2)iga(−ε/h̄+ ω2) + (5.14)

+ δ(ε−H)V (ω1)iga(−ε/h̄+ ω1)V (ω2)iga(−ε/h̄+ ω1 + ω2)} .

This is the expression of Green's function in second order.

5.1.4 Third order

The diagram that represents this order is

t′ τ1 τ2 τ3 t

which in algebraic terms is

iGC(t, t) =

∫
C
dτ1

∫
C
dτ2

∫
C
dτ3ig

C(t, τ1)V (τ1)igC(τ1, τ2)V (τ2)igC(τ2, τ3)V (τ3)igC(τ3, t). (5.15)

After using Langreth's rules, expressing everything in frequency space and eliminating the Dirac

deltas, we get

iG<(3)(ω) =

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
(2π) δ(ω1 + ω2 + ω3 − ω)

∫
dω′

2π
(5.16)

×
{
igR(ω′ − ω3 − ω2 − ω1)V (ω1)igR(ω′ − ω3 − ω2)V (ω2)igR(ω′ − ω3)V (ω3)ig<(ω′)+

+igR(ω′ − ω2 − ω1)V (ω1)igR(ω′ − ω2)V (ω2)ig<(ω′)V (ω3)iga(ω′ + ω3) +

+igR(ω′ − ω1)V (ω1)ig<(ω′)V (ω2)iga(ω′ + ω2)V (ω3)iga(ω′ + ω3 + ω2) +

+ig<(ω′)V (ω1)iga(ω′ + ω1)V (ω2)iga(ω′ + ω1 + ω2)V (ω3)iga(ω′ + ω1 + ω2 + ω3)
}
.

Replacing ig<(ω),

iG<(3)(ω) = −
∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
(2π) δ(ω1 + ω2 + ω3 − ω)

∫ ∞
−∞

dεf(ε) (5.17)

×
{
igR(−ε/h̄− ω3 − ω2 − ω1)V (ω1)igR(−ε/h̄− ω3 − ω2)V (ω2)igR(−ε/h̄− ω3)V (ω3)δ(ε−H)+

+igR(−ε/h̄− ω2 − ω1)V (ω1)igR(−ε/h̄− ω2)V (ω2)δ(ε−H)V (ω3)iga(−ε/h̄+ ω3) +

+igR(−ε/h̄− ω1)V (ω1)δ(ε−H)V (ω2)iga(−ε/h̄+ ω2)V (ω3)iga(−ε/h̄+ ω3 + ω2) +

+δ(ε−H)V (ω1)iga(−ε/h̄+ ω1)V (ω2)iga(−ε/h̄+ ω1 + ω2)V (ω3)iga(−ε/h̄+ ω1 + ω2 + ω3)} .

This is Green's function in third order.
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5.1.5 New notation

By now we see that the expansions are starting to become too unwieldy. At the same time, a

certain regularity starts to appear. The interaction terms V always appear sandwiched between

two Green's functions, whose type also follows a pattern. There's always one lesser Green's

function; to its left there can only be retarded Green's functions and to its right advanced Green's

functions. This regularity suggests a new simplifying notation: we need only record the number

of retarded Green's functions, since all else is �xed from that. Therefore, de�ne the W x1x2···xn

function, where the upper indices are to be replaced by R or a to re�ect the position of each gR

and ga, respectively. The g< is understood to be to the left of all the ga and to the right of all

the gR. Some examples of this are

W a(ε, ω2;ω3) = δ(ε−H)V (ω2)iga(ω3) (5.18)

WRR(ω2, ω4, ε;ω1, ω3) = igR(ω1)V (ω2)igR(ω3)V (ω4)δ(ε−H) (5.19)

WRaa(ω2, ε, ω4, ω6;ω1, ω3, ω5) = igR(ω1)V (ω2)δ(ε−H)V (ω4)iga(ω5)V (ω6)iga(ω7).(5.20)

The semicolon separates the arguments that belong to the retarded and advanced Green's func-

tions from the ones that belong to the external interactions and the Dirac delta. The arguments

always appear by order. There's still another regularity, this time in the deltas. Looking at the

various ωi as part of a cycle, that is ω → ω1 → ω2 → · · · → ω2n+1 → ω, the deltas consist of all

the combinations δ(ωi + ωi+1 − ωi+2) of odd i. Let ∆n be the product of all those combinations

multiplied by (2π)n+1, where n is the order of the perturbation. Some examples:

∆1 = (2π)2 δ(ω3 + ω − ω1)δ(ω1 + ω2 − ω3) (5.21)

∆2 = (2π)3 δ(ω5 + ω − ω1)δ(ω1 + ω2 − ω3)δ(ω3 + ω4 − ω5) (5.22)

∆3 = (2π)4 δ(ω7 + ω − ω1)δ(ω1 + ω2 − ω3)δ(ω3 + ω4 − ω5)δ(ω5 + ω6 − ω7). (5.23)

These considerations allow for a very compact way to write the expansion. Omitting the

frequency arguments, the formulas obtained in the previous section are

iG<(1)(−ω) =

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

(
WR +W a

)
∆1 (5.24)

iG<(2)(−ω) =

∫
dω1

2π
· · · dω5

2π

(
WRR +WRa +W aa

)
∆2 (5.25)

iG<(3)(−ω) =

∫
dω1

2π
· · · dω7

2π

(
WRRR +WRRa +WRaa +W aaa

)
∆3. (5.26)
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We'll be using these expressions later on, so we should make their arguments explicit. Looking

at eqs. 5.9, 5.14 and 5.17, we need only match the arguments.

iG<(1)(ω) = −
∫ ∞
−∞

dεf(ε)
(
WR(ω, ε;−ε/h̄− ω) +W a(ε, ω;−ε/h̄+ ω)

)
(5.27)

iG<(2)(ω) = −
∫
dω1

2π

∫
dω2

2π
2πδ(ω1 + ω2 − ω)

∫ ∞
−∞

dεf(ε) (5.28){
WRR(ω1, ω2, ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2)+

+WRa(ω1, ε, ω2;−ε/h̄− ω1,−ε/h̄+ ω2) +

+W aa(ε, ω1, ω2;−ε/h̄+ ω1,−ε/h̄+ ω1 + ω2)}

iG<(3)(ω) = −
∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
(2π) δ(ω1 + ω2 + ω3 − ω)

∫ ∞
−∞

dεf(ε) (5.29)

×
{
WRRR(ω1, ω2, ω3, ε;−ε/h̄− ω3 − ω2 − ω1,−ε/h̄− ω3 − ω2,−ε/h̄− ω3)+

+WRRa(ω1, ω2, ε, ω3;−ε/h̄− ω2 − ω1,−ε/h̄− ω2,−ε/h̄+ ω3) +

+WRaa(ω1, ε, ω2, ω3;−ε/h̄− ω1,−ε/h̄+ ω2,−ε/h̄+ ω3 + ω2) +

+W aaa(ε, ω1, ω2, ω3;−ε/h̄+ ω1,−ε/h̄+ ω2 + ω1,−ε/h̄+ ω3 + ω2 + ω1)} .

5.1.6 Even higher orders

Although a rigorous proof is not provided, this notation reveals that the next orders should follow

the exact same pattern: the sum of all the W functions integrated over all the frequencies with

the appropriate ∆ function:

iG<(n)(−ω) =

∫
dω1

2π
· · · dω2n+1

2π

(
WR···R + · · ·+W a···a)∆n. (5.30)

Easy to write, the notation hides the true monstrosity that is an n-th order expansion.

5.2 Expansion of the Tight Binding Hamiltonian

So far, this is valid for any time-dependent non-interacting operator V (t). The case we want

to study, the tight binding Hamiltonian, is a particular case of this, but one in which the time-

dependent interaction is itself a series of the external �eld A. This makes matters slightly more

di�cult, because there will be numerous contributions in each order in A from all the terms in

the Green's function.

Consider the tight binding Hamiltonian written in the Wannier basis:

H =
∑
Ri,Rj

∑
σ1,σ2

tσ1σ2 (Ri −Rj) c
†
σ1

(Ri)cσ2 (Rj) . (5.31)
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The Ri represent the lattice sites and the σi the other degrees of freedom unrelated to the

translational symmetry, such as the orbitals and spin. This may be expressed in momentum

space by de�ning

tσ1σ2 (Ri −Rj) =
1

V

∑
k

εσ1σ2(k)eik·(Ri−Rj) (5.32)

cσ (Ri) =
1

V

∑
k

cσ (k) eik·Ri (5.33)

and

c†σ (Ri) =
1

V

∑
k

c†σ (k) e−ik·Ri (5.34)

turning the Hamiltonian into

H =
1

V

∑
σ1,σ2

∑
k

εσ1σ2(k)c†σ1
(k) cσ2 (k) . (5.35)

The electromagnetic �eld is introduced through Peierls' substitution [12], so the Hamiltonian

acquires the form

HA =
∑
Ri,Rj

∑
σ1,σ2

e
−ie
h̄

∫Ri
Rj

A(r′,t)·dr′
tσ1σ2 (Ri −Rj) c

†
σ1

(Ri)cσ2 (Rj) . (5.36)

If we want to introduce both a magnetic and an electric �eld, we may use the following vector

potential:

A(r, t) = A1(r) +A2(t). (5.37)

The electric and magnetic �elds are obtained from E(t) = −∂A2(t)
∂t and B(r) = ∇ ×A1(r).

The introduction of the magnetic �eld only changes the tσσ′ , but the exponent no longer depends

on the di�erence of positions. It is possible to overcome this obstacle by carefully choosing the

vector potential, but that would require a whole discussion of its own. For that reason, we'll

forget the magnetic �eld for now and focus on the electric �eld. The position-dependent part of

the vector potential may thus be disregarded:

HA =
∑
Ri,Rj

∑
σ1,σ2

e
−ie
h̄
A(t)·(Ri−Rj)tσ1σ2 (Ri −Rj) c

†
σ1

(Ri)cσ2 (Rj) (5.38)
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In momentum space this becomes

HA =
1

V

∑
σ1,σ2

∑
k

εσ1σ2

(
k +

e

h̄
A(t)

)
c†σ1

(k) cσ2 (k) (5.39)

which closely resembles the minimal coupling procedure. Expanding the exponential in real space,

we get

HA (t) =
∑
Ri,Rj

∑
σ1,σ2

(
1 +
−ie
h̄
A(t) · (Ri −Rj) +

[
−ie
h̄
A(t) · (Ri −Rj)

]2

+ · · ·

)
×tσ1σ2 (Ri −Rj) c

†
σ1

(Ri)cσ2 (Rj)

=
∑
Ri,Rj

∑
σ1,σ2

tσ1σ2 (Ri −Rj) c
†
σ1

(Ri)cσ2 (Rj) +

+
−ie
h̄
Aα(t)

∑
Ri,Rj

∑
σ1,σ2

(
Rαi −Rαj

)
tσ1σ2 (Ri −Rj) c

†
σ1

(Ri)cσ2 (Rj) +

+
1

2!

(
−ie
h̄

)2

Aα(t)Aβ(t)
∑
Ri,Rj

∑
σ1,σ2

(
Rαi −Rαj

) (
Rβi −R

β
j

)
×tσ1σ2 (Ri −Rj) c

†
σ1

(Ri)cσ2 (Rj) + · · ·

= H0 + eAα(t)vα +
1

2!
e2Aα(t)Aβ(t)vαβ + · · · (5.40)

where we have de�ned

vα1···αn =
1

en
∂

∂Aα1
· · · ∂

∂Aαn
HA|A=0

=

(
−i
h̄

)n ∑
Ri,Rj

∑
σ1,σ2

(Rα1
i −R

α1
j ) · · · (Rαni −R

αn
j )tσ1σ2 (Ri −Rj) c

†
σ1

(Ri)cσ2 (Rj) .

=

(
−i
h̄

)n
[Rα1 , · · · [Rαn , HA]]

In �rst order, this is just the velocity operator. We can identify the external perturbation from

this:

Hext(t) = eAα(t)vα +
1

2!
e2Aα(t)Aβ(t)vαβ + · · · . (5.41)

In a similar fashion, the current Jα = − 1
V

∂H
∂Aα also follows a series expansion:

Jα(t) = − e
V

(
vα + evαβAβ2 (t) +

e2

2!
vαβγAβ2 (t)Aγ2(t) +

e3

3!
vαβγδAβ2 (t)Aγ2(t)Aδ2(t) + · · ·

)
. (5.42)

If the Hamiltonian is written in momentum space, the vα1···αn operators are recognized as the

derivatives of εσ1σ2 (k).
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Their matrix elements are

vα1···αn
σ1σ2

(k) =
1

(−h̄)n
∂

∂kα1
· · · ∂

∂kαn
εσ1σ2 (k) . (5.43)

This is all the information we need to compute the expected value of Jα. Some care has to be

taken, though, as now each term in the perturbative expansion of the previous chapter is itself

a whole series. In the next section, we'll take the Green's functions calculated in the previous

section and expand the interaction terms in this series.

5.2.1 Green's function series

We're going to take the Green's functions, order by order, and replace each of the V by their

series expansion

V =
−i
h̄
Hext =

−i
h̄

(
evαAα +

e2

2!
vαβAαAβ +

e3

3!
vαβγAαAβAγ + · · ·

)
. (5.44)

The Green's functions are expressed in frequency space, so we'll need to calculate the Fourier

transform of the product of external �elds. In second and third orders, these are, respectively∫ ∞
−∞

dteiωtAα(t)Aβ(t) =

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
(2π) δ(ω1 + ω2 − ω)Aα(ω1)Aβ(ω2) (5.45)

and ∫ ∞
−∞

dteiωtAα(t)Aβ(t)Aγ(t) (5.46)

=

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π

∫ ∞
−∞

dω3

2π
(2π) δ(ω1 + ω2 + ω3 − ω)Aα(ω1)Aβ(ω2)Aγ(ω3).

These will �t nicely with the de�nition of higher-order conductivities.

5.2.1.1 Green's functions - Zeroth order

In this order, we get exactly the same thing as before because there is no interaction

iG<(0)(t, t′) = ig<(t, t′). (5.47)

Taking t′ = t and moving on to frequency space,

iG<(0)(ω) = −2π

∫ ∞
−∞

dεf(ε)δ(ε−H)δ(ω). (5.48)
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5.2.1.2 Green's functions - First order in V

Starting from eq. 5.9, we need to replace each V (t) by its series in A(t). To simplify bookkeeping,

we shall adopt a notation to distinguish each contribution. Let iG<(V n,Am) represent the n-th

order expansion in V of the Green's function, which, in its turn has been expanded in m-th order

in A. In this notation, we may say, for example, that

iG<(V 1) =
∞∑
m=0

iG<(V,Am) (5.49)

where iG<(1V ) is just eq. 5.9 from before:

iG<(V 1)(ω) = −
∫ ∞
−∞

dεf(ε)
(
WR(ω, ε;−ε/h̄− ω) +W a(ε, ω;−ε/h̄+ ω)

)
.

With this notation in mind, it becomes clear that we need a new notation for the W functions

as they now may include di�erent types of vα1···αn operators. Each operator will be represented

by its indices, using commas to separate the various operators. Their order is preserved. Some

examples are

Wαβγ
a (ε;ω3) = δ(ε−H)vαβγiga(ω3)

Wα,βγ
RR (ε;ω1, ω3) = igR(ω1)vαigR(ω3)vβγδ(ε−H)

Wα,β,γ
Raa (ε;ω1, ω3, ω5) = igR(ω1)vαδ(ε−H)vβiga(ω5)vγiga(ω7)

Note that the frequencies belonging to the interactions have been removed because they are

now outside the W functions. Up to third order in A we obtain:

iG<(V 1,A1)(ω) =
ie

h̄

∫ ∞
−∞

dεf(ε) [Wα
R(ε;−ε/h̄− ω) +Wα

a (ε;−ε/h̄+ ω)]Aα(ω)

iG<(V 1,A2)(ω) =
ie2

2! h̄

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
(2π) δ(ω1 + ω2 − ω)Aα(ω1)Aβ(ω2)

×
∫ ∞
−∞

dεf(ε)
[
Wαβ
R (ε;−ε/h̄− ω) +Wαβ

a (ε;−ε/h̄+ ω)
]

iG<(V 1,A3)(ω) =
ie3

3! h̄

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π

∫ ∞
−∞

dω3

2π
(2π) δ(ω1 + ω2 + ω3 − ω)Aα(ω1)Aβ(ω2)Aγ(ω3)

×
∫ ∞
−∞

dεf(ε)
[
Wαβγ
R (ε;−ε/h̄− ω) +Wαβγ

a (ε;−ε/h̄+ ω)
]
.
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5.2.1.3 Green's functions - Second order in V

Using eq. 5.12, there are no terms of order lower than second order, since we have two factors of

V :

iG<(V 2)(ω) =

∫
dω1

2π

∫
dω2

2π
2πδ(ω1 + ω2 − ω)

∫
dω′

2π

×
{
igR(ω′ − ω1 − ω2)V (ω1)igR(ω′ − ω2)V (ω2)ig<(ω′)+

+igR(ω′ − ω1)V (ω1)ig<(ω′)V (ω2)iga(ω′ + ω2) +

+ ig<(ω′)V (ω1)iga(ω′ + ω1)V (ω2)iga(ω′ + ω1 + ω2)
}
.

The term in second-order in A is rather straightforward because there can only be one contri-

bution from each V :

iG<(V 2,A2)(ω) = −
(
−ie
h̄

)2 ∫ dω1

2π

∫
dω2

2π
2πδ(ω1 + ω2 − ω)Aα(ω1)Aβ(ω2)

∫ ∞
−∞

dεf(ε)

×
{
Wα,β
RR (ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2)+

+Wα,β
Ra (ε;−ε/h̄− ω1,−ε/h̄+ ω2) +

+ Wα,β
aa (ε;−ε/h̄+ ω1,−ε/h̄+ ω1 + ω2)+

}
but the third-order term is slightly trickier since we need to replace one of the V by the second-

order expression and the other one by the �rst-order one, and there are two ways of doing that.

The result is

iG<(2V,3A)(ω) =

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
(2π) δ(ω1 + ω2 + ω3 − ω)Aα(ω1)Aβ(ω2)Aγ(ω3)

× (−1)

(
−ie
h̄

)(
−ie2

2! h̄

)∫ ∞
−∞

dεf(ε)

×
{
Wα,βγ
RR (ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2 − ω3)+

+Wαβ,γ
RR (ε;−ε/h̄− ω1 − ω2 − ω3,−ε/h̄− ω3) +

+Wα,βγ
Ra (, ε;−ε/h̄− ω1,−ε/h̄+ ω2 + ω3) +

+Wαβ,γ
Ra (, ε;−ε/h̄− ω1 − ω2,−ε/h̄+ ω3) +

+Wα,βγ
aa (ε;−ε/h̄+ ω1,−ε/h̄+ ω1 + ω2 + ω3) +

+Wαβ,γ
aa (ε;−ε/h̄+ ω1 + ω2,−ε/h̄+ ω1 + ω2 + ω3)

}
.

These are all the expansions up to third order in A coming from the second-order Green's

functions.
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5.2.1.4 Green's functions - Third order in V

This one is the easiest because there is only one term. Using eq. 5.17, all we need to to is replace

V by −ieh̄ Aαvα. The result is

iG<(3V,3A)(ω) = −
(
−ie
h̄

)3 ∫ dω1

2π

∫
dω2

2π

∫
dω3

2π
(2π) δ(ω1 + ω2 + ω3 − ω)Aα(ω1)Aβ(ω2)Aγ(ω3)

×
∫ ∞
−∞

dεf(ε)
{
Wαβγ
RRR(ε;−ε/h̄− ω3 − ω2 − ω1,−ε/h̄− ω3 − ω2,−ε/h̄− ω3)+

+Wαβγ
RRa(ε;−ε/h̄− ω2 − ω1,−ε/h̄− ω2,−ε/h̄+ ω3) +

+Wαβγ
Raa (ε;−ε/h̄− ω1,−ε/h̄+ ω2,−ε/h̄+ ω3 + ω2) +

+Wαβγ
aaa (ε;−ε/h̄+ ω1,−ε/h̄+ ω2 + ω1,−ε/h̄+ ω3 + ω2 + ω1)

}
Up to third order, we have thus calculated all the terms that will contribute to the current.

This will make our next step easier, since we've already isolated all the terms in each order in A.

Now we're �nally going to use this to calculate the expected value of the current.

5.2.2 Grouping up the terms in A

For referencing purposes, here are all the terms we've calculated so far, grouped by order in A.

5.2.2.1 Green's functions - Zeroth order in A

iG<(A0)(ω) = −2π

∫ ∞
−∞

dεf(ε)δ(ε−H)δ(ω) (5.50)

5.2.2.2 Green's functions - First order in A

iG<(A1)(ω) =
ie

h̄

∫ ∞
−∞

dεf(ε) [Wα
R(ε;−ε/h̄− ω) +Wα

a (ε;−ε/h̄+ ω)]Aα(ω)

5.2.2.3 Green's functions - Second order in A

iG<(A2)(ω) =

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
(2π) δ(ω1 + ω2 − ω)Aα(ω1)Aβ(ω2)

∫ ∞
−∞

dεf(ε)

×e2

{
i

2h̄

[
Wαβ
R (ε;−ε/h̄− ω) +Wαβ

a (ε;−ε/h̄+ ω)
]

+

1

h̄2

[
Wα,β
RR (ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2)+

Wα,β
Ra (ε;−ε/h̄− ω1,−ε/h̄+ ω2) +Wα,β

aa (ε;−ε/h̄+ ω1,−ε/h̄+ ω1 + ω2)
]}
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5.2.2.4 Green's functions - Third order in A

iG<(A3)(ω) =

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π

∫ ∞
−∞

dω3

2π
(2π) δ(ω1 + ω2 + ω3 − ω)Aα(ω1)Aβ(ω2)Aγ(ω3)

×
∫ ∞
−∞

dεf(ε)

{
ie3

3! h̄

[
Wαβγ
R (ε;−ε/h̄− ω) +Wαβγ

a (ε;−ε/h̄+ ω)
]

+

+
e3

2! h̄2

[
Wα,βγ
RR (ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2 − ω3)+

+Wαβ,γ
RR (ε;−ε/h̄− ω1 − ω2 − ω3,−ε/h̄− ω3) +

+Wα,βγ
Ra (, ε;−ε/h̄− ω1,−ε/h̄+ ω2 + ω3) +

+Wαβ,γ
Ra (, ε;−ε/h̄− ω1 − ω2,−ε/h̄+ ω3) +

+Wα,βγ
aa (ε;−ε/h̄+ ω1,−ε/h̄+ ω1 + ω2 + ω3) +

+Wαβ,γ
aa (ε;−ε/h̄+ ω1 + ω2,−ε/h̄+ ω1 + ω2 + ω3)

]
−ie3

h̄3

[
Wαβγ
RRR(ε;−ε/h̄− ω3 − ω2 − ω1,−ε/h̄− ω3 − ω2,−ε/h̄− ω3)+

+Wαβγ
RRa(ε;−ε/h̄− ω2 − ω1,−ε/h̄− ω2,−ε/h̄+ ω3) +

+Wαβγ
Raa (ε;−ε/h̄− ω1,−ε/h̄+ ω2,−ε/h̄+ ω3 + ω2) +

+Wαβγ
aaa (ε;−ε/h̄+ ω1,−ε/h̄+ ω2 + ω1,−ε/h̄+ ω3 + ω2 + ω1)

]}
5.3 Calculation of the current from the Green's functions

First, we need to evaluate the expected value of the vα1···αn operators. Expressing them in their

second-quantized form, we see that the average falls into the creation and annihilation operators,

which yields the lesser Green's function. Written in an arbitrary basis,

〈vα1···αn(t)〉 =

〈∑
ij

vα1···αn
ij c†i (t)cj(t)

〉
=
∑
ij

vα1···αn
ij iG<ji(t, t) = Tr

[
vα1···αniG<(t, t)

]
. (5.51)

Taking the expected value of the current in eq. 5.42 we get, up to third order

〈Jα(t)〉 = − e
V
〈vα(t)〉 − e2

V

〈
vαβ(t)

〉
Aβ(t)− 1

2!

e3

V

〈
vαβγ(t)

〉
Aβ(t)Aγ(t) + (5.52)

− 1

3!

e4

V

〈
vαβγδ(t)

〉
Aβ(t)Aγ(t)Aδ(t) + · · ·

= − e
V
Tr
[
vαiG<(t, t)

]
− e2

V
Tr
[
vαβiG<(t, t)

]
Aβ(t) +

− 1

2!

e3

V
Tr
[
vαβγiG<(t, t)

]
Aβ(t)Aγ(t)− 1

3!

e4

V
Tr
[
vαβγδiG<(t, t)

]
Aβ(t)Aγ(t)Aδ(t) + · · ·
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or, in frequency space,

〈Jα(ω)〉 (5.53)

= − e
V
Tr
[
vαiG<(ω)

]
− e2

V

∫
dω1

2π

dω2

2π
Tr
[
vαβiG<(ω1)

]
Aβ(ω2)2πδ(ω1 + ω2 − ω)

− 1

2!

e3

V

∫
dω1

2π

dω2

2π

dω3

2π
Tr
[
vαβγiG<(ω1)

]
Aβ(ω2)Aγ(ω3)2πδ(ω1 + ω2 + ω3 − ω)

− 1

3!

e4

V

∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π
Tr
[
vαβγδiG<(ω1)

]
Aβ(ω2)Aγ(ω3)Aδ(ω4)2πδ(ω1 + ω2 + ω3 + ω4 − ω)

+ · · · .

As if it weren't enough that the Green's function mixes terms from all orders in A, so does the

current. What we have to do now is plug in the expansion of the Green's function and collect the

terms order by order. But �rst, let's see how to de�ne the conductivity in higher orders

5.4 Conductivity

The conductivity in momentum space is simply the factor that multiplies the electric �eld when

calculating the expected value of the current. To generalize it, we use the following formula:

〈Jα(ω)〉 = σαβ(ω)Eβ(ω) +

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
σαβγ(ω1, ω2)Eβ(ω1)Eγ(ω2)δ(ω1 + ω2 − ω)

+

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π

∫ ∞
−∞

dω3

2π
σαβγδ(ω1, ω2, ω3)

×Eβ(ω1)Eγ(ω2)Eδ(ω3)δ(ω1 + ω2 + ω3 − ω) + · · · . (5.54)

We are now ready to �nally obtain the conductivity.

5.4.1 Zeroth order

As we should expect, there is no zeroth order contribution to the current. There needs to be an

applied external �eld for the current to exist. Using the de�nition of the velocity operator, the

zeroth order current is

〈Jα(t)〉 = − e
V
Tr [vα] =

ie

V h̄
Tr [rαH −Hrα] = 0 (5.55)

where r is the position operator. The cyclic property of the trace guarantees that this term is

zero.
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5.4.2 First order

Collecting the �rst order terms in 5.53 we obtain

〈Jα(ω)〉 = − e
V
Tr
[
vαiG<(A1)(ω)

]
− e2

V

∫
dω1

2π

dω2

2π
Tr
[
vαβiG<(A0)(ω1)

]
Aβ(ω2)2πδ(ω1 + ω2 − ω).

(5.56)

Plugging in the required order of the Green's function, we get

〈Jα(ω)〉 = − ie
2

h̄V

∫ ∞
−∞

dεf(ε)Tr
[
vα
(
W β
R(ε;−ε/h̄− ω) +W β

a (ε;−ε/h̄+ ω)
)] Eβ(ω)

iω

+
e2

V

∫ ∞
−∞

dεf(ε)Tr
[
vαβδ(ε−H)

] Eβ(ω)

iω
. (5.57)

We have already done the replacement Aα(ω) = Eα(ω)
iω because now we can immediately recog-

nize the factor multiplying Eβ(ω) as the conductivity.

σαβ(ω) =
−4σ0

V

∫ ∞
−∞

dε
f(ε)

ω
Tr
{[
vαW β

R(ε;−ε/h̄− ω) + vαW β
a (ε;−ε/h̄+ ω)

]
(5.58)

+ih̄Tr
[
vαβδ(ε−H)

]}
Here we have de�ned the universal conductivity of graphene σ0 = e2/4h̄

5.4.3 Second order

Like before, collect the second order contributions

〈Jα(ω)〉 = − e
V
Tr
[
vαiG<(A2)(ω)

]
− e2

V

∫
dω1

2π

dω2

2π
Tr
[
vαβiG<(A1)(ω1)

]
Aβ(ω2)2πδ(ω1 + ω2 − ω)

− 1

2!

e3

V

∫
dω1

2π

dω2

2π

dω3

2π
Tr
[
vαβγiG<(A0)(ω1)

]
Aβ(ω2)Aγ(ω3)2πδ(ω1 + ω2 + ω3 − ω) (5.59)

The �rst term is

− e
V
Tr
[
vαiG<(A2)(ω)

]
= −e

3

V

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
(2π) δ(ω1 + ω2 − ω)Aβ(ω1)Aγ(ω2)

∫ ∞
−∞

dεf(ε)

×
{
i

2h̄
Tr
[
vα
(
W βγ
R (ε;−ε/h̄− ω) +W βγ

a (ε;−ε/h̄+ ω)
)]

+

+
1

h̄2Tr
[
vα
(
W β,γ
RR (ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2) +

+W β,γ
Ra (ε;−ε/h̄− ω1,−ε/h̄+ ω2) +

+W β,γ
aa (ε;−ε/h̄+ ω1,−ε/h̄+ ω1 + ω2)

)]}
. (5.60)
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The second term:

−e
2

V

∫
dω1

2π

dω2

2π
Tr
[
vαβiG<(A1)(ω1)

]
Aβ(ω2)2πδ(ω1 + ω2 − ω)

= − ie
3

V h̄

∫
dω1

2π

dω2

2π
2πδ(ω1 + ω2 − ω)Aβ(ω1)Aγ(ω2)

∫ ∞
−∞

dεf(ε)

×Tr
[
vαβ

(
W γ
R(ε;−ε/h̄− ω2) +W γ

a (ε;−ε/h̄+ ω2)
)]

(5.61)

Third term:

− 1

2!

e3

V

∫
dω1

2π

dω2

2π

dω3

2π
Tr
[
vαβγiG<(A0)(ω1)

]
Aβ(ω2)Aγ(ω3)2πδ(ω1 + ω2 + ω3 − ω)

=
1

2!

e3

V

∫
dω1

2π

dω2

2π
Aβ(ω1)Aγ(ω2)2πδ(ω1 + ω2 − ω)

∫ ∞
−∞

dεf(ε)Tr
[
vαβγδ(ε−H)

]
(5.62)

Summing it all up, and replacing Aα(ω) = Eα(ω)
iω we obtain

〈Jα(ω)〉 = −e
3

V

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
(2π) δ(ω1 + ω2 − ω)

Eβ(ω1)

iω1

Eγ(ω2)

iω2

∫ ∞
−∞

dεf(ε)

×
{
i

2h̄
Tr
[
vαW βγ

R (ε;−ε/h̄− ω) + vαW βγ
a (ε;−ε/h̄+ ω)

]
+

+
1

h̄2Tr
[
vαW β,γ

RR (ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2)+

+vαW β,γ
Ra (ε;−ε/h̄− ω1,−ε/h̄+ ω2) +

+vαW β,γ
Ra (ε;−ε/h̄− ω1,−ε/h̄+ ω2)

)]
+
i

h̄
Tr
[
vαβW γ

R(ε;−ε/h̄− ω2) + vαβW γ
a (ε;−ε/h̄+ ω2)

]
−1

2
Tr
[
vαβγδ(ε−H)

]}
. (5.63)

Comparing with eq. 5.54, we may identify the second order conductivity as

σαβγ(ω1, ω2)

= − e3

V iω1iω2

∫ ∞
−∞

dεf(ε)

{
i

2h̄
Tr
[
vα
(
W βγ
R (ε;−ε/h̄− ω) +W βγ

a (ε;−ε/h̄+ ω)
)]

+

+
1

h̄2Tr
[
vα
(
W β,γ
RR (ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2)+ (5.64)

+W β,γ
Ra (ε;−ε/h̄− ω1,−ε/h̄+ ω2) +W β,γ

aa (ε;−ε/h̄+ ω1,−ε/h̄+ ω1 + ω2

)]
+
i

h̄
Tr
[
vαβ

(
W γ
R(ε;−ε/h̄− ω2) +W γ

a (ε;−ε/h̄+ ω2)
)]
− 1

2
Tr
[
vαβγδ(ε−H)

]}
.
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5.4.4 Third order

Collecting the third order contributions, the current is, formally,

〈Jα(ω)〉 = − e
V
Tr
[
vαiG<(ω)

]
− e2

V

∫
dω1

2π

dω2

2π
Tr
[
vαβiG<(ω1)

]
Aβ(ω2)2πδ(ω1 + ω2 − ω)

− 1

2!

e3

V

∫
dω1

2π

dω2

2π

dω3

2π
Tr
[
vαβγiG<(ω1)

]
Aβ(ω2)Aγ(ω3)2πδ(ω1 + ω2 + ω3 − ω) (5.65)

− 1

3!

e4

V

∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π
Tr
[
vαβγδiG<(ω1)

]
Aβ(ω2)Aγ(ω3)Aδ(ω4)2πδ(ω1 + ω2 + ω3 + ω4 − ω).

This one is done in exactly the same way as the other ones and is left as an exercise to the

reader. This will not be calculated because it is too computationally expensive to use. See Section

6.8 for a more thorough justi�cation.

87





6 Kernel Polynomial Method - KPM

Up until now, we have obtained expressions for the current using the Keldysh formalism and

insisted in expressing them as traces of quantum mechanical operators. This allows us to have a

basis-independent description, which is very useful because we can choose the most convenient one

when doing the numerical calculations. In this chapter, we'll see how to express these formulas

in terms of something we can calculate numerically. To achieve that, we �rst need to delve

into the Kernel Polynomial Method (KPM), which uses Chebyshev polynomials to establish a

recursion relation between the numerical objects we need to calculate. This eliminates a whole

lot of redundancy and makes KPM an e�cient method of calculating traces of operators.

6.1 Chebyshev Polynomials

The point of this section is to introduce the Chebyshev polynomials and to show how a function

may be expanded in a series of Chebyshev polynomials. We could have used another set of

polynomials, but these satisfy a simple recursion relation and have good convergence properties

[4], which make them ideal for numerical calculations.

6.1.1 De�nition

The Chebyshev polynomials are de�ned in the range ]-1,1[ and the n-th polynomial may be

generated using the following de�nition and the properties of trigonometric functions:

Tn(x) = cos(n arccos(x)). (6.1)

Using this formula, we may �nd the �rst few polynomials:

T0(x) = 1 (6.2)

T1(x) = x (6.3)

T2(x) = 2x2 − 1 (6.4)

T3(x) = 4x3 − 3x (6.5)

89



6.2. EXPANSION OF FUNCTIONS IN TERMS OF CHEBYSHEV POLYNOMIALS

6.1.2 Recursion relation

The Chebyshev polynomials satisfy the recursion relation

Tm+1(x) = 2xTm(x)− Tm−1(x) (6.6)

which may be proven directly from de�nition by replacing x = cos(θ):

Tn+1(cos(θ)) + Tn−1(cos(θ)) = cos((n+ 1)θ) + cos((n− 1)θ)

= cos(nθ) cos(θ)− sin(nθ) sin(θ) + cos(nθ) cos(θ) + sin(nθ) sin(θ)

= 2 cos(nθ) cos(θ) = 2 cos(θ)Tn(cos(θ)). (6.7)

This means that from just the �rst two polynomials, all the others may be reconstructed.

6.1.3 Orthogonality

They also satisfy an orthogonality relation,

∫ 1

−1

dx

π
√

1− x2
Tn(x)Tm(x) =

1 + δn0

2
δnm (6.8)

which is a direct consequence of the orthogonality of Fourier components upon the change of

variables x = cos(θ):

∫ 0

π

1

π sin(θ)
cos(nθ) cos(mθ) [− sin(θ)] dθ =

1

π

∫ π

0
cos(nθ) cos(mθ)dθ =

1 + δn0

2
δnm (6.9)

It's this close relationship between the Chebyshev and Fourier series that gives them many of

their properties. The fact that they're orthogonal to one another means that a function may be

easily expanded in terms of Chebyshev polynomials.

6.2 Expansion of functions in terms of Chebyshev polynomials

Any integrable function f :] − 1, 1[→ R may be expressed in terms of a sum of Chebyshev

polynomials

f(x) =

∞∑
n=0

anTn(x). (6.10)

These an coe�cients may be found using the orthogonality relations

∫ 1

−1

dx

π
√

1− x2
Tm(x)f(x) =

∞∑
n=0

an

∫ 1

−1

dx

π
√

1− x2
Tm(x)Tn(x) =

∞∑
n=0

an
1 + δn0

2
δnm = am

1 + δm0

2

(6.11)
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Therefore the coe�cients are

an =
2

1 + δn0

∫ 1

−1

dx

π
√

1− x2
Tn(x)f(x). (6.12)

In principle, this is enough to obtain the expansion. However, for some practical calculations,

it may be easier to use a di�erent set of coe�cients:

f(x) =
1

π

1√
1− x2

∞∑
n=0

2bn
1 + δn0

Tn(x). (6.13)

That way, we do not have to deal with square roots inside the integral. These new coe�cients

are

bn =

∫ 1

−1
dxTn(x)f(x). (6.14)

Let's now apply this to the functions of our interest. Looking at the results obtained in the

previous chapter, we see the Dirac deltas and Green's functions are the only objects that depend

on the Hamiltonian operator. In general, they cannot be calculated directly, so we'll �rst expand

them in Chebyshev polynomials and then sum the series.

6.2.1 Dirac delta

We're looking to expand δ(x− ε), which depends on two variables. Later on, one of them will be

an operator so let's try and isolate it out by searching for an expansion of the form

δ(x− ε) =
∞∑
n=0

∆n(ε)

1 + δn0
Tn(x). (6.15)

Assuming both x and ε are in the ]− 1, 1[ range, the orthogonality relations give us the ∆n(ε)

∫ 1

−1

dx

π
√

1− x2
Tm(x)δ(x− ε) =

∞∑
n=0

∫ 1

−1

dx

π
√

1− x2
Tm(x)Tn(x)

∆n(ε)

1 + δn0
=

∆m(ε)

2
(6.16)

and the left-hand side of the equation may be calculated easily:

2

∫ 1

−1

dx

π
√

1− x2
Tm(x)δ(x− ε) =

2Tm(ε)

π
√

1− ε2
= ∆m(ε). (6.17)

This means the expansion of the Dirac delta is

δ(x− ε) =
1

π

1√
1− ε2

[
1 + 2

∞∑
n=1

Tn(ε)Tn(x)

]
(6.18)

91



6.2. EXPANSION OF FUNCTIONS IN TERMS OF CHEBYSHEV POLYNOMIALS

Using the bn coe�cients, we would have obtained

δ(x− ε) =
1

π

1√
1− x2

[
1 + 2

∞∑
n=1

Tn(ε)Tn(x)

]
. (6.19)

The only di�erence is the argument of the square root.

6.2.2 Green's functions

Consider the Green's function with a �nite λ > 0 that accounts for dispersion [13]:

gσ,λ(ε, h) =
−1

ε− h+ iσλ
= σi

∫ ∞
0

dteσi(ε+h+iσλ)t. (6.20)

This is also a two-variable function in which we want to achieve a separation between ε and h

in the polynomial expansion, so let us look for an expression of the form

gσ,λ(ε, h) =
∞∑
n=0

gσ,λn (ε)

1 + δn0
Tn(h). (6.21)

The function gσ,λn (ε) may be calculated applying the orthogonality relations.

gσ,λn (ε) = 2

∫ 1

−1

dh

π
√

1− h2
Tm(h)gσ,λ(ε, h) (6.22)

The calculation will be done using gσ,λ in its integral form since it's simpler to integrate.

gσ,λn (ε) = 2

∫ 1

−1

dh

π
√

1− h2
Tn(h)σi

∫ ∞
0

dteσi(ε−h+iσλ)t (6.23)

Separating the exponential we are able to isolate the term that depends on h and integrate it

explicitly.

gσ,λn (ε) = 2σi

∫ ∞
0

dteσi(ε+iσλ)t

∫ 1

−1

dh

π
√

1− h2
Tn(h)e−σiht (6.24)

Now we may identify the second integral as Bessel function.

∫ 1

−1

dh

π
√

1− h2
Tn(h)e−σiht = (−σi)nJn(t) (6.25)

So what remains is just its Laplace transform. To see this, let z = λ− σiε:

gσ,λn (z) = −2(−σi)n+1

∫ ∞
0

dte−ztJn(t). (6.26)
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This is a tricky calculation which can be checked in the Appendix but the result is

gσ,λn (z) = 2σi
e−ni arccos(iz)

√
z2 + 1

. (6.27)

This is the result that should be used if we want to include phenomenological scattering. If

that's not the case, take the limit λ → 0+, such that iz = σε + i0+. Because we're using

−1 < ε < 1, the imaginary factor does nothing in these functions, since we never hit the branch

cuts. We may therefore ignore it and consider the functions as if they were functions of real

variables. This leaves us with

gσn(ε) = 2σi
e−niσ arccos(ε)

√
1− ε2

. (6.28)

which means Green's function without scattering in terms of Chebyshev polynomials is

gσ(ε, h) =
−1

ε+ h+ σi0+
=

2σi√
1− ε2

∞∑
n=0

e−niσ arccos(ε)

1 + δn0
Tn(h). (6.29)

6.3 Truncated series and the use of kernels

Naturally, we cannot expect to be able to sum the whole series, so we have to truncate it at some

order N . Near points where the derivative of the function isn't continuous, this gives rise to an

undesired oscillatory behavior known as Gibbs oscillations1. A simple �x to this is to modify the

coe�cients of the expansion bn → wnbn, choosing the wn to take into account the �nite order of

the series. That is an additional approximation to the function we're calculating, but just like the

one we're doing by truncating the series, its di�erence to the exact result should approach zero in

the limit N →∞. To see where these coe�cients come from and how they're chosen, we'll have

to introduce the concept of an integral kernel and see how the truncated series expansion may be

obtained from the original function by convolving it with the kernel.

Let fKPM (x) denote this truncated series with the modi�ed coe�cients.

fKPM (x) =
1

π

1√
1− x2

N−1∑
n=0

2

1 + δn0
wnbnTn(x) (6.30)

If we de�ne the kernel KN (x, y) as

KN (x, y) =

N−1∑
n=0

2

1 + δn0
wn

Tn(x)

π
√

1− x2

Tn(y)

π
√

1− y2
(6.31)

1This is the same phenomenon that happens in Fourier expansions, which isn't surprising given the close rela-
tionship between the Chebyshev and Fourier expansions.
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it may be checked directly that

fKPM (x) =

∫ 1

−1
π
√

1− y2KN (x, y)f(y)dy. (6.32)

This kernel gives us a mapping between the function we're seeking to approximate, f(x), and

its approximation with the modi�ed coe�cients, fKPM (x). It can also be used to obtain the m-th

order term of the Chebyshev series if we use the weight wn = δnm:

fn(x) =
1

π
√

1− x2

2

1 + δn0
Tn(x)

∫ 1

−1
Tn(y)f(y)dy. (6.33)

With this in mind, we show here some common ways to choose these coe�cients. Their deriva-

tion may be seen in [4].

6.3.1 Dirichlet kernel

The Dirichlet kernel KD
N is simply 6.31 with 1the coe�cients

wDn = 1 (6.34)

and is equivalent to the bare truncation of the series. If the function does not contain discontinu-

ities, this one should be enough to obtain a good result. But how can we evaluate the convergence

of fKPM (x)? We can use the notion of an integral scalar product

〈f | g〉 =

∫ 1

−1
π
√

1− x2f(x)g(x)dx (6.35)

to de�ne the norm ‖f‖ =
√
〈f | f〉 . With this norm, we may say that

‖f − fKPM‖2 =

∫ 1

−1
π
√

1− x2 [f(x)− fKPM (x)]2 dx
N→∞−−−−→ 0 (6.36)

since we know that fKPM approaches f . Using the fact that power series converge absolutely2

inside their radius of convergence, we can learn that for any given point x,

1

π
√

1− x2

N∑
n=0

2an
1 + δn0

Tn(x)
N→∞−−−−→ f(x) (6.37)

As this is a point-wise condition, for di�erent values of x, the series may converge at di�erent

rates. If we want to avoid oscillations, we need to impose a global condition. Fig. 6.3 shows how

the truncated approximation by Chebyshev polynomials using the Dirichlet kernel to two di�erent

functions a�ects the convergence. Just as advertised, near the discontinuity there appears strong

oscillations even at high orders.

2Absolute convergence is a stronger condition of convergence and it simply means that
∑∞
n=0|anx

n| also converges.
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6.3.2 Fejér kernel

It was shown by Fejér [14] that using the kernel

KF
N (x, y) =

1

N

N∑
ν=0

KD
ν (x, y) (6.38)

on continuous functions guarantees uniform convergence3 of fKPM in any interval [−1 + ε, 1− ε]
(for any ε > 0 in which this makes sense). In other words, this condition means that the whole

function converges to f at uniform speed. In terms of the weight functions, this translates to

wFn = 1− n/N. (6.39)

The higher order terms, which would give rise to the oscillations, have a smaller weight in

fKPM , which is an important factor in removing the oscillations. Comparing in Fig. 6.3 we can

immediately see that the oscillations are gone but the convergence is slower for the continuous

function.

6.3.3 Jackson kernel

Building on the previous kernel, these coe�cients are further adjusted to minimize the spreading

of sharp features of the function.

wJn =
(N − n+ 1) cos πn

N+1 + sin πn
N+1 cot π

N+1

N + 1
(6.40)

In our case, we'll be expanding Dirac deltas, so it seems relevant to see just how the features of

this kernel a�ect its convergence [13]. Using the Jackson kernel, the Dirac delta has the following

expression:

δKPM (x− ε) =
1

π
√

1− x2

M−1∑
n=0

2wJn
1 + δn0

Tn(x)Tn(ε) (6.41)

Not much can be inferred from just looking at this, so let's examine its average and variance.

Hopefully this will give us some information about δKPM as a distribution. Choosing ε = 0, all

the odd moments vanish due to the parity of the function.

3This is an even stronger condition for convergence. Let {Fn} be a sequence of functions. The sequence is said
to converge uniformly to F within a set S of values of x if for all ε > 0, we can �nd an integer N such that
|Fn(x)− F (x)| < ε for all n ≥ N and all x ∈ S. A series converges uniformly if the sequence of partial sums∑n
k=0 fk = Fn converges uniformly.
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To evaluate these averages, it is useful to express x2 in terms of Chebyshev polynomials, for

then we may use the orthogonality relations to our advantage.

x2 =
T2(x) + 1

2
(6.42)

With this, the calculations result in

〈
x2
〉

=

∫ 1

−1
dxδKPM (x)x2 =

N sin2( π
N+1)

N + 1
. (6.43)

Since 〈x〉 = 0, we may immediately say that its standard deviation is σ =
√
〈x2〉. For large N ,

we may just as well use

σ (δKPM ) ≈
∣∣∣sin( π

N

)∣∣∣ ≈ π

N
. (6.44)

A �nite-order expansion necessarily exhibits a broadening of the Dirac delta, which gets sharper

with higher N . Fig 6.1 shows that near the peak, δKPM is very well approximated by a Gaussian

curve with standard deviation σ.

δKPM ≈
1√

2πσ2
exp

(
− x2

2σ2

)
(6.45)

The di�erences start to show near the tails, but is that di�erence relevant?

Figure 6.1: δKPM with the Jackson kernel and respective Gaussian approximation for N = 32.
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To answer that question, we should check what happens with the fourth moment of δKPM .

Using

x4 =
T4(x) + 4T2(x) + 3T0(x)

8
(6.46)

we can �nd
〈
x4
〉
:

〈
x4
〉

=

∫ 1

−1
dxδKPM (x)x4 =

8 + 3N + (2 + 4N) cos(2∆) + (N − 2) cos (4∆)

8 (N + 1)
. (6.47)

In the limit of large N , this simpli�es to

〈
x4
〉
≈ cos4

( π
N

)
≈ 1− 2

( π
N

)2
. (6.48)

Right here we can see that the similarities between the Gaussian and δKPM start to break

down. In this case, we approach a constant, while the Gaussian's fourth moment should go to

zero when N →∞: 〈
x4
〉
Gauss

= 3σ4 ≈ 3
( π
N

)4
→ 0. (6.49)

The repercussions of this become noticeable when we try to evaluate something such as x4δ(x),

which is the integrand of the
〈
x4
〉
. It could originate from something we'd want to calculate,

such as the fourth moment of the distribution of energies. Fig. 6.2 shows that x2δ(x) has some

oscillations but still converges, while the oscillations for x4δ(x) completely destroy the shape of

the function. Maybe we need more polynomials to ensure it converges? The right side of Fig. 6.2

clearly says no. Increasing the number of polynomials only makes matters worse as the oscillations

take over the graph.

If δKPM (x) actually converged to a Gaussian, we'd have no issues with oscillations at any 〈xn〉
because it'd decay very quickly. Near the peak, the resemblance is uncanny, but caution should

be taken before using this as a Gaussian. If we had used x = 0 and studied δKPM as a function

of ε, we would have obtained a similar result.

6.3.4 Lorentz kernel

Sometimes, the functions we're expanding have some important features that must be present in

the expansion. In the previous case, we said that using the Jackson kernel produces Gaussian

peaks in sharp features. While useful for Dirac deltas, when dealing with Green's functions this

is undesirable because its imaginary part should approach a Lorentzian curve, not a Gaussian.

This is the main reason that leads to the de�nition of the Lorentz kernel coe�cients.

wLn =
sinh [λ(1− n/N)]

sinh(λ)
(6.50)
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Figure 6.2: Representation of the integrands in the second and fourth moments of δKPM (x).
δKPM (x)x2 (top) and δKPM (x)x4 (bottom); 32 Chebyshev polynomials (left), 128
Chebyshev polynomials (right)

We end up with a free parameter that is a compromise between good resolution and damping

of oscillations. Fig. 6.3 shows the Lorentz kernel for λ = 3. A higher λ results in more weight to

the lower terms and a slower convergence, while the limit λ→ 0 recovers the Fejér kernel. Usually

we're going to be trying to approximate the imaginary part of the Green's function, which is a

Lorentzian:

=ga(x) = = −1

ε+ iσ
=

σ

x2 + σ2
= Lσ(x) (6.51)

In our expressions, we always use σ → 0. In this limit, the function becomes singular, so KPM

will never converge. A higher number of polynomials will indeed return a better approximation

with sharper peaks, but it can never converge to a real singularity. One way to overcome this

is to use a �nite σ. Now the function is no longer singular and KPM will converge, so a higher

number of polynomials will not sharpen the peaks. In that case, we may even forget about the

usage of kernels if we have enough polynomials. However, if we insist on using the limit σ → 0
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Figure 6.3: Comparison of the truncated series of the imaginary part of Green's function (left)
and the step function (right) for varying numbers of polynomials and various kernels.
The parameter used for the Lorentz kernel is λ = 4.
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but still want some broadening4, we may use the Lorentz kernel to our advantage. A suitable

choice of λ can emulate a �nite σ. Unlike the previous discussion about the Jackson kernel, we

cannot evaluate the moments of a Lorentzian, so instead we'll compare the two curves by their

width. A natural choice is the width at half maximum, which is 2σ. This parameter may be

found by evaluating the Chebyshev expansion of the Green's function at zero since that's where

we expect its maximum to lie. Then, we have to match the maximum values, which also �xes the

width. Start with the expansion of the (advanced) Green's function with real arguments coupled

to the Lorentz kernel:

gLM (ε, h) =
M−1∑
n=0

wLng
a
n (ε)

Tn(h)

1 + δn0
=

M−1∑
n=0

sinh [λ(1− n/M)]

sinh(λ)

2i√
1− ε2

(−1)ne−niσ arccos(ε)

1 + δn0
Tn(h)

(6.52)

Setting h = 0 produces a function of ε centered at zero. To �nd its maximum, evaluate gLM (0, 0).

The height of the Lorentzian is the imaginary part of gLM (0, 0).

=
[
gLM (0, 0)

]
= =

[
M−1∑
n=0

wLng
a
n (0)

Tn(0)

1 + δn0

]
(6.53)

It's a simple matter of using the de�nitions and some identities on hyperbolic functions to

obtain

=
[
gLM (0, 0)

]
=


tanh(λ2 )
tanh( λ

M )
M even

cosh(λ) cosh( λ
M )−1

sinh( λ
M ) sinh(λ)

M odd
. (6.54)

In either case, for large M and small λ, we obtain

=
[
δLM (0, 0)

]
=
M

λ
tanh

(
λ

2

)
. (6.55)

Equating eq. 6.54 to the height of the Lorentzian for even M , we get the desired relation

between λ and σ:

σ =
tanh

(
λ
M

)
tanh

(
λ
2

) . (6.56)

This is an important result because it tells us that if we want to keep the same �nite resolution

while increasing the number of polynomials, we have to change λ. For small λ this function

4It's actually useful to have some breadth in the singularities. For a su�ciently high number of polynomials, we
are able to use KPM to distinguish between individual energy levels, which take the form of Dirac deltas. From
a theoretical stand, we use in�nite systems, which results in a continuum of states, so we never see individual
peaks. Even experimentally, we cannot distinguish between individual peaks because of the resolution. It makes
sense to want a similar thing with KPM, and that may be done by broadening the peaks.
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approaches 2/M and for large λ it approaches λ/M . If instead we keep λ �xed, σ becomes

smaller and smaller as M increases, indicating a sharpening of the peaks. In Fig. 6.4 we may see

just how the Lorentz kernel coupled to the real-energy Green's function approaches a Lorentzian

curve. For small λ, gL does converge, but not to a Lorentzian. The percent error is very large even

for a high number of polynomials. An increase in λ is compatible with a better approximation

for higher-order expansions.

Figure 6.4: Approximation of a Lorentzian curve using the KPM expansion of the imaginary part
of Green's function. The graphs are scaled by σ, so all the Lorentzian curves are
1/(1 + x2) in this scale. On the left, the curves are superimposed, while on the left
we see the percent error.
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6.4 From functions to operators

What we've done in these previous sections is targeted towards functions in the ] − 1, 1[ range,

but this is not quite what we want. We're working with functions of operators, not functions

of complex variables. The Green's functions obtained from the Keldysh formalism are actually

functions of the Hamiltonian, and as such, are operators themselves. We should take a short

moment to remember how these are de�ned. Functions of operators are de�ned in terms of their

Taylor series, which is assumed to converge to the function inside a certain radius. This is why

we may say that if |n〉 is an eigenvector of H with eigenvalue εn, then for any function f :

f(H) |n〉 = f(εn) |n〉 (6.57)

is well-de�ned. Summing the series of operators �rst and then acting with |n〉 or acting with |n〉
through the whole series produces the same result. Since inside that radius the series converges

absolutely, we may simply reorder the terms into Chebyshev polynomials.

What about the fact that Chebyshev polynomials are only de�ned in the range ]−1, 1[? Since the

functions used are only de�ned in that range, that means that the eigenvalues of the Hamiltonian

must also lie between that same range5. This can be imposed by a suitable rescaling of the

Hamiltonian and all the energy scales [4].

H̃ = (H − b) /λ (6.58)

Ẽ = (E − b) /λ (6.59)

With these formulas, we may use the extremal eigenvalues Emin and Emax to de�ne the scales.

Using

λ = (Emax − Emin) /(2− ε)

b = (Emax + Emin) /2

we can be sure that the new eigenvalues will all lie in the desired ]− 1, 1[ range. The ε > 0 factor

is important to guarantee that the new eigenvalues do not include the boundaries of the ]− 1, 1[

interval, which could cause numerical problems. If the eigenvalues of the original Hamiltonian

already �t in that interval, this rescaling may still be performed to improve energy resolution,

although it is not necessary.

5These eigenvalues are necessarily bounded because we're dealing with �nite matrices when doing the numerical
calculations.
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To see this in action consider a typical term of the expansion, such as

−e2

h̄V ω

∫ ∞
−∞

dεf(ε)Tr
[
vαigR

(
− ε
h̄
− ω

)
vβδ(ε−H)

]
=
−e2

h̄V ω

∫ Emax

Emin

dε
1

1 + eβ(ε−µ)
Tr

[
vα

−i
− ε
h̄ − ω + H

h̄ − i0+
vβδ(ε−H)

]
.

The limits of integration may be taken to be Emin and Emax because outside that range, the

Dirac delta will always yield zero. Using the transformations 6.58 and 6.59, the above formula

becomes

−e2

h̄V ω

∫ 1

−1
λdẼ

1

1 + eβ(λẼ+b−µ)
Tr

[
vα

−i
−λ Ẽh̄ − ω + λ H̃h̄ − i0+

vβδ(λẼ − λH̃)

]
. (6.60)

Now remember that all the quantities that depend on the energy scales must be rescaled. That

includes the velocity operator, temperature, chemical potential and external frequencies. The

rescaled quantities are vα = λṽα, β = β̃/λ, µ = λµ̃+ b and ω = λω̃. With these new quantities,

we get the desired result

−e2

h̄V ω̃

∫ 1

−1
dẼ

1

1 + eβ̃(Ẽ−µ̃)
Tr

[
ṽα

−i
− Ẽ
h̄ − ω̃ + H̃

h̄ − i0+
ṽβδ(Ẽ − H̃)

]
. (6.61)

The expression is formally identical to the original one except for the limits of integration. This

pattern will repeat itself at higher orders. For every v operator, there's also a Green's function

or a Dirac delta that accompanies it, which cancels the energy scales. The scale coming from

the integral was canceled in this case due to the presence of a frequency in the denominator.

According to the de�nition of higher-order conductivities, there will be more frequencies in the

denominator, which cannot cancel anything, so there will be surplus scale factors. In second

order, for example, this means (dropping the tildes)

σαβγ(ω1, ω2)

= − e3

λV iω1iω2

∫ ∞
−∞

dεf(ε)

{
i

2h̄
Tr
[
vα
(
W βγ
R (ε;−ε/h̄− ω) +W βγ

a (ε;−ε/h̄+ ω)
)]

+

+
1

h̄2Tr
[
vα
(
W β,γ
RR (ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2)+ (6.62)

+W β,γ
Ra (ε;−ε/h̄− ω1,−ε/h̄+ ω2) +W β,γ

aa (ε;−ε/h̄+ ω1,−ε/h̄+ ω1 + ω2

)]
+
i

h̄
Tr
[
vαβ

(
W γ
R(ε;−ε/h̄− ω2) +W γ

a (ε;−ε/h̄+ ω2)
)]
− 1

2
Tr
[
vαβγδ(ε−H)

]}
after rescaling. Note the extra λ factor. For a concrete example, consider a tight-binding Hamil-

tonian with hopping γ0 = 2.33eV . The Hamiltonian will depend on this factor, which is bigger

than one, so we cannot expect the eigenvalues to lie in the range ]− 1, 1[. Let's work with a new
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hopping γ̃0 = 0.1. This means that the scale factor is λ = 23.3 eV.

6.5 Evaluation of traces

The previous sections have showed that the objects we need to calculate are traces of products of

operators such as

Tr
[
vαigR

(
− ε
h̄
− ω

)
vβδ(ε−H)

]
. (6.63)

At �rst glance, it may seem that we need to calculate this trace of operators for all di�erent

values of energies and frequencies. This is not the case, thanks to the expansion of those functions

in terms of Chebyshev polynomials.

6.5.1 Isolation of the operators

In fact, plugging in the expansions for the Green's function (6.21) and the Dirac delta (6.15) we

obtain

∞∑
n,m=0

∆n(ε)gRm(− ε
h̄
− ω)Tr

[
vα

Tm(h)

1 + δm0
vβ

Tn(h)

1 + δn0

]
. (6.64)

Here we see the usefulness of separating the variables used in the expansions of the Dirac delta

and the Green's function, as we only need to calculate the trace once. It is assumed that these

factors ∆n and gm have already been multiplied by the w coe�cients coming from the choice of

kernel.

6.5.2 Use of the recursion relations

Now it is obvious that the fundamental objects we need to calculate are traces of Chebyshev

polynomials with some other operator A, Tr [Tn(H)A]. For now, let's consider traces with only

one Chebyshev polynomial. It will be easy to generalize to a higher number of polynomials. Let's

see how these special polynomials can help us calculate this trace. For arbitrary states |ψ〉 and
|φ〉 , de�ne

µψφn = 〈ψ|ATn(H) |φ〉 . (6.65)

Letting 〈ψA| = 〈ψ|A and |φn〉 = Tn(H) |φ〉, this coe�cient is simply µn = 〈ψA|φn〉. This is

useful because, by de�nition, these |φn〉 satisfy the same recurrence relation as the Chebyshev

polynomials themselves. We may therefore use |φn+1〉 = 2H |φn〉 − |φn−1〉 to iteratively obtain

all the |φn〉. Then, all we need to do is take the dot product with 〈ψA| to �nd µψφn . The great

advantage here is that all we need to do to obtain the next µn is a simple matrix product. If these
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polynomials didn't satisfy a recurrence relation, we'd have to calculate the whole polynomial to

evaluate each µn, which would be hopelessly time-consuming. If we have two polynomials, such

as in 6.64, we'll have to calculate

µψφnm = 〈ψ|ATn(H)BTm(H) |φ〉 . (6.66)

In this case start by �xing a value of m, store |φm〉 = Tm(H) |φ〉 and then multiply it by B,

de�ning
∣∣φBm〉. We are left with

µψφnm = 〈ψ|ATn(H)
∣∣φBm〉 . (6.67)

This is precisely the previous case with just one Chebyshev polynomial, and may be treated in

precisely the same way. Then the process is repeated for m + 1, where the stored vectors |φm〉
and |φm−1〉 may be used to obtain |φm+1〉. If we have more than two polynomials, the procedure

is entirely analogous.

6.5.3 Stochastic evaluation of traces

Now suppose that the vectors used are actually random vectors. Given a basis {|φi〉}, let |r〉 =∑D−1
i=0 ξri |φi〉 be a random vector, where the ξri are complex random variables assumed to be

independent and identically distributed. D is the number of states. Furthermore, we'll require

that

〈ξir〉 = 0〈
ξirξjr′

〉
= 0〈

ξ∗irξjr′
〉

= δijδrr′ .

Applying this to an arbitrary matrix B gives

〈r|B |r〉 =
∑
ij

ξ∗riξrjBij . (6.68)

Thanks to the conditions imposed to the random variables, taking the average of this yields

precisely the trace of B!

〈〈r|B |r〉〉 =
∑
ij

〈ξ∗riξrj〉Bij =
∑
i

Bii (6.69)

6.5.3.1 Variance

So far, all we know is that by doing this, we'll get the correct value on average, but how good of an

estimate is it? Let's see what happens when we average over multiple realizations of the random
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vector |r〉. Let Θ = 1
R

∑R−1
r=0 〈r|B |r〉 be the estimate with R vectors. What is the variation

around the average value? Evaluating (δΘ)2 =
〈
Θ2
〉
− 〈Θ〉2 we get[4]

(δΘ)2 =
1

R

Tr (B2
)

+
(〈
|ξri|4

〉
− 2
)D−1∑
j=0

B2
jj

 . (6.70)

This formula depends explicitly on
〈
|ξri|4

〉
, which means that the choice of distribution for

the ξri will in general in�uence the �uctuations around the average. An interesting choice of

distribution is one in which
〈
|ξri|4

〉
= 2, which would cancel the second term and make the result

completely basis-independent. But naturally, we'd want the smallest possible �uctuations, so it

seems logical to choose a distribution that minimizes
〈
|ξri|4

〉
. Due to the constraints imposed on

the ξri, its minimum possible value6 is 1, so the smallest possible variance is

(δΘ)2
min =

1

R

Tr (B2
)
−
D−1∑
j=0

B2
jj

 . (6.71)

If we perform the calculations in the eigen basis of B, the variance would be zero! But if we

knew the eigen basis of B, we wouldn't need perturbation theory in the �rst place. In order to

ful�ll all the constraints imposed on the distribution, we choose the ξri to lie in the unit complex

circle, with the angle uniformly distributed. This has the additional advantage to guarantee〈
|ξri|4

〉
= 1, yielding the smallest possible variance7.

6.5.3.2 Relative error

The next step is to see how the relative error changes with the size of the Hamiltonian matrix and

the number of random vectors. Because the systems we're studying have translational symmetry,

the trace of the matrices will be of order N , where N is the number of states. Therefore, the

relative error is of order

δΘ

Θ
=

√
1
R

[
Tr (B2)−

∑D−1
j=0 B2

jj

]
Tr (B)

∼ 1√
RN

. (6.72)

For a two-dimensional system where N ∼ L2 the relative error decreases as 1/L. This comes

to show that for very large systems, we may use a small R and the method will still converge.

6To see why, let x = |ξri| and consider the variance of x2, σ2(x2) =
〈(
x2 −

〈
x2
〉)2〉

=
〈
x4
〉
−
〈
x2
〉2
. The

requirement
〈
x2
〉

= 1 coupled with the fact that the variance is necessarily positive means that
〈
x4
〉
− 1 > 0.

7The conditions are indeed satis�ed. In fact, for all integer n, 〈ξnri〉 = 1
2π

∫ 2π

0
einθdθ = 0 and 〈|ξri|n〉 =

1
2π

∫ 2π

0

∣∣eiθ∣∣n dθ = 1. The remaining conditions are satis�ed because the ξri are independent and identically
distributed.
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6.6 Calculation of the conductivity

This section has a simple goal: starting from the expressions for the conductivity obtained in

the previous chapter, we'll rewrite them in terms of the new language developed in this chapter.

There's just one last small ingredient missing: the vα1···αn de�ned in the previous chapter are

slightly di�erent from the ones we use in KPM. Some of the Hamiltonians used make no mention

to imaginary numbers (for example, when there's no magnetic �eld) so it makes sense to use

only real numbers to cut on unnecessary computational time that would be spent calculating

complex functions instead of real ones. That's the reason that leads to the de�nition of vα1···αn
KPM =

h̄−n [rα1 , · · · [rαn , H]]. Comparing to the v operators, we �nd vα1···αn
KPM = invα1···αn . It's very

important to note that, unlike vα1···αn , vα1···αn
KPM is not hermitian. That becomes relevant when

we want to evaluate something such as 〈ψ| vKPM . Lastly, many authors express the lengths in

units of the distance between unit cells, instead of the distance between neighbouring atoms.

To facilitate conversions between the two cases, we express everything in terms of the distance

between atoms, introducing a scale factor η in every quantity that depends on the scale. We'll

get one for each index in the v operators as this is the number of r operators inside the nested

commutators. The other contribution to this factor comes from the volume V in the denominator,

which for our case of two-dimensional systems is actually an area and contributes with η2. We'll

end up with conductivities expressed solely in terms of dimensionless quantities and scales.

6.6.1 First order

Let V = VcN , where Vc is the volume of a unit cell and N is the number of unit cells. Using eq.

5.58

σαβ(ω) =
−4σ0

Vc

∫ 1

−1
dε
f(ε)

ω

Tr

N

[
vα
(
W β
R(ε;−ε/h̄− ω) +W β

a (ε;−ε/h̄+ ω)
)

+ ih̄
Tr

N

[
vαβδ(ε−H)

]]
(6.73)

start by unwinding the de�nition of the W functions

σαβ(ω) =
−4σ0

Vc

∫ 1

−1
dε
f(ε)

ω

Tr

N

[
vαigR(−ε/h̄− ω)vβδ(ε−H)+

+vαδ(ε−H)vβiga(−ε/h̄+ ω) + ih̄vαβδ(ε−H)
]
. (6.74)
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Then, replacing v by vKPM , extracting the length scale and plugging in the expansion of the

Dirac deltas and the Green's functions, we get

σαβ(ω) =
4σ0i

Vc

∫ 1

−1
dε
f(ε)

ω

{∑
mn

gRn (−ε/h̄− ω)∆m(ε)
Tr

N

[
vαKPM

Tn(H)

1 + δn0
vβKPM

Tm(H)

1 + δm0

]
+
∑
mn

gam(−ε/h̄+ ω)∆n(ε)
Tr

N

[
vαKPM

Tn(H)

1 + δn0
vβKPM

Tm(H)

1 + δm0

]
+

+
∑
n

∆n(ε)h̄
Tr

N

[
vαβKPM

Tn(H)

1 + δn0

]}
. (6.75)

Although the scales are not present, all these quantities are now completely dimensionless except

for the physical constants. These traces suggest a new notation. De�ne the Gamma matrices in

a similar fashion to the W operators, with commas separating the various indices:

Γ
α1

1···α1
n1
,···,αm1 ···αmnm ,

n1···nm =
Tr

N

[
v
α1

1···α1
n1

KPM

Tn1(H)

1 + δn10
· · · vα

m
1 ···αmnm

KPM

Tnm(H)

1 + δnm0

]
. (6.76)

Omitting the sum, this yields the �nal result for the conductivity in �rst order

σαβ(ω) =
4σ0i

Vcω

∫ 1

−1
dεf(ε)∆n(ε)

{
gRm(−ε/h̄− ω)Γαβmn + gam(−ε/h̄+ ω)Γαβnm + h̄Γαβn

}
. (6.77)

Interestingly, this conductivity is independent of the scales chosen. This is because it is ex-

pressed in terms of σ0, which already has units of conductivity.

6.6.2 Second order

Starting from eq. 5.64 still with length dimensions,

σαβγ(ω1, ω2) = − e3

λVciω1iω2

∫ 1

−1
dεf(ε)

{
i

2h̄

Tr

N

[
vα
(
W βγ
R (ε;−ε/h̄− ω) +W βγ

a (ε;−ε/h̄+ ω)
)]

+

+
1

h̄2

Tr

N

[
vα
(
W β,γ
RR (ε;−ε/h̄− ω1 − ω2,−ε/h̄− ω2)+ (6.78)

+W β,γ
Ra (ε;−ε/h̄− ω1,−ε/h̄+ ω2) +W β,γ

aa (ε;−ε/h̄+ ω1,−ε/h̄+ ω1 + ω2

)]
+
i

h̄

Tr

N

[
vαβ

(
W γ
R(ε;−ε/h̄− ω2) +W γ

a (ε;−ε/h̄+ ω2)
)]
− 1

2

Tr

N

[
vαβγδ(ε−H)

]}
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the process is entirely analogous, and the result is

σαβγ(ω1, ω2) =
−ie3η

λVcω1ω2

∫ 1

−1
dεf(ε)∆n (ε)

{
1

h̄
gRm (−ε/h̄− ω2) Γαβ,γmn

+
1

h̄
gam (−ε/h̄+ ω2) Γαβ,γnm +

1

2
Γαβγn

+
1

2h̄
gRm (−ε/h̄− ω1 − ω2) Γα,βγmn

+
1

2h̄
gam (−ε/h̄+ ω1 + ω2) Γα,βγnm

+
1

h̄2 g
R
m (−ε/h̄− ω1 − ω2) gRp (−ε/h̄− ω2) Γα,β,γmpn +

+
1

h̄2 g
R
m (−ε/h̄− ω1) gap (−ε/h̄+ ω2) Γα,β,γmnp +

+
1

h̄2 g
a
m (−ε/h̄+ ω1 + ω2) gap (−ε/h̄+ ω1) Γα,β,γnpm

}
. (6.79)

Unlike the �rst-order conductivity, the second-order one depends on both the energy and the

length scales. To overcome this, we may de�ne something similar to the universal conductivity

of graphene, σ2 = e3a/4h̄t. Extracting the scales from a and t inside σ2, the previous equation

becomes

σαβγ(ω1, ω2)

σ2
=

−4it

Vcω1ω2h̄a

∫ 1

−1
dεf(ε)∆n (ε)

{
1

2
Γαβγn +

+gam (−ε/h̄+ ω2) Γαβ,γnm + gRm (−ε/h̄− ω2) Γαβ,γmn +

+
1

2
gam (−ε/h̄+ ω1 + ω2) Γα,βγnm +

1

2
gRm (−ε/h̄− ω1 − ω2) Γα,βγmn +

+
1

h̄
gRm (−ε/h̄− ω1 − ω2) gRp (−ε/h̄− ω2) Γα,β,γmpn +

+
1

h̄
gRm (−ε/h̄− ω1) gap (−ε/h̄+ ω2) Γα,β,γmnp +

+
1

h̄
gam (−ε/h̄+ ω1 + ω2) gap (−ε/h̄+ ω1) Γα,β,γnpm

}
.

Now it is duly dimensionless.

6.6.3 Third order

This one is done in the same fashion as the other two, and it is left as an exercise for the (really)

interested reader.
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6.7 Density of states

Although we're using it to calculate conductivities, KPM is also very useful in calculating the

density of states (DOS). Indeed, the density of states does not need to be expanded in series.

ρ(ε) =
1

λη2V

∑
n

δ(ε− εn) =
1

λη2V
Tr [δ(ε−H)] =

1

λη2Vc

∑
n

∆n (ε)
Tr

N

[
Tn (H)

1 + δn0

]
(6.80)

Remember that the density of states also depends on both the energy and the length scales,

due to its normalization.

6.8 Remark

The Γ matrices introduced in the previous section require a lot of storage space. Assuming that

we're using double-precision numbers, each one of them will take up 8 bytes. But we need complex

numbers, so that's 16 bytes per number. If we want a decent resolution, we'll using something like

1024 Chebyshev polynomials. Therefore, for a single n-th order Γ matrix with 1024 polynomials,

the required storage is 1024n × 16. Plugging in n = 1 for the density of states, that's 16 KB, so

calculating it is very easy. n = 2 for Γnm is 16 MB, so calculating the �rst order current is still

easy. Plugging in n = 3 for a matrix such as Γnmp already requires 16 GB, so the second-order

conductivity is starting to show some large numbers. If we want to obtain a third-order response,

we're out of luck, because we'll need 16 TB of storage for one single matrix, not to mention the

time that it'll take. This is why we stick to obtaining the �rst and second-order conductivities.

The third-order one isn't feasible.
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7 Applications

The conductivities obtained so far apply to a very general array of systems. They are valid

both with and without periodic boundary conditions because those may be introduced through

the Hamiltonian. As a matter of fact, we make no mention of translation invariance anywhere

because we're using the full Hamiltonian in our formulas, so it is also valid for systems where we

may introduce disorder by changing some of the Hamiltonian's matrix elements. Through Peierls'

substitution, we may also introduce magnetic �eld by changing the hoppings. The only thing

we're assuming is that the electrons do not interact with one another. If we were to consider that

case, we'd have to take into account the SV in the Keldysh formalism, which would introduce

more Feynman diagrams through an additional perturbation expansion on the coupling between

the interaction and the solvable Hamiltonian. With this being said, the time has come to apply

this to concrete systems: Graphene and Hexagonal Boron-Nitride (h-BN).

7.1 Graphene

Graphene is a two-dimensional crystal composed solely of carbon, with the atoms arranged in a

honeycomb lattice [15] (see Fig. 7.1). It may be seen as the superposition of two sub-lattices A

and B. The unit cell is composed of two neighbouring atoms, one from each sub-lattice.

Let a be the distance between consecutive atoms. Then, the primitive vectors between unit

cells are

a1 = a
(

0,
√

3
)

a2 =
a

2

(
3,
√

3
)

and the distance vectors between neighbours are

δ1 =
a

2

(
−1,
√

3
)

δ2 =
a

2

(
−1,−

√
3
)

(7.1)

δ3 = a (1, 0) .

We need to calculate the area Ac occupied by a single unit cell to plug into the conductivity.

Since we know the primitive vectors, the area of the unit cell is simply the area of the parallelogram

formed by the vectors, that is: Ac = |a1 × a2| = 3
√

3
2 a2.
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7.1. GRAPHENE

Figure 7.1: Graphene honeycomb lattice. The carbon atoms are labeled by the sub-lattice to
which they belong. a1 and a2 represent the primitive vectors of the crystal and the
deltas represent the distance vectors between nearest neighbours.

7.1.1 Graphene Hamiltonian

Consider a general tight-binding Hamiltonian in a system with translation invariance. The hop-

ping parameter only depends on the di�erence of positions and on the orbitals µ and ν.

H =
∑

Rn,Rm

∑
µν

tµν (Rm −Rn) c†µ (Rm) cν (Rn) (7.2)

The simplest description of graphene consists of two orbitals1 and a nearest-neighbour hopping.

Looking at Fig. 7.1, that means that an electron that's in atom A (B) may only hop to any of

the neighbouring B (A) atoms. Furthermore, we assume that all the (non-zero) hoppings are the

same and are real. Therefore, the inter-orbital hoppings are

tAB (δ1) = tAB (δ2) = tAB (δ3) = −t. (7.3)

The remaining hoppings are found by using the fact that H is hermitian: tAB = tBA. The

1Usually, when we speak of orbitals, we're thinking of the various atomic orbitals that may be occupied by an
electron. Take an electron in the Hydrogen atom, for example. It may be in any of the 1s, 2s, 2px, etc. orbitals.
It may hop between orbitals or to other orbitals in a di�erent atom. In this description of graphene, each carbon
atom has only one orbital. But since there are two carbon atoms per unit cell, we might as well consider them
as two orbitals of one single atom.
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on-site energies tAA(0) and tBB(0) are taken to be the same but we might as well say they're zero

because they only introduce a shift in the eigen energies.

We have not said anything about the electron's spin, but it's still there nevertheless. Since

we're tracing over all the states in the system and half of them are the same because of spin

degeneracy, we have to add a factor of 2 to the conductivity. Thus, the formula for the �rst-order

conductivity (eq. 6.77) in graphene becomes2:

σαβ(ω) =
16σ0i

3
√

3ω

∫ 1

−1
dεf(ε)∆n(ε)

{
gRm(−ε/h̄− ω)Γαβmn + gam(−ε/h̄+ ω)Γαβnm + h̄Γαβn

}
. (7.4)

And the density of states is

ρ(ε) =
4

3
√

3λη2

∫ 1

−1
dε∆n (ε)

Tr

N

[
Tn (H)

1 + δn0

]
(7.5)

These are the precise expressions used in our program.

7.1.2 Dispersion relation

From the information in the previous section, we may calculate the dispersion relation of graphene.

Start by writing the Hamiltonian's matrix elements in the momentum basis (eq. 5.35).

H =
1

V

∑
σ1,σ2

∑
k

εσ1σ2(k)c†σ1
(k) cσ2 (k) (7.6)

The ε matrix may be calculated from its de�nition:

εσ1σ2(k) =
∑
R

tσ1σ2 (R) eik·R. (7.7)

These position vectors refer to the distance between interacting atoms, so they correspond to

the distance vectors (eq. 7.1)

εAB(k) =
∑
R

tσ1σ2 (R) eik·R = −t
(
eik·δ1 + eik·δ2 + eik·δ3

)
(7.8)

Note that εAB(−k) = ε∗AB(k). The Hamiltonian in k space therefore is

H (k) =

[
0 εAB(k)

ε∗AB(k) 0

]
. (7.9)

2Although this is dependent on the numerical implementation and not on the formula itself, it is very important
to make sure we know what is the N used in the denominator of the Γ matrices. Care should be taken because
we de�ned it as the number of unit cells, but sometimes it is used as the number of states. As there are two
orbitals per unit cell, this distinction introduces a factor of 2 in the case of graphene.
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Diagonalizing in this subspace we arrive at graphene's dispersion relation

ε± (k) = ± |εAB(k)| = ±t

√√√√3 + 2 cos
(
kya
√

3
)

+ 4 cos

(
kx3a

2

)
cos

(
ky
√

3a

2

)
. (7.10)

This consists of two bands, one at negative energies and one at positive energies, but the crucial

piece of information here is that this function has zeroes (for example at k =
(

2π
3a ,

2π
3
√

3a

)
), so

these two bands meet and there is no gap.

7.1.3 Density of states and �rst-order conductivity

Using the Hamiltonian 7.2, we are able to compute the density of states ρ(ε) (Fig. 7.1.3) and the

�rst-order longitudinal conductivity σxx (Fig. 7.1.3) of graphene.

Figure 7.2: KPM simulation of the density of states ρ (ε) of graphene for a hopping parameter
t = 2.33 eV. The axes are in units of t. System size: 2048× 2048 unit cells, number of
Chebyshev polynomials used: 1024. We used the Jackson kernel for the Dirac deltas.

7.1.4 Second-order conductivity

There's nothing to see here, as the second-order conductivity in graphene is zero. To see why,

we'll have to analyze the Γ matrices that give rise to the second-order conductivity. Consider for
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Figure 7.3: KPM simulation of the �rst-order conductivity in graphene. The curves are plotted
against a reference (dashed lines). The graph is in units of the graphene universal
conductivity σ0 and the chemical potential. System size: 2048 × 2048 unit cells,
number of Chebyshev polynomials used: 1024, chemical potential µ = 0.466 eV,
t = 2.33 eV, temperature T = 200K, in�nitesimal scattering parameter Γ: 0.0388 eV.
We use the Jackson kernel for the Dirac deltas but no kernel for the Green's functions.
Instead, we introduce a broadening by replacing ω → ω + iΓ.

example Γα,β,γnmp :

Γα,β,γnmp =
Tr

N

[
vα
Tn (H)

1 + δn0
vβ
Tm (H)

1 + δm0
vγ
Tp (H)

1 + δp0

]
(7.11)

This matrix is composed of sums of matrices of the form

Xα,β,γ
nmp = Tr

[
vαHnvβHmvγHp

]
(7.12)
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In momentum space, this trace may be evaluated

Xα,β,γ
nmp =

∑
k

T̃r
[
vα (k)Hn (k) vβ (k)Hm (k) vγ (k)Hp (k)

]
(7.13)

where we denoted the trace over the remaining degrees of freedom in the k subspace by a tilde.

It is important to know what is the explicit form of these matrices. Noting3 that H2 (k) = |ε(k)|2,
the n-th power of the Hamiltonian may be written as

Hn (k) =

|εAB(k)|n n even

|εAB(k)|n−1H (k) n odd
(7.14)

And the product vα1···αk (k)Hn (k) becomes

vα1···αa (k)Hn (k)

=



(
− 1
h̄

)a |εAB(k)|n
 0 ∇α1···αa

k εAB(k)

∇α1···αa
k ε∗AB(k) 0

 = Ena (k) n even

(
− 1
h̄

)a |εAB(k)|n−1

 ε∗AB(k)∇α1···αa
k εAB(k) 0

0 εAB(k)∇α1···αa
k ε∗AB(k)

 = Ona (k) n odd

In the new E and O matrices, the speci�c indices of the vα1···αa (k) matrices have been omitted

because they are not relevant for this discussion. These are the building blocks of the Γ matrices,

so now we may see what happens when we trace over products of these objects. Each time we

multiply two of these objects together, we'll get matrix entries with a number of derivatives equal

to the sum of the number of derivatives of the matrices that gave origin to it.

Odd number of E

Any product with an odd number of E produces a traceless matrix, independently of k. This

shows that for any X matrix, if the sum of the degrees of the polynomials is odd, that entry will

be zero.

Even number of E

Any product which has an even number of E matrices becomes diagonal. It is easy to see that the

diagonals are complex conjugates of each other4 so the trace will be real and the transformation

3For simplicity of notation, this is to be understood as multiplied by the identity matrix

[
1 0
0 1

]
.

4Any product of matrices of the type A =

[
0 a
a∗ 0

]
or B =

[
b 0
0 b∗

]
results in one or the other. The product

of any two matrices of the same type produces a matrix of type B, while the product of any two matrices of
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k → −k will simply introduce a minus sign for every derivative. The number of derivatives is

equal to the degree of the Γ matrix. Therefore, for Γ matrices of odd degree, there will be an odd

number of derivatives, which means the whole trace is anti-symmetrical in the exchange k→ −k.
When summed over all the k, this yields zero.

This exhausts all the possibilities and proves that any Γ of odd degree is zero in the tight-

binding graphene. This was only possible because the Hamiltonian had a very simple form and

we were able to easily �nd its n-th power. For more complicated Hamiltonians, this analysis is in

general not possible.

7.2 Hexagonal Boron Nitride (h-BN)

Just like graphene, h-BN consists of an hexagonal array of atoms, but this time there are Boron

atoms in sublattice A and Nitrogen atoms in sublattice B. The hoppings between nearest neigh-

bours are identical, but each site now has a di�erent self-energy. Everything else is identical to

graphene. Same lattice vectors, same distance vectors and same unit cell area. Therefore, the

conductivity and density of states will have the exact same expressions, keeping in mind that the

Hamiltonian is di�erent.

σαβh−BN (ω) =
16σ0i

3
√

3ω

∫ 1

−1
dεf(ε)∆n(ε)

{
gRm(−ε/h̄− ω)Γαβmn + gam(−ε/h̄+ ω)Γαβnm + h̄Γαβn

}
(7.15)

ρh−BN (ε) =
4

3
√

3λ

∫ 1

−1
dε∆n (ε)

Tr

N

[
Tn (Hh−BN )

1 + δn0

]
(7.16)

The on-site energies tAA(0) and tBB(0) are no longer zero. For this model, we'll use tAA(0) =

∆/2 and tBB(0) = −∆/2. Due to the new terms in the Hamiltonian, we have no reason to expect

that the second-order conductivity remain zero. Replacing the area and taking into account the

spin degeneracy, eq. 6.79 becomes

σαβγh−BN (ω1, ω2)

σ2
=

−16it

3
√

3ω1ω2a

∫ 1

−1
dεf(ε)∆n (ε)

{
h̄

2
Γαβγn +

+gam (−ε/h̄+ ω2) Γαβ,γnm + gRm (−ε/h̄− ω2) Γαβ,γmn +

+
1

2
gRm (−ε/h̄− ω1 − ω2) Γα,βγmn +

1

2
gam (−ε/h̄+ ω1 + ω2) Γα,βγnm +

+
1

h̄
gRm (−ε/h̄− ω1 − ω2) gRp (−ε/h̄− ω2) Γα,β,γmpn +

+
1

h̄
gRm (−ε/h̄− ω1) gap (−ε/h̄+ ω2) Γα,β,γmnp +

+
1

h̄
gam (−ε/h̄+ ω1 + ω2) gap (−ε/h̄+ ω1) Γα,β,γnpm

}
(7.17)

di�erent types produces a matrix of type A.
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Symmetry considerations [16] demand that there be only two independent components of σαβγ

and that one of them be zero, so we only need to care about σxxx. As we'll see, this will simplify

eq. 7.17 considerably.

7.2.1 Dispersion relation and evaluation of traces

The Hamiltonian in k space may be described by

H (k) =

[
∆/2 εAB(k)

ε∗AB(k) −∆/2

]
(7.18)

Diagonalizing, we get the dispersion relation

ε± (k) = ±
√
|εAB(k)|2 +

∆2

4
(7.19)

Note how the bands no longer meet, so there is a gap of size ∆. Now we'll do an analysis of the

Γ matrices similar to the one we used in graphene to see why the matrices with an odd number

of indices were zero. This time, we do not expect the second-order conductivity to be zero, but

there will be some simpli�cations to be had. Although this Hamiltonian is more complicated, it

too becomes diagonal after multiplying by itself. As for the case of graphene, we may use this to

�nd the explicit form for the n-th power of the Hamiltonian

Hn (k) =

εn(k) n even

εn−1(k)H (k) n odd
(7.20)

This simple formula allows us to calculate the product of vα1···αa Hn, the building blocks of the

Γ matrices

vα1···αa (k)Hn (k)

=


|εAB(k)|n

 0 vα1···αa
AB (k)

vα1···αa∗
AB (k) 0

 = Ena (k) n even

|εAB(k)|n−1

 vα1···αa
AB (k)ε∗AB(k) −vα1···αa

AB (k)∆/2

vα1···αa∗
AB (k)∆/2 vα1···αa∗

AB (k)εAB(k)

 = Ona (k) n odd

In order to analyze these expressions, we shall adopt a simpler notation

118



CHAPTER 7. APPLICATIONS

vα1···αa (k)Hn (k) =



 0 Ana(k)

An∗a (k) 0

 = Ena (k) n even Bn
a (k) −Cn∗a (k)

Cna (k) Bn∗
a (k)

 = Ona (k) n odd

(7.21)

where we de�ned

Ana (k) = |εAB(k)|n vα1···αa
AB (k) (7.22)

Bn
a (k) = |εAB(k)|n−1 vα1···αa

AB (k)ε∗AB(k) (7.23)

Cna (k) = |εAB(k)|n−1 vα1···αa∗
AB (k)∆/2 (7.24)

The upper indices of the vα1···αa operators have been neglected because they are not relevant for

now. The only thing needed is the number of indices, which is equal to the number of derivatives.

When swapping k→ −k, these transform as

Ana (−k) = (−1)aAn∗a (k) (7.25)

Bn
a (−k) = (−1)aBn∗

a (k) (7.26)

Cna (−k) = (−1)aCn∗a (k) (7.27)

Now let's evaluate the traces of products of E and O matrices. Omitting their arguments and

the indices pertaining to Hn, the traces up to three indices are

Tr [Ena ] = 0 (7.28)

Tr [Ona ] = 2< (Ba) (7.29)

Tr [EnaO
m
b ] = 2= (AaCb) (7.30)

Tr [OnaO
m
b ] = 2< (BaBb − C∗aCb) (7.31)

Tr [EnaE
m
b ] = 2< (AaA

∗
b) (7.32)

Tr [EnaE
m
b E

p
c ] = 0 (7.33)

Tr [EnaE
m
b O

p
c ] = 2< (AaA

∗
bBc) (7.34)

Tr [OnaO
m
b E

p
c ] = 2= (CaBbAc + CbB

∗
aAc) (7.35)

Tr [OnaO
m
b O

p
c ] = 2< (BaBbBc −BaC∗bCc − C∗aB∗bCc − C∗bCaB∗c ) (7.36)
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If we swap k→ −k we get the following behaviours

Tr [Ena (−k)] = 0 (7.37)

Tr [Ona (−k)] = (−1)aTr [Ona (k)] (7.38)

Tr [Ena (−k)Emb (−k)] = (−1)a+bTr [Ena (k)Emb (k)] (7.39)

Tr [Ena (−k)Omb (−k)] = (−1)a+b+1 Tr [Ena (k)Omb (k)] (7.40)

Tr [Ona (−k)Omb (−k)] = (−1)a+bTr [Ona (k)Omb (k)] (7.41)

Tr [Ena (−k)Emb (−k)Epc (−k)] = 0 (7.42)

Tr [Ena (−k)Emb (−k)Opc (−k)] = (−1)a+b+cTr [Ena (k)Emb (k)Opc (k)] (7.43)

Tr [Ona (−k)Omb (−k)Epc (−k)] = (−1)a+b+c+1 Tr [Ena (k)Emb (k)Opc (k)] (7.44)

Tr [Ona (−k)Omb (−k)Opc (−k)] = (−1)a+b+cTr [Ona (k)Omb (k)Opc (k)] (7.45)

Remember that we want to examine the second-order conductivity, which has three indices, so

a+ b+ c = 3. When there is only one v operator, there is no b or c, so a = 3. For two, there is no

c so a+ b = 3. We can either have a = 1 and b = 2 or the other way around. For three operators,

we get a + b + c = 3. After summing over all k, only terms unchanged by k → −k remain, so

that leaves only two:

Tr [EnaO
m
b ] = 2= (AaCb) (7.46)

Tr [OnaO
m
b E

p
c ] = 2= (CaBbAc + CbB

∗
aAc) (7.47)

Replace these objects by their de�nitions

Tr [EnaO
m
b ] = |εAB|n+m−1 ∆=

(
vα1···αa
AB vα1···αb∗

AB

)
(7.48)

Tr [OnaO
m
b E

p
c ] = |εAB|m+n+p−2 ∆2<

(
vα1···αb
AB ε∗AB

)
=
[
vα1···αc
AB vα1···αa∗

AB

]
(7.49)

To simplify these, let's particularize to the case we're studying, σxxx. The second trace is now

zero because we're computing the imaginary part of vxABv
x∗
AB, which is real. The only survivor is

the �rst trace, which may have two forms:

|εAB|n+m−1 ∆= (vxABv
xx∗
AB ) (7.50)

and

|εAB|n+m−1 ∆= (vxxABv
x∗
AB) (7.51)
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The same argument does not apply here, so we have no reason to believe this is zero. After

all of this, we conclude that all the Γ matrices of one and three indices vanish. The second-order

conductivity σxxx(ω1, ω2) therefore simpli�es tremendously for the case of h-BN.

σxxxh−BN (ω1, ω2) =
−16iσ2

3
√

3λω1ω2

∫ 1

−1
dεf(ε)∆n (ε) {gam (−ε/h̄+ ω2) Γxx,xnm (7.52)

+gRm (−ε/h̄− ω2) Γxx,xmn +
1

2
gRm (−ε/h̄− ω1 − ω2) Γx,xxmn +

1

2
gam (−ε/h̄+ ω1 + ω2) Γx,xxnm

}
The computations thus become much simpler because the hardest objects to calculate are gone.

7.2.2 Density of states

The dispersion relation of h-BN has a gap, which is evident in the density of states of Fig. 7.2.2.

Figure 7.4: KPM simulation of the density of states ρ (ε) of h-BN for a hopping parameter t = 2.33
eV. The axes are in units of t. System size: 1024×1024 unit cells, number of Chebyshev
polynomials used: 1024. We use the Jackson kernel for the Dirac delta.

7.2.3 First-order conductivity

If we choose the chemical potential to lie inside the gap, we expect no divergence at ω = 0, which

is exactly what we see in Fig. 7.5. To remove the peaks at low frequencies, we'd need bigger
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systems with more Chebyshev polynomials.

Figure 7.5: KPM simulation of the �rst-order conductivity in h-BN. The curves are plotted against
a reference (dashed lines). The graph is in units of the graphene universal conductivity
σ0 and the hopping t. System size: 2048 × 2048 unit cells, number of Chebyshev
polynomials used: 1024, chemical potential µ = 0, gap ∆ = 7.8 eV, hopping t = 2.33
eV, in�nitesimal Γ = 0.03 eV, temperature T = 300K. The kernels used here are the
same as the ones for the conductivity in graphene.

7.2.4 Second-order conductivity

There are two frequency arguments in the second-order conductivity. In order to represent it

in a simple graph, we're going to analyze the DC component of the second-order conductivity

σxxx. To see where this comes from, consider a simple sinusoidal electric �eld E(t) = E0 cos (ω0t)

along the x direction. In frequency space, E (ω) = πE0 (δ (ω − ω0) + δ (ω + ω0)). Replacing in

the expression for the second-order current,

〈Jα(ω)〉 =
E2

0

4
[σαxx(ω0, ω0)δ(2ω0 − ω) + [σαxx(−ω0, ω0) + σαxx(ω0,−ω0)] δ(ω) +

+σαxx(−ω0,−ω0)δ(2ω0 + ω)] .
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There are three distinct contributions to the current, but here we'll focus on the longitudinal

DC case, where ω = 0 and the current has the same direction as the �eld: σxxx(−ω0, ω0). The

other two cases would correspond to the second harmonic generation (SHG). Calculation of the

DC component turns eq. 7.52 into:

σxxxh−BN
σ2

(−ω, ω) =
16it

3
√

3ω2
1a

∫ 1

−1
dεf(ε)∆n (ε) {gam (−ε/h̄+ ω) Γxx,xnm (7.53)

+gRm (−ε/h̄− ω) Γxx,xmn +
1

2
gRm (−ε/h̄) Γx,xxmn +

1

2
gam (−ε/h̄) Γx,xxnm

}
.

This is the formula used to obtain Fig. 7.2.4. This result is compared with the conductivity

obtained by Daniel. The two curves have the same pro�le, although the frequency scale seems a

bit o�. We weren't able to �nd a satisfactory explanation for this di�erence, but the issue is still

being investigated.

Figure 7.6: KPM simulation of the second-order DC conductivity in h-BN. The curves are plotted
against a reference (dashed lines). System size: 4096 × 4096 unit cells, number of
Chebyshev polynomials used: 1024, chemical potential µ = 0, gap ∆ = 7.8 eV,
hopping t = 2.33 eV, in�nitesimal Γ = 0.03 eV, temperature T = 300K. The kernels
used here are the same as the ones for the conductivity in graphene.
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7.3 Conclusion

Along this work, we have developed the tools necessary to deal with the Keldysh formalism.

Along the way, we used Kubo's formula to study the �rst-order response, using it to compare our

expressions with various others across the literature. Through the Keldysh formalism, we were

able to �nd a general expression for the n-th order Green's function. Expanding the current in

the various orders in the external �eld, we expressed these quantities in terms of said Green's

functions. This is useful because the Kernel Polynomial Method (KPM) precisely allows us to

calculate the Green's function numerically. With these tools, we obtained the density of states

and �rst-order conductivity for graphene and hexagonal Boron Nitride (h-BN). The second-order

conductivity was obtained for h-BN. The agreement was good but not perfect, so it requires further

investigation, but serves as a proof-of-concept for the method developed in this work. Even higher-

order conductivites, although possible to calculate, prove to be a formidable computational task,

so we had to limit ourselves to the second order.
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8 Appendix

8.1 Conventions

To make sure we're all on the same page, this section deals with some conventions.

8.1.1 Continuous Fourier Transform

De�ne the forward and inverse Fourier transforms as follows:

f(t) =

∫ ∞
−∞

dω

2π
e−iωtf(ω)

f(ω) =

∫ ∞
−∞

dteiωtf(t)

These de�nitions are used to give meaning to the Fourier transform of the complex exponential

∫ ∞
−∞

dteiωt = 2πδ(ω) (8.1)

8.1.2 Discrete Fourier Transform

A similar convention is followed when dealing with the discrete analogue

f (R) =
1

N

∑
k

f (k) eik·R (8.2)

f (k) =
∑
R

f (R) e−ik·R (8.3)

Where N is the number of k (or R) states and may be thought as the volume. These are

consistent with the sum rules for real and reciprocal spaces:

∑
R

eik·R = Nδk,0 (8.4)

∑
k

eik·R = NδR,0 (8.5)
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8.2 Fourier transform of two complex exponentials

The integral we want to evaluate is

∫ ∞
−∞

dt

∫ t

−∞
dt′ei(ω+ωpss′ )te−i(ω

′+ωpss′ )t
′

(8.6)

At �rst glance, we see that this does not converge. This can be overcome by introducing a

convergence factor each time we integrate a variable. For example, if we want to integrate t′, we

introduce e−ε|t
′| and take the limit ε→ 0+ in the end:

lim
ε→0+

∫ ∞
−∞

dt

∫ t

−∞
dt′ei(ω+ωpss′ )te−i(ω

′+ωpss′ )t
′−ε|t′| (8.7)

Although doable, this is a very cumbersome approach. It may be avoided if we are able to

complete the integral in t′ so it spans across the whole real line. This way, we may interpret the

integral as a simple Fourier transform of the identity. Introducing the integral representation of

the Heaviside function Θ(t) =
∫∞
−∞

dω′′

2πi
eiω
′′t

ω′′−iε allows us to do exactly that.

∫ ∞
−∞

dt

∫ t

−∞
dt′ei(ω+ωpss′ )te−i(ω

′+ωpss′ )t
′

=

∫ ∞
−∞

dt

∫ ∞
−∞

dt′
∫ ∞
−∞

dω′′

2πi

eiω
′(t−t′)

ω′′ − iε
ei(ω+ωpss′ )te−i(ω

′+ωpss′ )t
′

(8.8)

The time integrations are now trivial and yield Dirac deltas.

∫ ∞
−∞

dt

∫ ∞
−∞

dt′
∫ ∞
−∞

dω′′

2πi

eiω
′(t−t′)

ω′′ − iε
ei(ω+ωpss′ )te−i(ω

′+ωpss′ )t
′

=

∫ ∞
−∞

dω′′

2πi

1

ω′′ − iε
2πδ(ω + ω′′ + ωpss′)2πδ(ω

′ + ω′′ + ωpss′)

Finally, performing the integration in ω′′ returns

∫ ∞
−∞

dt

∫ t

−∞
dt′ei(ω+ωpss′ )te−i(ω

′+ωpss′ )t
′

=
2πiδ(ω − ω′)
ω + ωpss′ + iε

(8.9)
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8.3 Calculation of the commutator
〈[
c†a(t)cb(t), c

†
c(t
′)cd(t

′)
]〉

0

As the title suggests, the objective here is to calculate the commutator
〈[
c†a(t)cb(t), c

†
c(t′)cd(t

′)
]〉

0
.

The time labels are removed for ease of notation, since they can be inferred from the operators'

labels. The �rst step is to write out the commutator explicitly

〈[
c†acb, c

†
ccd

]〉
0

=
〈
c†acbc

†
ccd − c†ccdc†acb

〉
0

(8.10)

Now we're going to take each of the terms and anti-commute the inner-most two operators of

each

〈[
c†acb, c

†
ccd

]〉
0

=
〈
c†a

({
cb, c

†
c

}
− c†ccb

)
cd − c†c

({
cd, c

†
a

}
− c†acd

)
cb

〉
0

(8.11)

Doing this has the advantage of removing all terms with four operators, since those cancel.

Simplifying and collecting terms, we arrive at

〈[
c†acb, c

†
ccd

]〉
0

=
{
cb, c

†
c

}〈
c†acd

〉
0
−
{
cd, c

†
a

}〈
c†ccb

〉
0

(8.12)

The explicit time-dependence may now be reestablished:

〈[
c†a(t)cb(t), c

†
c(t
′)cd(t

′)
]〉

0
=
{
cb(t), c

†
c(t
′)
}〈

c†a(t)cd(t
′)
〉

0
−
{
cd(t

′), c†a(t)
}〈

c†c(t
′)cb(t)

〉
0
(8.13)
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8.4 Calculation of the Green's functions from the Keldysh

formalism

These functions will be used copiously throughout the text so it is useful to determine their full

expression in both real and frequency spaces, as well as written in terms of quantum mechanical

operators.

8.4.1 Expressions in real and frequency spaces

They are the lesser, greater, retarded and advanced Green's functions and they originate from

averaging the product of a creation and a destruction operators over a non-interacting time-

independent Hamiltonian. This means that their evolution in the eigen basis of the Hamiltonian

is trivial.

cn(t1) = cne
−iεnt1/h̄ (8.14)

c†m(t2) = c†me
iεmt2/h̄ (8.15)

Using this fact, the time dependency of the average becomes easy to calculate.

〈
c†m(t2)cn(t1)

〉
0

=
〈
c†mcn

〉
0
e−iεnt1/h̄eiεmt2/h̄ (8.16)〈

cn(t1)c†m(t2)
〉

0
=

〈
cnc
†
m

〉
0
e−iεnt1/h̄eiεmt2/h̄ (8.17)

Next, Wick's theorem for �nite temperatures (2.142 and 2.143) tells us how to calculate these

averages

〈
c†mcn

〉
0

= −δnmf(εn) (8.18)〈
cnc
†
m

〉
0

= δnm [1− f(εn)] (8.19)

Putting all this together, we are able to �nd the expressions for the lesser and greater Green's

functions in the energy basis, whose de�nition is given in eq. 4.21:

ig<nm(t1, t2) = −
〈
c†m(t2)cn(t1)

〉
0

= −δnmf(εn)eiεm(t2−t1)/h̄ (8.20)

ig>nm(t1, t2) =
〈
cn(t1)c†m(t2)

〉
0

= δnm [1− f(εn)] eiεm(t2−t1)/h̄ (8.21)
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The retarded and advanced Green's functions are calculated based on these two, using de�ni-

tions 4.23 and 4.24:

igRnm(t1, t2) = iΘ(t1 − t2)
[
g>nm(t1, t2)− g<nm(t1, t2)

]
= Θ(t1 − t2)δnme

iεm(t2−t1)/h̄ (8.22)

iganm(t1, t2) = −iΘ(t2 − t1)
[
g>nm(t1, t2)− g<nm(t1, t2)

]
= −Θ(t2 − t1)δnme

iεm(t2−t1)/h̄(8.23)

The most important feature about this is that all these functions are diagonal in the energy

basis. Therefore, they actually depend only on the di�erence of times.

ig<nm(t1, t2) = ig<nm(t1 − t2) (8.24)

ig>nm(t1, t2) = ig>nm(t1 − t2) (8.25)

igRnm(t1, t2) = igRnm(t1 − t2) (8.26)

iganm(t1, t2) = iganm(t1 − t2) (8.27)

We can exploit that fact to obtain their Fourier transform. The lesser and greater Green's

functions are essentially Dirac deltas

ig<nm(ω) =

∫ ∞
−∞

dtig<nm(t)eiωt = −δnmf(εn) (2π) δ(ω − εn/h̄) (8.28)

ig>nm(ω) =

∫ ∞
−∞

dtig>nm(t)eiωt = δnm [1− f(εn)] (2π) δ(ω − εn/h̄) (8.29)

whilst the retarded and advanced Green's functions can be evaluated if we use the integral repre-

sentation of the Heaviside function

igRnm(ω) =

∫ ∞
−∞

dtigRnm(t)eiωt = δnm

∫ ∞
−∞

dteiωtΘ(t)e−iεmt/h̄ (8.30)

= δnm

∫ ∞
−∞

dteiωt
∫ ∞
−∞

dω′

2πi

e−iω
′t

ω′ + i0+
e−iεmt/h̄ =

−iδnm
ω − εm/h̄+ i0+

The derivation for the advanced Green's function is almost identical and yields

iganm(ω) =

∫ ∞
−∞

dtiganm(t)eiωt =
−iδnm

ω − εm/h̄− i0+
(8.31)
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In summary, these functions have the following form when expressed in terms of time:

ig<nm(t1, t2) = −δnmf(εn)eiεm(t2−t1)/h̄ (8.32)

ig>nm(t1, t2) = δnm [1− f(εn)] eiεm(t2−t1)/h̄ (8.33)

igRnm(t1, t2) = Θ(t1 − t2)δnme
iεm(t2−t1)/h̄ (8.34)

iganm(t1, t2) = −Θ(t2 − t1)δnme
iεm(t2−t1)/h̄ (8.35)

And in frequency space:

ig<nm(ω) = −δnmf(εn) (2π) δ(ω − εm/h̄) (8.36)

ig>nm(ω) = δnm [1− f(εn)] (2π) δ(ω − εm/h̄) (8.37)

igRnm(ω) =
−iδnm

ω − εm/h̄+ i0+
(8.38)

iganm(ω) =
−iδnm

ω − εm/h̄− i0+
(8.39)

8.4.2 Expressing in terms of operators

All these expressions have been obtained by working in the energy basis. Now it's relatively easy

to express them in terms of operators, namely the Hamiltonian. All we need to to is replace every

instance of an energy eigenvalue by the matrix element of the Hamiltonian. Starting with the

retarded Green's function, de�ne gR(ω) = −1
ω−H+i0+ . It is easy to check that its matrix elements

give precisely our de�nition of gRnm

igRnm(ω) =
−iδnm

ω − εm + i0+
= 〈n| −i

ω −H + i0+
|m〉 = 〈n| igR(ω) |m〉 (8.40)

Likewise, de�ning ga(ω) = −1
ω−H−i0+ , the advanced Green's function becomes

iganm(ω) = 〈n| iga(ω) |m〉 (8.41)

To do the same with the lesser Green's function, note that f(εn) =
∫∞
−∞ dεf(ε)δ(ε− εn), which

places all the dependency in εn inside one single Dirac delta. This delta is then promoted to a

matrix element of δ(ε−H)

ig<nm(ω) = −δnmf(εn) (2π) δ(ω − εn/h̄) = −2πδnm

∫ ∞
−∞

dεf(ε)δ(ω − ε/h̄)δ(ε− εn)

= −2π

∫ ∞
−∞

dεf(ε)δ(ω − ε/h̄) 〈n| δ(ε−H) |m〉
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The greater Green's function is done in precisely the same way and gives

ig>nm(ω) = 2π

∫ ∞
−∞

dε [1− f(ε)] δ(ω − ε/h̄) 〈n| δ(ε−H) |m〉 . (8.42)

In summary:

ig<nm(ω) = −2π

∫ ∞
−∞

dεf(ε)δ(ω − ε/h̄) 〈n| δ(ε−H) |m〉 (8.43)

ig>nm(ω) = 2π

∫ ∞
−∞

dε [1− f(ε)] δ(ω − ε/h̄) 〈n| δ(ε−H) |m〉

igRnm(ω) = 〈n| igR(ω) |m〉

iganm(ω) = 〈n| iga(ω) |m〉
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8.5 Expansion of Green's functions in terms of Chebychev

polynomials

Consider the Green's function with a �nite λ > 0 that accounts for dispersion. σ = −1 gives the

advanced and σ = 1 the retarded Green's function.

gσ,λ(ε, h) =
−1

ε− h+ iσλ
= σi

∫ ∞
0

dteσi(ε−h+iσλ)t (8.44)

This is a two-variable function and we want to achieve a separation between ε and h in the

polynomial expansion, so let us look for an expression of the form

gσ,λ(ε, h) =
∞∑
n=0

gσ,λn (ε)
Tn(h)

1 + δn0
(8.45)

The function gσ,λn (ε) may be found by applying the orthogonality relations

2

∫ 1

−1

dh

π
√

1− h2
Tm(h)gσ,λ(ε, h) =

∞∑
n=0

2gσ,λn (ε)

1 + δn0

∫ 1

−1

dh

π
√

1− h2
Tm(h)Tn(h) = gσ,λn (ε) (8.46)

Now we express the Green's function in its integral form, which enables us to calculate gσ,λn (ε)

explicitly

gσ,λn (ε) = 2

∫ 1

−1

dh

π
√

1− h2
Tn(h)σi

∫ ∞
0

dteσi(ε−h+iσλ)t

= 2σi

∫ ∞
0

dteσi(ε+iσλ)t

∫ 1

−1

dh

π
√

1− h2
Tn(h)e−σiht

The �rst step is thus to calculate the second integral, which resembles the application of the

orthogonality relations to the imaginary exponential.

8.5.1 Second integral ∫ 1

−1

dh

π
√

1− h2
Tn(h)e−σiht (8.47)

A change of variables h = cos(θ) helps shed some light into what this integral really is

∫ 1

−1

dh

π
√

1− h2
Tn(h)e−σiht =

∫ π

0

dθ

π
cos(nθ)e−σi cos(θ)t (8.48)

Using the fact that

∫ π

−π
dθ cos(nθ)e−σi cos(θ)t =

∫ π

−π
dθei(nθ−σt cos(θ)) (8.49)
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the previous integral may be identi�ed as

∫ 1

−1

dh

π
√

1− h2
Tn(h)e−σiht =

1

2π

∫ π

−π
dθei(nθ−σt cos(θ)) (8.50)

This is starting to look like the de�nition of a Bessel function, but it's still not quite there. A

series of changes of variables should make it clearer. Using the change φ = π/2 − θ we arrive at

an integral with some odd limits

∫ π

−π
dθei(nθ−σt cos(θ)) =

∫ π

−π
dθei(nθ−σt sin(π

2
−θ)) =

∫ 3π/2

−π/2
dφei(n(π

2
−φ)−σt sin(φ)) (8.51)

Note that since n is an integer, the integrand has period 2π and is being integrated over a whole

period. This means we can shift the integration limits as long as they span a period. With that

in mind, the previous integral becomes

∫ π

−π
dθei(nθ−σt cos(θ)) =

∫ π

−π
dφei(n(π

2
−φ)−σt sin(φ)) (8.52)

For integer n, the factor that does not depend on φ may be brought outside the exponential to

yield in

∫ π

−π
dθei(nθ−σt cos(θ)) =

∫ π

−π
dφei(nφ+σt sin(φ))in. (8.53)

Finally, doing the change of variables θ = σφ we can identify this as the integral de�nition of

a Bessel function

∫ π

−π
dφei(nφ+σt sin(φ)) =

∫ π

−π
dθei(−nσθ−t sin(θ)) = 2πJ−nσ(t) = 2π (−σ)n Jn(t) (8.54)

Tracing back our steps, we �nd that

∫ 1

−1

dh

π
√

1− h2
Tn(h)e−σiht = (−σi)nJn(t) (8.55)

All that remains is

gσ,λn (ε) = −2(−σi)n+1

∫ ∞
0

dteσi(ε+iσλ)tJn(t) (8.56)

This is basically the Laplace transform of the Bessel function. Let z = −σi(ε+ iσλ) = λ−σiε.
Therefore what we must calculate now is

∫ ∞
0

dte−ztJn(t) (8.57)
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8.5.2 Laplace transform of the Bessel function

This is a tricky calculation, but it can be done using integration in the complex plane. First,

express the Bessel function in its integral form. Then, the integral in t may be easily performed,

leaving an integration in the angle θ

∫ ∞
0

dte−ztJn(t) =

∫ π

−π

dθ

2π
einθ

∫ ∞
0

dte−(i sin(θ)+z)t =

∫ π

−π

dθ

2π
einθ

1

i sin(θ) + z
(8.58)

This is valid assuming that <(z) > 0, which is always true because λ > 0. Now we resort to

the Residue Theorem to compute this integral. Performing the change of variables ω = eiθ, the

integral runs along the unit circle in the complex plane.

∫ ∞
0

dte−ztJn(t) =
1

2π

∮
dω

iω
ωn

1

i
ω− 1

ω
2i + z

=
1

πi

∮
dω

ωn

ω2 + 2zω − 1
(8.59)

This integrand has poles at ω± = −z ±
√
z2 + 1 . <(z) > 0 also guarantees1 that the only the

root that lies inside the unit circle is ω+ = −z +
√
z2 + 1. If we use the principal branch of the

square root, we need not worry about the branch cut, since z is assumed to have a positive real

part. Applying the Residue Theorem, we arrive at

1

πi

∮
dω

ωn

ω2 + 2zω − 1
=

2πi

πi
Res

(
ωn

ω2 + 2zω − 1
, ω = −z +

√
z2 + 1

)
= 2 lim

ω→ω+

(ω − ω+)ωn

(ω − ω−) (ω − ω+)
= 2

ω+
n

ω+ − ω−

Using ω+ − ω− = 2
√
z2 + 1 and ei arcsin(iz) =

√
1 + z2 − z, we are able to �nish the evaluation

of the integral

∫ ∞
0

dte−ztJn(t) =
eni arcsin(iz)

√
z2 + 1

(8.60)

This expression is valid in the right half of the Argand plane, excluding the imaginary axis.

1First of all, note that ω+ω− = −1. Therefore,
∣∣ω+

∣∣ and ∣∣ω−∣∣ are inverses of one another. That is, if one is
inside the complex unit circle, the other is necessarily outside. We only need to guarantee that if one of those
roots is inside the unit circle, as we change z, it stays inside. This may be proved by �nding all the solutions
that lie precisely in the unit circle and guaranteeing that these are never reached. For that purpose, let's �nd
all ω = eiθ with θ real such that ω2 + 2zω − 1 = 0. The solution to that is z = −i sin (θ). This tells us that
if the roots lie in the unit circle, then z must lie in the interval [−1, 1] in the imaginary axis. Furthermore, we
know that the roots (ω−, ω+) of a complex polynomial are continuous functions of its coe�cients[17]. So, by
continuity, if a root crosses the unit circle that's because z must have crossed the imaginary [−1, 1] interval. But
since <(z) > 0, this will never happen. Finally, checking that, for example for z = 1/2, ω+ =

(√
3− 1

)
/2 < 1

is enough to say that this root will always stay inside the unit circle and ω− will never be inside.
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8.5.3 Green's function

Going back to eq. 8.56, we �nally have all the ingredients to say

gσ,λn (ε) = −2(−σi)n+1 eni arcsin(σε+iλ)√
1− (σε+ iλ)2

(8.61)

In some practical calculations, we are not interested in this result for a general λ. Instead, we

use the limit λ→ 0+. Since we'll be assuming −1 < ε < 1, the imaginary factor does nothing in

these functions, since we never hit the branch cuts. We may therefore ignore it and consider the

functions as if they were real functions of real variables. This simpli�es the previous expression

to

gσn(ε) = −2(−σi)n+1 e
ni arcsin(σε)

√
1− ε2

(8.62)

Using the identity π
2 − arccos(z) = arcsin(z), we are able to get rid of some of the (σi)n+1

lurking outside the exponential.

gσn(ε) = 2σi
e−niσ arccos(ε)

√
1− ε2

(8.63)
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