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This paper concerns the mathematical modeling and finite element (FE) solution of
general anisotropic shells with hybrid active-passive damping treatments. A fully-coupled
piezo-visco-elastic mathematical model of the shell (host structure) and segmented arbi-
trarily stacked layers of damping treatments is considered. A discrete layer approach is
employed in this work, and the weak form of the governing equations is derived for a
single generic layer of the multilayer shell using Hamilton’s principle and a mixed (dis-
placement/stresses) definition of the displacement field. First, a fully refined deformation
theory of the generic layer, based on postulated out-of-plane shear stress definitions and
in the in-plane stresses obtained with a Reissner-Mindlin type shell theory, is outlined.
A semi-inverse procedure is used to derive the layer mixed non-linear displacement field,
in terms of a blend of the generalized displacements of the Love-Kirchhoff and Reissner-
Mindlin theories and of the stress components at the generic layer interfaces. No assump-
tions regarding the thinness of the shell are considered. Regarding the definition of the
electric potential, the direct piezoelectric effects are condensed into the model through
effective stiffness and strains definitions, and the converse counterpart is considered by
the action of prescribed electric potential differences in each piezoelectric layer. Then, the
weak forms of a partially refined theory, where only the zero-order term of the non-linear
fully refined transverse displacement is retained, are derived for an orthotropic doubly-
curved piezo-elastic generic shell layer. Based on the weak forms a FE solution is initially
developed for the single layer. The degrees of freedom (DoFs) of the resultant four-noded
generic piezo-elastic single layer FE are then ”regenerated” into an equivalent eight-node
3-D formulation in order to allow through-the-thickness assemblage of displacements and
stresses, yielding a partially refined multilayer FE assuring displacement and shear stress
interlayer continuity and homogeneous shear stress conditions at the outer surfaces. The
shear stresses DoFs are dynamically condensed and the FE is reduced to a displacement-
based form. The viscoelastic damping behavior is considered at the global FE model level
by means of a Laplace transformed ADF model. The active control of vibration is shortly
discussed and a set of indices to quantify the damping performance and the individual
contributions of the different mechanisms are proposed.

I. Introduction

The 21st century has emerged with a ”new” challenge for science. Unified multiphysics coupled formu-
lations moving towards the precise modeling of real physical problem pushes the underlying complexity

to higher levels. It involves the efforts of specialists of different areas contributing in a unified way to find a
solution to those ”complex” coupled problems. In parallel with that demanding refinement of the models,
the processing capabilities of modern computers has also increased. An example of that multidisciplinarity
can be found in the modeling of general plane or curved structures with hybrid active-passive damping
treatments which are applied to control structural vibrations and/or noise radiation from structures.
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In order to efficiently model these treatments, the piezo-visco-elastic couplings between an elastic host
structure (e.g., shell) and viscoelastic and piezoelectric damping layers must be accurately considered. It
is well known that modeling pure mechanical laminated shell structures is already a very complicated sub-
ject involving a lot of thinking concerning kinematic assumptions, displacement-strain-stress relationships,
different variational principles, constitutive relations, consistency of the resultant governing equations, etc.,
with the extra complication of having the problem formulated in curvilinear coordinates. In addition, the
viscoelastic and piezoelectric layers behaviors are also incorporated in the model increasing its complexity.
That involves viscoelastic damping modeling issues in the one hand, utilized to describe the damping be-
havior of the viscoelastic counterpart of the structural system, and electro-mechanical coupling modeling
assumptions for the piezoelectric layers counterpart in the other hand.

The finite element (FE) method is usually the preferable way of obtaining solutions for structures with
more complicated geometries, boundary conditions and applied loads types. ”Perfect” FEs of general shell
structures without any numerical pathologies are still an issue to be solved by the scientific community and
a challenge to deal with. However, models have been developed to simulate the structure and damping
treatments and to assess their performance. The ultimate aim of this simulation is to define the optimal
configuration (e.g., thickness, locations, number and type of sensors and actuators, control law, etc.) and put
them in practice, making them work in order to solve some of the problems involving noise and vibration issues
that our society nowadays has to deal with. Hence, one should also be familiarized with control theory aspects
both for simulation or real-time implementation. These reasons attest the interesting multidisciplinarity and
attracting challenge of modeling this type of coupled physical system, already reasonably studied over the last
two decades, however with many aspects that still need to be solved. Further refinement of the models, fully
coupling the physical ingredients, and coming up with some new approaches should be the main tendencies.
There is still much work to be done and this research issue is far from being fully understood.

The derivation of shell theories has been one of the most prominent challenges in solid mechanics for
many years. The idea is to develop appropriate models that can accurately simulate the effects of shear
deformations and transverse normal strains in laminated shells with good trade-off between accuracy and
complexity, which is a big mathematical difficulty. Physical 3-D shells are usually modeled recurring to
approximated mathematical 2-D models. They are obtained by imposing some chosen kinematic and me-
chanical assumptions to the 3-D continuum, e.g., by explicitly assuming a through-the-thickness axiomatic
displacement field definition and assuming a plane-stress state. When compared to 3-D solid FEs, 2-D shell
FEs allow a significant reduction of the computational cost without losing much accuracy. However, to
make matters worse, this sort of approximations lead to so-called locking effects (e.g., shear and membrane
locking), which produces an overstiffening of the FE model which in turn produces erroneous results. Fur-
thermore, for shell-type structures, with a more complex shear-membrane-bending coupling behavior, the
locking effects are not yet fully understood yet, making these numerical pathologies difficult to remedy. Fully
modeling the viscoelastic damping behavior is another important difficulty since their constitutive behavior
is temperature and frequency dependent. Usually, for simplicity, only the frequency dependent material
properties are considered and isothermal conditions are assumed.

When modeling this kind of structural system, various things have to be taken into account: the advances
and alternative formulations of representative mathematical models of the physical behavior of shells with
damping treatments; the developments (e.g., improved alternative configurations, control approaches, etc.)
that the damping treatments suffered in the last decades; the developments and alternative approaches to
viscoelastic damping modeling; considerations concerning the electro-mechanical coupling of piezoelectric
layers; and the implementation and development of simple and reliable, locking-free, easily implemented
FE solution methods. Over the years many authors have developed models for this type of problem. It’s
very difficult to comprehensively review their contributions because the multidisciplinarity of the subject
makes the literature vast and the technical developments and improvements to appear dispersed in technical
journals of different areas. However, the major disciplines, considered relevant for this work, are shortly
reviewed here, namely: (1) elastic deformation theories, (2) piezoelectric materials and electro-mechanical
coupling assumptions, (3) viscoelastic damping, (4) coupled piezo-visco-elastic FE formulations and (5)
control strategies. This will allow to introduce the subject of this paper and to justify the options and
assumptions taken for developing the model. Furthermore, it will allow to identify the aspects of the work
that are new and significant in a more founded way.

In the development of structural mathematical models, different theories have been considered to ax-
iomatically define the kinematics of laminated structural systems, where the planar dimensions are one to
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two orders of magnitude larger than their thickness (e.g., beams, plates or shells). Usually, these structural
systems are formed by stacking layers of different isotropic or orthotropic composite materials with arbitrary
fiber orientation or then, in this specific case, by arbitrary stacking sequences of active piezoelectric or passive
viscoelastic damping layers.

These theories, following Kraus,1 were originally developed for single layer ”monocoque” thin structures
made of traditional isotropic materials. Generally speaking, they can be grouped into two classes of alternate
theories: one in which all of the Love’s original assumptions2 are preserved, and other, following higher-order
linear theories in which one or another of Love’s assumptions are suspended. Many additional theories of
thin and thick elastic shells have been proposed and the chronicle of these efforts are presented for example
in Refs. 3 and 4.

Two different approaches are often used. The first one, the so-called Equivalent Single Layer (ESL)
theories, where the number of independent generalized variables doesn’t depend of the number of layers,
are derived from 3-D elasticity by making suitable assumptions concerning the kinematics of deformation
or the stress state through the thickness of the laminate, allowing the reduction of a 3-D problem to a 2-D
one. The second one, the so-called Layerwise Theories (LWT), where the number of generalized variables
depends on the number of physical (or nonphysical) layers, rely on the basis that the kinematic assumptions
are established for each individual layer, which might be modeled (or not) as a 3-D solid. The problem is
then reduced to a 2-D problem, however, retaining the 3-D intralaminar and interlaminar effects.

As reported by Yang et al.,5 plate and shell structures made of laminated composite materials have
often been modeled as an ESL using the classical laminate theory (CLT) (see for example the textbook
of Reddy6), in which the out-of-plane stress components are ignored. The CLT is a direct extension of
the well-known Kirchhoff-Love kinematic hypothesis, i.e., plane sections before deformation remain plane
and normal to the mid-plane after deformation and that normals to the middle surface suffer no extension
(Kirchhoff contribution) and others (cf. Ref. 4), however applied to laminate composite structures. This
theory is adequate when the ratio of the thickness to length (or other similar dimension) is small, the dynamic
excitations are within the low-frequency range and the material anisotropy is not severe. The application
of such theories to layered anisotropic composite shells could lead to 30% or more errors in deflections,
stresses and frequencies.6 In order to overcome the deficiencies in the CLT, new refined laminate theories
have been proposed relaxing some of the Love’s postulates according to Koiter’s recommendations,7 where
it is stated that ”... a refinement of Love’s approximation theory is indeed meaningless, in general, unless
the effects of transverse shear and normal stresses are taken into account at the same time.” However, as
stated by Carrera,8 for 2-D modelings of multilayered structures (such as laminated constructions, sandwich
panels, layered structures used as thermal protection, intelligent structural systems embedding piezoelectric
and/or viscoelastic layers) require amendments to Koiter’s recommendation. Among these, the inclusion
of continuity of displacements, zig-zag effects, and of transverse shear and normal stresses interlaminar
continuity at the interface between two adjacent layers, are some of the amendments necessary. The role
played by zig-zag effects and interlaminar continuity has been confirmed by many 3-D analysis of layered
plates and shells.9–15 These amendments become more significant when complicating effects such as high
in-plane and/or out-of-plane transverse anisotropy are present. Hence, as referred by Carrera,8 Koiter’s
recommendation concerning isotropic shells could be re-written for the case of multilayered shells as ”...
a refinement of ... unless the effects of interlaminar continuous transverse shear and normal stresses are
taken into account at the same time.” This enforces the need of also assuring interlaminar continuity of the
out-of-plane stresses (C0

z requirements16).
A refinement of the CLT, in which the transverse shear stresses are taken into account, was achieved

with the extension to laminates of the so-called Reissner-Mindlin theory, or First-order transverse Shear
Deformation Theory (FSDT). It provides improved global response estimates for deflections, vibration fre-
quencies and buckling loads of moderately thick composites when compared to the CLT (see Ref. 6). Both
approaches (CLT and FSDT) consider all layers as one anisotropic ESL and, as a consequence, they cannot
model the warping effect of cross-sections. Furthermore, the assumption of a non-deformable normal results
in incompatible shearing stresses between adjacent layers. The latter approach, because it assumes constant
transverse shear stress, also requires the introduction of an arbitrary shear correction factor which depends
on the lamination parameters for obtaining accurate results. Such a theory is adequate to predict only the
gross behavior of laminates. Higher-Order Theories (HOTs), overcoming some of these limitations, were
presented for example by Reddy17,18 for laminated plates and shells. However, because of the material mis-
match at the intersection of the layers, the HOT also lead to transverse shear and normal stress mismatch at
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the intersection. In conclusion, ESL theories are found to be inadequate for detailed, accurate, local stress
analysis of laminated structures.

If detailed response of individual layers is required, as is the case for piezoelectric layers, and if significant
variations in displacements gradients between layers exist, as is the case of local phenomena usually in
viscoelastic layers, LWT (discrete layer) become more suitable to model the intralaminar and interlaminar
effects and the warping of the cross section. The LWT corresponds to the implementation of CLT, FSDT
or HOT at a layer level. That is, each layer is seen as an individual plate or shell and compatibility
(continuity) of displacement (and eventually out-of-plane stress) components with correspondence to each
interface is imposed as a constraint. As can be seen in Refs. 19 and 20, high-order displacement-based or
mixed LWT have been successfully used to accurately model the behavior of laminates taking into account
the interlaminar and intralaminar effects.

Another alternative, with a reduced computational effort, in the framework of ESL theories, is the use of
the so-called Zig-Zag Theories (ZZTs), which have their origins and most significant contributions coming
from the Russian school. Refined ZZT have therefore been motivated to fulfill a priori (in a complete or
partial form) the C0

z requirements. The fundamental ideas in developing ZZT consists to assume a certain
displacement and/or stress model in each layer and then to use compatibility and equilibrium conditions at
the interface to reduce the number of the unknown variables and keep the number of variables independent
of the number of layers.

As stated by Carrera,21 the first contribution to the ZZT was supposedly given by Lekhnitskii in the
1930s (see the brief treatment concerning a layered beam in the English translation of his book [22, Section
18]). Apart from the method proposed by Lekhnitskii, which was almost ignored, two other independent
contributions, which received much more attention from the scientific community, have been proposed in the
literature in the second half of last century. The first of these was originally given by Ambartsumian in the
1950s, motivated by the attempt to refine the CLT to include partially or completely the C0

z requirements, and
was applied to anisotropic single and multilayer plates and shells (see his textbooks23,24). Several variations
have been presented which consisted in direct or particular applications of the original Ambartsumian’s
idea. Whitney [25, Chapter 7] introduced the theory in the Western community and applied it to non-
symmetrical plates whereas the extension to multilayer shells and dynamic problems was made by Rath
and Das.26 However, several unuseful works concerning particular applications of Ambartsumian’s original
theory were developed presenting progressive refinements towards the original idea. It was only in the 1990s
that the original theory was re-obtained as can be found, among others, in the works of Cho and Parmerter,27

Beakou and Touratier28 and Soldatos and Timarci.29 Regarding the second independent contribution, it was
given by Reissner in 1980s,30 who proposed a mixed variational theorem that allows both displacements and
stress assumptions to be made. Significant contributions to the theory proposed by Reissner were made by
Murakami31 that introduced a zig-zag form of displacement field and Carrera32 that presented a systematic
generalized manner of using the Reissner mixed variational principle to develop FE applications of ESL
theories and LWT of plates and shells. For further details, an historical review of ZZT was performed by
Carrera.21,33 A discussion on the theories and FE for multilayered structures, with numerical assessment
and a benchmarks for plate and shell structures can be found in the literature.33–39

When modeling piezoelectric sensors and actuators, different electrical assumptions can be taken into
account in the theoretical model when considering the electro-mechanical (or piezo-elastic) coupling. These
assumptions regard mainly the use (or not) of electric degrees of freedom (DoFs) and the approximations of
the in-plane and out-of-plane components of the electric displacement vector and/or through-the-thickness
variation of the electric potential. Therefore, they might lead to decoupled, partial and fully coupled electro-
mechanical theories, which in turn can lead to different modifications of the structure’s stiffness and different
approximations of the physics of the system. Those electro-mechanical coupling theories can be considered
by the use of effective stiffness parameters (ESP), defined according to the electric boundary condition
considered, as shown in Refs. 40–42 for a smart piezoelectric beam and plate. This ESP formulation, however,
can also be extended to other types of structures such as shells. Interesting textbooks concerning the
piezoelectric modeling of beams, plates and shells can be found in Refs. 43–45.

In the last decade the technology associated with a more refined design and adequate implementation of
viscoelastic-based damping treatments has achieved a relative maturity and is frequently applied in practice
by the scientific community and its industrial partners. Active Constrained Layer Damping (ACLD) treat-
ments have revealed from the early 1990s to be an effective means of vibration suppression.46 In an attempt
to improve performance, different configurations of the active (piezoelectric) and passive (viscoelastic) con-
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straining layers have been used since then. These treatments are called arbitrary ACLD treatments or hybrid
active-passive damping treatments. The ACLD treatments combine the high passive capacity of viscoelastic
materials to dissipate vibratory energy at high frequencies with the active capacity of piezoelectric materials
at low frequencies. Therefore, in the same damping treatment, a broader band control is achieved benefiting
from the advantages of both passive (simplicity, stability, fail-safe, low-cost) and active (adaptability, high-
performance) systems. In order to adequately design these viscoelastic damping treatments the viscoelastic
material properties need to be accurately measured and considered for the underlying mathematical models.
The temperature and frequency dependent material properties of the viscoelastic materials complicate the
mathematical model and make the solution of the problem more difficult to obtain. Usually, isothermal
conditions are assumed and only the frequency dependent constitutive behavior is taken into account. The
simplest way of modeling these materials is achieved by a Complex Modulus Approach (CMA) where the
material properties are defined for each discrete frequency value.47,48 The CMA is also associated with the
so-called Modal Strain Energy (MSE) method49 where the loss factors of each individual mode are deter-
mined from the ratios between the dissipated modal strain energy of the viscoelastic counterpart and the
storage modal strain energy of the global structural system. The MSE method is known to lead to poor
viscoelastic damping estimation of highly damped structural systems. Furthermore, the CMA is a frequency
domain method that is limited to steady state vibrations and single-frequency harmonic excitations. Thus,
to account for the frequency dependent material properties, iterative versions of the MSE have been used
successfully for moderate damping values.50 Time domain models, relying on internal variables (see John-
son51), such as the Golla-Hughes-McTavish (GHM)52,53 and Anelastic Displacement Fields (ADF),54,55 or
others,56,57 utilizing additional dissipation variables, have been successfully utilized and yield good damping
estimates. Alternatively, the use of Fractional Calculus (FC)58,59 models, based upon the use of fractional
derivatives, has the drawback of generating a ”non-standard” FE formulation, with a more complex charac-
teristic solution procedure, but yielding also good damping estimates. Other relevant contribution for the
viscoelastic damping modeling is given by Adhikari’s work in Ref. 60 and his references therein. Regarding
the temperature effects, studies taking into account the temperature dependence of the properties and the
self-heating of viscoelastic materials have been performed by Lesieutre and his co-workers in Refs. 61 and
62 which extended the ADF model for these cases leading, however, to nonlinear differential equations. The
effects of the operating temperature on hybrid damping treatments performance and viscoelastic damping
efficiency were analyzed, for example, in Refs. 63–67.

Time domain models represent better alternatives to CMA-based models allowing the reduction of the
computational burden and the study of the transient response in a more straightforward manner, even for
highly damped structural systems. Among the time domain models, internal variables models are more
interesting from the computational point of view and easiness of implementation into FE codes. Thus, the
GHM and ADF models are alternative methods, used to model the damping behavior of viscoelastic materials
in FE analysis, which yield a standard FE formulation (however with the addition of some ”non-physical”
dissipative variables). In order to use them, one needs the GHM and ADF characteristic parameters which
allow characterizing the complex (frequency dependent) constitutive behavior of the viscoelastic material
being used. To do that, experimental procedures to measure the isotropic constitutive behavior (usually
the shear modulus) and numerical identification procedures of the measured data need to be developed (see
Vasques et al.68).

When designing hybrid active-passive treatments (see the review articles in Ref. 69 and 70) it is important
to know the configuration of the structure and treatment that gives optimal damping. For simulation the
designer needs a model of the system in order to define the optimal locations, thicknesses, configurations, con-
trol law, etc. Thus, there are numerous options at the design stage. Modeling this kind of structural systems
usually requires a coupled piezo-visco-elastic structural FE model, comprising the piezoelectric, viscoelastic
and elastic layers constitutive behaviors. Surveys on the advances in FE modeling of piezoelectric adaptive
structures with or without hybrid active-passive damping treatments are presented by Benjeddou.71,72 A
review and assessments of hybrid treatments on beams is also performed by Trindade.73

In the last decades the advances in digital signal processing and sensors and actuators technology have
prompted interest in active control and a considerable effort has been put in the development and im-
plementation of Active Noise Control (ANC) and Active Vibration Control (AVC) theories (see related
textbooks74–81). These might be divided into two fundamental classes, namely, feedback and feedforward
control algorithms. The former control strategy has been shown to be most suitable in applications where
the structure is under impulsive or stochastic unknown disturbances and the latter to the case where deter-
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ministic or correlated information about the disturbance is known. Variations of the two general methods
exist, each with advantages, disadvantages and limitations. A review paper concerning active structural
vibration control strategies is presented by Alkhatib and Golnaraghi.82

In the open literature several studies concerning different control of vibration strategies (e.g., feedforward
wave suppression, proportional and velocity feedback, optimal control) with different types of actuation (e.g.,
point forces, pair of moments, piezoelectric patch actuation) in different structural systems with piezoelec-
tric actuators or hybrid active-passive treatments can be found in Refs. 83–86. Comparisons of different
classical and/or optimal feedback control strategies were performed, for example, by Gandhi and Munsky87

and Vasques and Rodrigues.88 While feedback control has been vastly applied in the vibration control
of structures with arbitrary ACLD (hybrid active-passive) damping treatments, only a few works utilizing
feedforward theory can be found in the open literature.89–91 The most typical application of feedforward
control presented in textbooks concerns the noise attenuation in ducts and applications concerning vibration
reduction are mainly devoted to Active Structural Acoustic Control (ASAC). Furthermore, hybrid (com-
bined feedback/feedforward) control strategies were successfully used in the past for noise and vibration
suppression (see for example Refs. 92–95). However, only one study concerning hybrid control with ACLD
treatments applied to a beam was performed by Vasques and Rodrigues.96

This paper concerns the mathematical modeling and FE solution of general anisotropic shells with hybrid
active-passive damping treatments. A fully-coupled piezo-visco-elastic mathematical model of the shell (host
structure) and segmented arbitrarily stacked layers of damping treatments is considered in the framework
of a discrete layer approach. Thus, the weak form of the governing equations is derived for a single generic
layer of the multilayer shell using Hamilton’s principle and a mixed (displacement/stresses) definition of the
displacement field.

First, a fully refined deformation theory of the generic layer, based on postulated out-of-plane shear stress
components and the in-plane stresses obtained with a Reissner-Mindlin type shell theory, is outlined. A semi-
inverse iterative procedure is used to derive the layer mixed non-linear displacement field, in terms of a blend
of the generalized displacements of the Love-Kirchhoff and Reissner-Mindlin theories and stress components
at the generic layer interfaces, without any simplifying assumptions regarding the thinness of the shell
being considered. The electrical potential is defined assuming negligible in-plane electric displacement field
components, and a constant transverse electric displacement. Regarding the electro-mechanical coupling, a
fully coupled theory is considered where the direct piezoelectric effect is adequately taken into account and
the converse piezoelectric effect is considered by the action of a prescribed electric potential difference in the
generic piezoelectric layer surface electrodes.

Then, the weak forms of a partially refined theory, where only the zero-order term of the non-linear
fully refined transverse displacement is retained, are derived for an orthotropic doubly-curved piezo-elastic
generic layer. Based on the weak forms a FE solution is developed for the generic shell layer. The degrees of
freedom (DoFs) of the resultant four-noded generic piezo-elastic single layer FE are then ”regenerated” into
an equivalent eight-node 3-D formulation in order to allow through-the-thickness assemblage of displacements
and stresses and the generation of a partially refined multilayer piezo-elastic FE. A dynamic condensation
technique is employed to eliminate the stress DoFs and to cast the problem in an equivalent displacement-
based FE model form.

Last but not the least, the viscoelastic damping behavior is considered by means of a Laplace trans-
formed ADF model implemented at the global FE model level and a partially refined piezo-visco-elastic
multilayer FE model of orthotropic doubly-curved shells is presented. The active control of vibration is
shortly discussed and a set of indices to quantify the damping performance and the individual contributions
of the different mechanisms are proposed, allowing the phenomenological study and the design of the hybrid
damping treatments in a more straightforward manner.

Regarding the deformation theory developed in this work, it is inspired in Ambartsumian’s contributions
for the deformation theory of single layer anisotropic plates and shells.23,24,97 Ambartsumian basically used
a semi-inverse method to develop refined shear deformation theories. They are based on assuming a refined
distribution of the transverse shear stresses and in the use of the the equilibrium and constitutive equations to
derive expressions for the in-plane displacements, which in turn become non-linear in the thickness coordinate.
Improvements including the effect of transverse normal strain were also considered for plates and shells. In
some of these refined theories transverse shear stress distributions are assumed to follow a parabolic law
and to satisfy zero shear stress conditions at the top and bottom surfaces of the plate or shell. However,
if out-of-plane stresses continuity is required, a mixed formulation should consider also the stresses on the

6 of 51

American Institute of Aeronautics and Astronautics



interfaces of the single layer, which, for the sake of simplicity, were, in general, assumed to be nil in the single
layer theories developed by Ambartsumian. That puts some limitations in the generalization of the theory
to multilayer structures since neither the displacement nor the normal stresses are available in the interfaces
and interlayer continuity can not be imposed. Furthermore, his multilayer approach doesn’t allow to consider
segmented layers, which is something required in the study of segmented hybrid damping treatments. When
that is the case, individual refined theories must be considered for each individual discrete-layer.

When compared with Ambartsumian’s first and second improved theories of anisotropic shells (see Ref.
24), the proposed fully and partially refined theories, similar to Ambartsumian’s first and second improved
theories, respectively, assume as a first approximation of the in-plane stresses the ones obtained with the
FSDT instead of the CLT. Additionally, all the surface shear stresses are retained in the formulation since
they will be used afterward with the ”regenerated” 3-D element to generalize the theory to segmented
multilayered shells. Furthermore, the theory is extended to coupled piezo-visco-elastic multilayered shells
and a FE solution is developed. Thus, however strongly inspired in Ambartsumian’s work, the underlying
deformation theory of the present work has some important differences and represents a further step towards
the increasing refinement of this type of multiphysics problem. It is worthy to mention that it would be very
complicated and cumbersome to fulfill a priori all the C0

z requirements for a multilayer anisotropic shell.
Instead, a discrete layer approach is used, which allows interlayer displacement and out-of-plane stresses
continuity to be imposed a posteriori in a more straightforward manner, by means of a through-the-thickness
assemblage of the ”regenerated” single layer FE.

Regarding the variational approach used to get the governing equations, similar analytical works using
”partial” mixed theories where the displacement field is defined in terms of generalized displacements and
generalized surface and transverse stresses can be found for beams and plates in the works of Rao et al.98–100

In contrast to other ”fully” mixed methods, as the ZZT based on Reissner’s contribution, where mixed
variational principles are used, Hamilton’s principle has also been employed to derive the governing equations
(i.e., no mixed-enhanced variational principles are considered). The present work extends a similar concept
to multilayered shells and a FE solution is developed. Concerning piezo-visco-elastic FEs, a similar work
about a three-layered coupled piezo-visco-elastic plate FE was developed by Chattopadhyay et al.,101 where
a HOT was used for the definition of the displacement field of each individual layer and the displacement and
shear stress continuity were assured. However, the formulation is limited to the study of active constrained
layer damping (ACLD) treatments on plates and doesn’t allow the study of arbitrary damping treatments
(multilayer structures). As far as the ”regeneration” concept is concerned, the concept has been employed
also by Cho and Averill102 in the the framework of the ZZTs, where a plate FE, avoiding the shortcomings
of requiring C1 continuity of the transverse displacement, has been developed using a first-order zig-zag
sublaminate theory for laminated composite and sandwich panels. However, the formulation is based on
the decomposition of the whole structure in sublaminates, a linear piecewise function is assumed for the
displacement of each sublaminate and the interlaminar displacement and normal shear stress continuity is
imposed between the layers of the same sublaminate but not between the sublaminates. In comparison, the
present work uses a similar ”regeneration” concept to shell-type structures with a more refined deformation
theory being employed which allows displacement and interlayer continuity between all layers to be imposed.

To sum up, this work will present some new developments to the study of shells with hybrid damping
treatments. Only a few papers concerning hybrid active-passive damping treatments in shells are found in the
open literature. They were mainly devoted to simple shell geometries and a few to arbitrary shells. Therefore
further studies on shells are necessary. Here one intends to develop an accurate mechanical structural model
of shells, considering also an accurate model of the electro-mechanical coupling and an effective time domain
damping model of the viscoelastic layers. Furthermore, works in the open literature are usually devoted
to three-layered sandwich shells and usually concern only modeling aspects. It’s also of great importance
the phenomenological study and quantification of the damping mechanisms for different configurations of
the treatments in shells, which are not fully understood yet. These are the major novelties of this work,
which comprises accurate modeling issues on the one hand and phenomenological study of the treatments
for hybrid, active or passive vibration control on the other hand.
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II. Fully Refined Mathematical Model of General Shells

A. Physical Problem Description

The physical problem to be mathematically modeled here concerns a general anisotropic shell to which
damping treatments of piezoelectric and viscoelastic materials are attached on both top and bottom surfaces
of the host structure (Fig. 1). All the damping layers and the host structure have constant thickness.
The damping treatments are required to be able to be discontinuous (or segmented) and arbitrary stacking
sequences of hybrid damping treatments comprising piezoelectric sensing or actuating, viscoelastic or elastic
layers are considered. Isotropic viscoelastic materials are used and the piezoelectric materials are general
orthotropic materials of the class mm2.103,104 The system is supposed to operate under moderate changing
thermal environments, well bellow the Curie temperature of the piezoelectric material.

Thus, the physical problem involves visco-elastic (or mechanical) and piezo-elastic (or electro-mechanical)
interactions mainly devoted to increase the energy dissipation of the structural system.
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Figure 1. Multilayer shell with arbitrary hybrid damping treatments.

B. Shell Differential Geometry

A theory is established by treating the shell with hybrid damping treatments as a multilayer shell of arbitrary
materials. Then, a generic layer (elastic, viscoelastic or piezoelectric) is taken from the global laminate, and
the week form of the governing equations is derived for the individual layer. Interlaminar (or interlayer)
continuity conditions of displacements and stresses (surface tractions) and homogeneous (or not) traction
boundary conditions at inner and outer boundary surfaces of the global laminate (or damped shell) are
imposed later, at the multilayer FE level, by assembling all the individual layers contributions.

Consider a generic piezo-visco-elastic layer (Fig. 2) extracted from the multilayer shell in Fig. 1. The
general orthotropic (anisotropic) layer has a constant thickness of 2h and a plane of elastic symmetry parallel
to the middle surface Ω0. The latter surface is used as a reference surface referred to the curvilinear orthogonal
coordinates α and β, which coincide with the lines of principal curvature of the middle surface. Let z denote
the distance comprised in the interval [−h, h] and measured along the normal of a point (α, β) of the middle
surface Ω0 and a point (α, β, z) of the shell layer and Ω a surface at a distance z and parallel to Ω0. The
square of an arbitrary differential element of arc length ds, the infinitesimal area of a rectangle in Ω and an
infinitesimal volume dV are given by

ds2 = Hα
2dα2 + Hβ

2dβ2 + Hz
2dz2, dΩ = HαHβ dα dβ, dV = HαHβHz dα dβ dz, (1)

where Hα = Hα(α, β, z), Hβ = Hβ(α, β, z) and Hz are the so-called Lamé parameters given by

Hα = Aα

(
1 +

z

Rα

)
, Hβ = Aβ

(
1 +

z

Rβ

)
, Hz = 1. (2)
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Aα = Aα (α, β) and Aβ = Aβ (α, β) are the square root of the coefficients of the first fundamental form and
Rα = Rα (α, β) and Rβ = Rβ (α, β) the principal radii of curvature of the middle surface Ω0 (see for example
Kraus1 for further details).

�

��
��

�

�

Figure 2. Generic piezo-visco-elastic shell layer.

C. General Assumptions and Relationships

Different assumptions are made regarding the mechanical, electrical and electro-mechanical behavior. By
now, one will be only concerned with the mechanical assumptions which are as follows:

(a) Strains and displacements are sufficiently small so that the quantities of the second- and higher-order
magnitude in the strain-displacement relationships may be neglected in comparison with the first-order
terms (infinitesimal strains and linear elasticity);

(b) The shear stresses σzα(α, β, z) and σβz(α, β, z), or the corresponding strains εzα(α, β, z) and εβz(α, β, z),
vary in the shell layer thickness according to a specified law, defined by a ”correction” even function
f(z), symmetric relative to the middle surface (e.g., parabolic, trigonometric), and the shear angle
rotations ψα(α, β) and ψβ(α, β) of a normal to the reference mid-surface obtained from the FSDT;
additionally non-homogeneous conditions are assumed at the top and bottom surfaces;

(c) The normal stresses σzz(α, β, z) at areas parallel to the middle surface are not negligible and are
obtained through the out-of-plane equilibrium equation in orthogonal curvilinear coordinates, and
non-homogeneous conditions are assumed at the top and bottom surfaces;

(d) The strain εzz(α, β, z) is determined assuming as first approximations of the in-plane stresses the ones
obtained with the FSDT for shells defined in Appendix B, σ∗

αα(α, β, z), σ∗
ββ(α, β, z) and σ∗

αβ(α, β, z),
without any simplification regarding the thinness of the shell being made (i.e., the terms z/Rα (α, β)
and z/Rβ (α, β) are fully retained);

According to assumption (b) the out-of-plane shear stress components are postulated as

σzα(α, β, z) =
1

Hα

[
τ̄zα(α, β) +

z

2h
τ̃zα(α, β) + f(z)ψα(α, β)

]
,

σβz(α, β, z) =
1

Hβ

[
τ̄βz(α, β) +

z

2h
τ̃βz(α, β) + f(z)ψβ(α, β)

]
, (3)
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where ψα = ψα(α, β) and ψβ = ψβ(α, β) are the shear angles obtained with the FSDT (defined in Appendix
B) and the bar and tilde above τzα and τβz are used to denote mean imposed surface shear tractions, given
by

τ̄zα(α, β) =
1
2
[
σt

zα(α, β) − σb
zα(α, β)

]
, τ̄βz(α, β) =

1
2
[
σt

βz(α, β) − σb
βz(α, β)

]
, (4)

and relative ones, given by

τ̃ zα(α, β) = σt
zα(α, β) + σb

zα(α, β), τ̃βz(α, β) = σt
βz(α, β) + σb

βz(α, β), (5)

where (·)t and (·)b denote prescribed shear tractions at the top and bottom surfaces (i.e., at z = ±h),
respectively, of the shell layer (see Fig. 3).
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Figure 3. Postulated shear strains distributions of the refined theory.

By substituting the values of σzα(α, β, z) and σβz(α, β, z) in Eqs. (3) into the static transverse equilibrium
equation in orthogonal curvilinear coordinates in the third of Eqs. (A2) of the Appendix, in the absence of
body forces, taking into account the definitions in (4) and (5) and integrating with respect to z, yields the
following relation for the normal stress component σzz(α, β, z) defined in terms of coefficients of powers of z
(since they are not important here, for the sake of simplicity, the necessary definitions will be given latter),

σzz(α, β, z) = σ(0)
zz (α, β) + σ(1)

zz (α, β, z) + σ(2)
zz (α, β, z) + σ(f)

zz (α, β, z), (6)

where σ
(0)
zz (α, β) is an integration function independent of z that is determined from the boundary conditions

on the top and bottom surfaces of the shell layer, σt
zz(α, β) and σb

zz(α, β), respectively. Regarding the de-
pendencies of the different order terms, the first-order one, σ

(1)
zz (α, β, z), depends of the mean shear tractions

τ̄zα(α, β) and τ̄βz(α, β), the second-order term, σ
(2)
zz (α, β, z), depends of the relative shear tractions τ̃zα(α, β)

and τ̃βz(α, β), and the term depending on f(z), σ
(f)
zz (α, β, z), is related with the shear angles ψα(α, β) and

ψβ(α, β).
By satisfying the prescribed stress conditions σt

zz(α, β) and σb
zz(α, β) at the top and bottom surfaces, after

some algebra, the function dependent of (α, β) (integration constant in z) that results from the integration
is given as

σ(0)
zz (α, β) = τ̄zz(α, β) − h2σ(2)

zz (α, β) − [F (h) + F (−h)]
2F (z)

σ(f)
zz (α, β, z) = τ̄zz(α, β) − h2σ(2)

zz (α, β), (7)

where
F (z) =

∫
f(z)dz. (8)

Eq. (7) is simplified since σ
(0)
zz (α, β) can’t depend on z, which is confirmed since F (z) is and odd function, i.e.,

F (h) = −F (−h). Additionally, an extra equation is obtained by imposing the top and bottom conditions,
which defines the term σ

(f)
zz (α, β, z) as

σ(f)
zz (α, β, z) =

F (z)
F (h) − F (−h)

[
τ̃zz(α, β) − 2hσ(1)

zz (α, β, z)
]
, (9)
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where similarly to Eqs. (4) and (5), the bar and tilde have been used to denote mean and relative prescribed
transverse stresses,

τ̄zz(α, β) =
1
2
[
σt

zz(α, β) − σb
zz(α, β)

]
, τ̃zz(α, β) = σt

zz(α, β) + σb
zz(α, β). (10)

After some algebra, the remaining undefined terms of Eq. (6) are given by

σ(1)
zz (α, β, z) =

z

HαHβ

[
Hβ

Aα

Rα
σ∗(0)

αα (α, β, z) + Hα
Aβ

Rβ
σ
∗(0)
ββ (α, β, z) − ∂τ̄zα(α, β)

∂α
− ∂τ̄βz(α, β)

∂β

]
, (11)

σ(2)
zz (α, β, z) =

z2

HαHβ

[
Hβ

Aα

2Rα
σ∗(1)

αα (α, β, z) + Hα
Aβ

2Rβ
σ
∗(1)
ββ (α, β, z) − 1

4h

∂τ̃zα(α, β)
∂α

− 1
4h

∂τ̃βz(α, β)
∂β

]
.

(12)
At this point, it’s worthy to mention that in order to keep the formulation of the transverse stress σzz(α, β, z)
in Eq. (6) general, its last term depends of the integral of the shear ”correction” function, F (z). Depending
of the type and/or order in z of the shear function f(z), (e.g., quadratic polynomial, trigonometric function),
different expansions in z can be obtained.

Considering the strain-stress constitutive behavior of the out-of-plane shear strains εzα and εβz expressed
in Eq. (C14) in Appendix, the shear strains are expressed as

εzα(α, β, z) =
1

Hα

[
Σ̄zα(α, β) +

z

2h
Σ̃zα(α, β) + f(z)Ψα(α, β)

]
,

εβz(α, β, z) =
1

Hβ

[
Σ̄βz(α, β) +

z

2h
Σ̃βz(α, β) + f(z)Ψβ(α, β)

]
, (13)

where the following notations regarding the mean surface tractions,

Σ̄zα(α, β) = s̄�
45τ̄βz(α, β) + s̄�

55τ̄zα(α, β), Σ̄βz(α, β) = s̄�
44τ̄βz(α, β) + s̄�

45τ̄zα(α, β), (14)

relative surface tractions,

Σ̃zα(α, β) = s̄�
45τ̃βz(α, β) + s̄�

55τ̃zα(α, β), Σ̃βz(α, β) = s̄�
44τ̃βz(α, β) + s̄�

45τ̃zα(α, β), (15)

and shear angle rotations,

Ψα(α, β) = s̄�
45ψβ(α, β) + s̄�

55ψα(α, β), Ψβ(α, β) = s̄�
44ψβ(α, β) + s̄�

45ψα(α, β), (16)

are used in terms of effective shear compliance coefficients (see Appendix C). Alternatively, for simplicity,
the shear strains in Eqs. (13) can be expressed in terms of coefficients of increasing powers and functions of
z as

εzα(α, β, z) =
1

Hα

[
ε(0)

zα (α, β) + zε(1)
zα (α, β) + ε(f)

zα (α, β, z)
]
,

εβz(α, β, z) =
1

Hβ

[
ε
(0)
βz (α, β) + zε

(1)
βz (α, β) + ε

(f)
βz (α, β, z)

]
, (17)

where the definitions of the terms in the previous equations are obvious from the analysis of Eqs. (13).
In a similar way, considering the transverse strain-stress constitutive behavior of εzz(α, β, z) expressed

in Eq. (C14) of Appendix, neglecting the converse piezoelectric effects, taking as approximations of the
in-plane stress components the ones obtained with the FSDT for shells described in Eqs. (B5) of Appendix,
i.e., σ∗

αα(α, β, z), σ∗
ββ(α, β, z) and σ∗

αβ(α, β, z), and considering σzz(α, β, z) as defined in (6), the transverse
strain component is given by

εzz(α, β, z) ≈ s̄13σ
∗
αα(α, β, z) + s̄23σ

∗
ββ(α, β, z) + s̄33σzz(α, β, z) + s̄36σ

∗
αβ(α, β, z). (18)
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D. Mixed Displacement Field and Strains

In this section the displacement field of the shell layer is derived by considering the out-of-plane strains εβz,
εzα and εzz presented in the previous section in Eqs. (17) and (18), respectively, and the out-of-plane strain-
displacement relations in the third to fifth equations of (A1) in Appendix. By virtue of the assumptions
previously considered,

εzz =
∂w

∂z
≈ s̄13

[
σ∗(0)

αα (α, β, z) + σ∗(1)
αα (α, β, z)

]
+ s̄23

[
σ
∗(0)
ββ (α, β, z) + σ

∗(1)
ββ (α, β, z)

]
+ s̄33

[
σ(0)

zz (α, β, z) + σ(1)
zz (α, β, z) + σ(2)

zz (α, β, z) + σ(f)
zz (α, β, z)

]
+ s̄36

[
σ
∗(0)
αβ (α, β, z) + σ

∗(1)
αβ (α, β, z)

]
.

(19)

Thus, integrating the previous equation with respect to z over the limits from 0 to z, considering that when
z = 0 we have w(α, β, z) = w0 (α, β), and taking into account the time dependence of the strains and stresses
definitions, the transverse displacement w = w(α, β, z, t) is given by

w(α, β, z, t) = w(0)(α, β, t) + w(1)(α, β, z, t) + w(2)(α, β, z, t) + w(3)(α, β, z, t) + w(f)(α, β, z, t), (20)

where

w(0)(α, β, t) = w0(α, β, t),

w(1)(α, β, z, t) =
∫ z

0

[
s̄13σ

∗(0)
αα (α, β, z, t) + s̄23σ

∗(0)
ββ (α, β, z, t) + s̄33σ

(0)
zz (α, β, z, t) + s̄36σ

∗(0)
αβ (α, β, z, t)

]
dz,

w(2)(α, β, z, t) =
∫ z

0

[
s̄13σ

∗(1)
αα (α, β, z, t) + s̄23σ

∗(1)
ββ (α, β, z, t) + s̄33σ

(1)
zz (α, β, z, t) + s̄36σ

∗(1)
αβ (α, β, z, t)

]
dz,

w(3)(α, β, z, t) =
∫ z

0

s̄33σ
(2)
zz (α, β, z, t)dz,

w(f)(α, β, z, t) =
∫ z

0

s̄33σ
(f)
zz (α, β, z, t)dz. (21)

In a similar way, using the relations

εβz(α, β, z) = Hβ
∂

∂z

(
v(α, β, z)

Hβ

)
+

1
Hβ

∂w(α, β, z)
∂β

≈ 1
Hβ

[
ε
(0)
βz (α, β) + zε

(1)
βz (α, β) + ε

(f)
βz (α, β, z)

]
,

εzα(α, β, z) = Hα
∂

∂z

(
u(α, β, z)

Hα

)
+

1
Hα

∂w(α, β, z)
∂α

≈ 1
Hα

[
ε(0)

zα (α, β) + zε(1)
zα (α, β) + ε(f)

zα (α, β, z)
]
, (22)

integrating in order to z over the limits from 0 to z and considering that for z = 0, the displacements on the
middle surface are given by u(α, β, z) = u0(α, β) and v(α, β, z) = v0(α, β), the time dependent tangential
displacements of any point of the shell are given by

u(α, β, z, t) = −Hα

∫ z

0

1
Hα

2

∂w(α, β, z, t)
∂α

dz + Hα

∫ z

0

1
Hα

2

[
ε(0)

zα (α, β, t) + zε(1)
zα (α, β, t) + ε(f)

zα (α, β, z, t)
]
dz

= u(0)(α, β, z, t) + u(1)(α, β, z, t) + u(2)(α, β, z, t) + u(3)(α, β, z, t)

+ u(4)(α, β, z, t) + u(f)(α, β, z, t), (23)

v(α, β, z, t) = −Hβ

∫ z

0

1
Hβ

2

∂w(α, β, z, t)
∂β

dz + Hβ

∫ z

0

1
Hβ

2

[
ε
(0)
βz (α, β, t) + zε

(1)
βz (α, β, t) + ε

(f)
βz (α, β, z, t)

]
dz

= v(0)(α, β, z, t) + v(1)(α, β, z, t) + v(2)(α, β, z, t) + v(3)(α, β, z, t)

+ v(4)(α, β, z, t) + v(f)(α, β, z, t), (24)
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where

u(0)(α, β, z, t) =
Hα

Aα
u0(α, β, t),

u(1)(α, β, z, t) = −Hα

∫ z

0

1
Hα

2

[
∂w(0)(α, β, t)

∂α
− ε(0)

zα (α, β, t)
]

dz,

u(2)(α, β, z, t) = −Hα

∫ z

0

1
Hα

2

[
∂w(1)(α, β, z, t)

∂α
− zε(1)

zα (α, β, t)
]

dz,

u(3)(α, β, z, t) = −Hα

∫ z

0

1
Hα

2

∂w(2)(α, β, z, t)
∂α

dz,

u(4)(α, β, z, t) = −Hα

∫ z

0

1
Hα

2

∂w(3)(α, β, z, t)
∂α

dz,

u(f)(α, β, z, t) = −Hα

∫ z

0

1
Hα

2

[
∂w(f)(α, β, z, t)

∂α
− ε(f)

zα (α, β, z, t)
]

dz, (25)

v(0)(α, β, z, t) =
Hβ

Aβ
v0(α, β, t),

v(1)(α, β, z, t) = −Hβ

∫ z

0

1
Hβ

2

[
∂w(0)(α, β, t)

∂β
− ε

(0)
βz (α, β, t)

]
dz,

v(2)(α, β, z, t) = −Hβ

∫ z

0

1
Hβ

2

[
∂w(1)(α, β, z, t)

∂β
− zε

(1)
βz (α, β, t)

]
dz,

v(3)(α, β, z, t) = −Hβ

∫ z

0

1
Hβ

2

∂w(2)(α, β, z, t)
∂β

dz,

v(4)(α, β, z, t) = −Hβ

∫ z

0

1
Hβ

2

∂w(3)(α, β, z, t)
∂β

dz,

v(f)(α, β, z, t) = −Hβ

∫ z

0

1
Hβ

2

[
∂w(f)(α, β, z, t)

∂β
− ε

(f)
βz (α, β, z, t)

]
dz, (26)

Eqs. (20), (23) and (24) show that in comparison with the CLT of shells, following Love’s first approximation,
and the FSDT of shells discussed in Appendix B, the in-plane and transverse displacements of any point of
the shell are nonlinearly dependent on z. Additionally, the same 5 time dependent generalized displacements
of the FSDT (see Appendix B), u0 = u0 (α, β, t), v0 = v0 (α, β, t) and w0 = w0 (α, β, t), which are are the
tangential and transverse displacements referred to a point on the middle surface, respectively, and the shear
angle rotations of a normal to the reference middle surface,

ψα (α, β, t) =
∂w0 (α, β, t)

∂α
+ Aα (α, β) θα (α, β, t) − Aα (α, β)

Rα (α, β)
u0 (α, β, t) ,

ψβ (α, β, t) =
∂w0 (α, β, t)

∂β
+ Aβ (α, β) θβ (α, β, t) − Aβ (α, β)

Rβ (α, β)
v0 (α, β, t) , (27)

are used to define the ”generalized” displacements of the proposed refined theory which represent non-linear
functions in z of the generalized displacements of FSDT. Thus, based on the assumptions (b)-(d) the 3-D
problem of the theory of elasticity has been fully brought to a 2-D problem of the theory of the shell, with
Eqs. (20), (23) and (24) establishing the geometrical model of the deformed state of the fully refined theory
of the generic shell layer.

On the basis of the refined displacement field defined by Eqs. (20), (23) and (24) and the general strain-
displacement relations in Eqs. (A1) in Appendix, the not yet defined in-plane strain components of the
proposed theory may be determined. For the sake of brevity their definitions will not be given here since
they are quite long equations, in terms of high-order derivatives of the generalized displacements of the
FSDT, which can be derived from the previous definitions.
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E. Electric Field and Potential

Resuming the basic hypotheses defined in Sec. C, and regarding the electrical and electro-mechanical behav-
ior, the following considerations and assumptions regarding the physical problem are made:

(e) The piezoelectric layers are polarized in the thickness direction and electroded only in the top and
bottom surfaces;

(f) Only a transverse electric field Êz is externally applied;

(g) The in-plane electric displacement components Dx and Dy are nil at the non-electroded lateral edges
and are considered negligible inside the piezoelectric volume;

(h) The out-of-plane component of the electric displacement field Dz is constant with respect to the
thickness;

The behavior of the electromagnetic field is described by Maxwell’s equations. However, as presented by
Tiersten,43 considering that the electromagnetic waves essentially uncouple from the elastic waves and that
the elastic wavelengths are much shorter than the electromagnetic ones at the same frequency, Maxwell’s
equations can be replaced by electrostatic equations in vector form,

div D = 0, (28)
− gradϕ = E, (29)

where ϕ = ϕ (α, β, z) is the electric potential, and D = D (α, β, z) and E = E (α, β, z) are the electric
displacement and field vectors. In scalar form, according to the definitions of the divergence and gradi-
ent operators in arbitrary orthogonal curvilinear coordinates (see Ref. 105) and Eqs. (2), the electrostatic
equations are given as

1
HαHβ

[
∂

∂α
(HβDα) +

∂

∂β
(HαDβ) +

∂

∂z
(HαHβDz)

]
= 0, (30)

Eα = − 1
Ha

∂ϕ

∂α
, Eβ = − 1

Hβ

∂ϕ

∂β
, Ez = −∂ϕ

∂z
. (31)

According to what has bee discussed in Appendix C, for the present problem the electrodes are located
on the top and bottom surfaces and only a transverse electric field Êz is externally applied. The conditions
Dα = Dβ = 0 hold in the shell surfaces not covered with electrodes and in contact with a medium with low
permittivity, e.g., vacuum or air (see Refs. 40, 42 and 45 for further details) and the induced electric fields
Ēα and Ēβ (which are defined as a function of the strains) where condensed in the constitutive Eq. (C10).
Thus, Eq. (30) can be written as

1
HαHβ

[
∂

∂z
(HαHβDz)

]
= 0. (32)

In view of the Gauss and Mainardi-Codazzi formulas (cf. Refs. 4 and 45),

∂Hα

∂β
=
(

1 +
z

Rβ

)
∂Aα

∂β
,

∂Hβ

∂α
=
(

1 +
z

Ra

)
∂Aβ

∂α
,

∂Hα

∂z
=

Aα

Rα
,

∂Hβ

∂z
=

Aβ

Rβ
, (33)

after some algebra, and taking into account Eqs. (2), Eq. (32) is expressed as(
1

Rα + z
+

1
Rβ + z

)
Dz +

∂Dz

∂z
= 0. (34)

Assuming a constant value of α and β, the previous partial differential equation can be solved as an ordinary
differential equation in z with solution

Dz = C(α, β)
(−Rα + h) (−Rβ + h)

(Rα + h) (Rβ + h)
= C(α, β)λ(α, β). (35)

From Eq. (35) it can be seen that the transverse component of the electric displacement is constant with
respect to the thickness direction where the constant λ (α, β) is a correction factor that takes into account
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the effects of the radii of curvature (and half thickness of the layer) on the electric displacement. Thus,
taking into account (C11) of Appendix, it can be reformulated40–42 taking into account the curvature effects
via λ (α, β) as

Dz =
λ

2h

∫ +h

−h

ε̄33

(
Êz − Ēz

)
dz = −λε̄33

φ

2h
− λ

2h
ε̄33

∫ +h

−h

Ēzdz, (36)

In the previous equation the prescribed transverse electric field component has been defined as Êz = −φ/(2h)
where φ = φ (α, β) denotes the electric potential difference between the top and bottom electrodes. Consid-
ering the previous equation and the general electrostatic constitutive behavior in (C2), the net transverse
electric field Ez is given by the sum of the effects of the externally applied electric potential difference φ and
net induced term which depends of the strains Ẽz, and is expressed as

Ez = λ
(
Êz + Ẽz

)
= −λ

φ

2h
+

(
λĒz − λ

2h

∫ +h

−h

Ēzdz

)
. (37)

It is worthy to mention that the terms inside parenthesis in the previous equation are related with the
mechanical strains and represent the net effects of the induced electric fields due to the direct piezoelectric
effect. Finally, from the definition of the electric potential in the third equation of (31), substituting (37) and
integrating with respect to the thickness of the layer, the through-the-thickness distribution of the electric
potential is given by

ϕ = λ
φ

2h
(z + h) +

(
λ

2h

∫ +h

−h

Ēzdz

)
(z + h) − λ

∫ z

−h

Ēzdz. (38)

It can be seen that the net transverse electric field Ez = Ez (α, β, z) and electric potential distribution
ϕ = ϕ (α, β, z) for the curvilinear coordinate system presented in Eqs. (37) and (38) are composed by terms
externally applied and by induced terms due to the mechanical deformations. Furthermore, the formulation
is kept general, since the induced terms are not explicitly defined at this point, and can be applied for any
piezoelectric curved layer (and obviously for 1-D and 2-D planar structures where the term λ is equal to
unity).

III. Partially Refined Mathematical Model of Doubly-Curved Shells

A. Restrictions and Simplifications

The definitions of the displacement field presented in Eqs. (20), (23) and (24) are quite general and applicable
to anisotropic shells of arbitrary curvature. They result from a fully refined interactive shell theory based,
as a first approximation, on the in-plane stresses of the FSDT. Furthermore, all the terms regarding the
thickness coordinate to radii or curvature ratios were retained and no simplifications were made regarding
thin shell assumptions. Additionally, transverse shear strains and stresses weren’t considered negligible and
as a result a non-linearly dependent on z transverse displacement was obtained by the iterative procedure.
That theory was denoted as fully refined since all the strain and stress components of the 3-D elasticity are
obtained directly from the mixed (in terms of surface stresses and generalized displacements) displacement
field by using the strain-displacement relations and an anisotropic constitutive law. It can also be seen from
the definitions of the terms of the in-plane displacements in Eqs. (25) and (26) that they involve high-order
derivatives (which become even higher for the strain and stress components) of the generalized displacements
of the FSDT, which complicates the formulation and FE solution dramatically. Additionally, the fully refined
mathematical model allows full out-of-plane interlayer (or interlaminar) stress continuity (and, as obvious,
displacements too) to be imposed when assembling all the layers contributions at the ”regenerated” FE level
(further details will be discussed later). This renders a 2-D theory representative of the full 3-D behavior of
a shell with arbitrary geometry (curvature).

However, the fully refined mixed displacement definitions are quite tedious and, for the sake of making the
calculations less cumbersome, the general mixed displacement field definitions will be restricted to orthotropic
shells with constant curvatures, i.e., doubly-curved shells (cylindrical, spherical, toroidal geometries) for
which

Aα = Aβ = 1,
∂Aα

∂β
=

∂Aβ

∂α
= 0, Rα(α, β) = Rα, Rβ(α, β) = Rβ . (39)
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Additionally, the non-linear transverse displacement field definition will be discarded and only the zero-order
term, i.e., w(α, β, z, t) = w(0)(α, β, t), will be retained. This simplification makes the theory less complicated
and more suitable to be implemented, since it avoids the higher-order derivatives of the generalized variables,
and is denoted as partial refined theory. It is well known, however, that in the major part of the problems, the
transverse stress is small when compared with the other stress components. An exception is, for example, in
thermo-mechanical analysis where the transverse stress σzz plays an important role (see Carrera8,106), which
is not the case here. This simplification implies also the need to make the usual plane-stress assumption,
which doesn’t allow to impose interlayer transverse normal stress continuity. Regarding the shear stress
correction function f(z), several functions can be used. However, as stated by Ambartsumian [23, p. 37],
some arbitrariness in the reasonable selection of f(z) will not introduce inadmissible errors into the refined
theory, which in this work will be assumed to follow the law of a quadratic parabola as

f(z) = 1 − z2

h2
. (40)

B. Displacements and Strains

For the sake of simplicity and brevity of writing the mathematical definitions, from this point henceforth, the
spatial (α, β, z) and time t dependencies will be omitted from the equations when convenient and only written
when necessary for the comprehension of the equations. Thus, under the doubly-curved shell restrictions to
the general problem, and following the previously defined partial refined theory, the displacement definitions
in Eqs. (20), (23) and (24), for an orthotropic shell layer, taking into account the definitions in (B3) of the
Appendix, are given as

u(α, β, z, t) =
1

z
(0)
α

[
u0 + z∗(f)

α s̄∗55ψα − z∗(0)α

∂w0

∂α
+ z∗(0)α s̄∗55τ̄zα + z∗(1)α

s̄∗55
2h

τ̃zα

]
,

v(α, β, z, t) =
1

z
(0)
β

[
v0 + z

∗(f)
β s̄∗44ψβ − z

∗(0)
β

∂w0

∂β
+ z

∗(0)
β s̄∗44τ̄βz + z

∗(1)
β

s̄∗44
2h

τ̃βz

]
,

w(α, β, z, t) = w0, (41)

where z
(0)
α and z

(0)
β are defined in Eqs. (B3) of Appendix and

z∗(i)α =
∫ z

0

zi

(1 + z/Rα)2
dz, z

∗(i)
β =

∫ z

0

zi

(1 + z/Rβ)2
dz,

z∗(f)
α =

∫ z

0

f(z)
(1 + z/Rα)2

dz, z
∗(f)
β =

∫ z

0

f(z)
(1 + z/Rβ)2

dz, (42)

with i = 0, 1. As can be seen in the mixed displacement field definition in Eqs. (41), the displacement field is
defined in terms of the generalized displacements of the FSDT and mean and relative surface shear stresses.
Additionally, as would be expected, if f(z) is assumed equal to one, which corresponds to case where no
correction to the FSDT constant through-the-thickness shear stresses/strains is made, the displacement is
the same as the one obtained with the FSDT, with the extra surface shear stress terms. In the limit case
where Rα = Rβ = ∞, which corresponds to the case of planar structures such as plates, and considering the
parabolic definition of f(z), the displacements are consistent and are expanded in a power series of z up to
z3. In the present case, since the terms z/Rα and z/Rβ were fully retained, the displacements are defined
with more complex coefficients in terms of powers of z and ln(Rα + z) and ln(Rβ + z). For convenience, the
mixed displacement field in Eqs. (41) can be expressed in matrix form as

u(α, β, z, t) = zu(z)u0(α, β, t) + zτ (z)τ (α, β, t), (43)

or, alternatively,

⎧⎪⎨
⎪⎩

u

v

w

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣zu

11 0 zu
13∂α zu

14 0
0 zu

22 zu
23∂β 0 zu

25

0 0 1 0 0

⎤
⎥⎦
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

v0

w0

θα

θβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎣zτ

11 zτ
12 0 0

0 0 zτ
23 zτ

24

0 0 0 0

⎤
⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̄zα

τ̃zα

τ̄βz

τ̃βz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (44)
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where the coefficients of matrices zu(z) and zτ (z) are derived from the displacements as explained in Ap-
pendix D. In the specific case of zu

13(z) and zu
23(z), which are related with ∂w0/∂α and ∂w0/∂β, partial

derivative operators ∂α and ∂β in order to α and β, respectively, where also included.
From the definition of the displacement field in Eq. (43), the out-of-plane shear strains are given by Eqs.

(17), taking into account the restrictions in (39) and the transverse strain εzz = 0 [due to the fact that
w(α, β, z, t) was assumed independent of z]. The in-plane strain components are obtained according to the
displacement-strain relations in the first two and last equations of Eqs. (A1) by taking into account (39).
Thus, the strains vector without the null component εzz may be expressed in matrix form as

ε(α, β, z, t) = ∂ε(z)zu(z)u0(α, β, t) + ∂ε(z)zτ (z)τ (α, β, t)
= zεu(z)u0(α, β, t) + zετ (z)τ (α, β, t), (45)

where ∂ε(z) is a matrix differential operator given by

∂ε(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂αz
(0)
α 0 z

(0)
α /Rα

0 ∂βz
(0)
β z

(0)
β /Rβ

0 ∂z − z
(0)
β /Rβ ∂βz

(0)
β

∂z − z
(0)
α /Rα 0 ∂αz

(0)
α

∂βz
(0)
β ∂αz

(0)
α 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (46)

and ∂z is an other partial differential operator, this time in order to z. Considering the previous operator
matrix in Eq. (45), the strains vector are defined in terms of the matrices zεu(z) and zετ (z) as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εαα

εββ

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

zεu
11∂α 0 zεu1

13 + zεu2
13 ∂αα zεu

14∂α 0
0 zεu

22∂β zεu1
23 + zεu2

23 ∂ββ 0 zεu
25∂β

0 zεu
32 zεu

33∂β 0 zεu
35

zεu
41 0 zεu

43∂α zεu
44 0

zεu
51∂β zεu

52∂α zεu
53∂αβ zεu

54∂β zεu
55∂α

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

v0

w0

θα

θβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎣

zετ
11∂α zετ

12∂α 0 0
0 0 zετ

23∂β zετ
24∂β

0 0 zετ
33 zετ

34

zετ
41 zετ

42 0 0
zετ
51∂β zετ

52∂β zετ
53∂α zετ

54∂α

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̄zα

τ̃zα

τ̄βz

τ̃βz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(47)

where ∂αα, ∂ββ and ∂αβ are double and crossed partial differential operators. The coefficients of zεu(z) and
zετ (z) are given in Appendix D. It is worthy to mention that the strain field is defined in terms of zero-
and/or first-order derivatives of the generalized in-plane displacements, rotations and surface stresses, and
zero-, second-order and cross derivatives of the generalized transverse displacement w0.

C. Induced Electric Field and Net Strain Field

The net electric field Ez in Eq. (37) is expressed in terms of external prescribed and induced effects. Consid-
ering the electric eigenfield definition in the third equation of Eqs. (C8), and since εzz = 0, the net induced
term Ẽz for the orthotropic shell layer is given by

Ẽz =
λ

ε̄∗33

[
−ē∗31εαα − ē∗32εββ +

1
2h

∫ +h

−h

(ē∗31εαα + ē∗32εββ) dz

]
, (48)

where ē∗31 and ē∗32 are the reduced (modified) piezoelectric plane-stress constants.
Considering the definitions of the in-plane strain components εαα and εββ given in Eq. (47), the previous

equation can be expressed in terms of the generalized displacements, and after some algebra, the net strain
field accounting for the direct piezoelectric effects taking into account the plane-stress version of the electrical
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relation of Eq. (C14), is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εαα

εββ

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

z�εu
11 ∂α z�εu

12 ∂β z�εu1
13 + z�εu2

13 ∂αα z�εu
14 ∂α z�εu

15 ∂β

z�εu
21 ∂α z�εu

22 ∂β z�εu1
23 + z�εu2

23 ∂ββ z�εu
24 ∂α z�εu

25 ∂β

0 zεu
32 zεu

33∂β 0 zεu
35

zεu
41 0 zεu

43∂α zεu
44 0

zεu
51∂β zεu

52∂α zεu
53∂αβ zεu

54∂β zεu
55∂α

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

v0

w0

θα

θβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎣

z�ετ
11 ∂α z�ετ

12 ∂α z�ετ
13 ∂β z�ετ

14 ∂β

z�ετ
21 ∂α z�ετ

22 ∂α z�ετ
23 ∂β z�ετ

24 ∂β

0 0 zετ
33 zετ

34

zετ
41 zετ

42 0 0
zετ
51∂β zετ

52∂β zετ
53∂α zετ

54∂α

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̄zα

τ̃zα

τ̄βz

τ̃βz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (49)

where the modified (taking into account the electrical induced strains) terms of zεu(z) and zετ (z) are given
in Appendix E.

D. Variational Formulation

In order to derive the weak form of the equations governing the motion and electric charge equilibrium of
the shell layer, Hamilton’s principle is used. The Lagrangian and the work of the applied forces are adapted
for the electrical and mechanical contributions,43 so that

δ

∫ t1

t0

(T − H + W )dt = 0, (50)

where t0 and t1 define the time interval, δ denotes the variation, T is the kinetic energy, H is the electro-
mechanical enthalpy and W denotes the work of the external non-conservative actions done by the applied
mechanical forces and electrical charges.

Since the stresses have been replaced and considered by means of internal forces and moments due to
the thickness integration it is appropriate to alter the definition of the fundamental element of the shell.
Accordingly, it will be assumed, henceforth, that the element which was formerly defined to be dz thick, is
replaced, on account of the integrations with respect to z, with an element of thickness h. Such an element is
acted upon by the internal forces (stress resultants) and moments per unit arc length and by external effects
which include mechanical forces and electrical charge loads. The internal forces act upon the edges of the
element while the mechanical forces and electrical charges act upon the inner and outer surfaces/electrodes.

According to Eq. (43), the kinetic energy is given by

T =
1
2

∫
V

ρu̇Tu̇ dV , (51)

where u̇ = u̇(α, β, z, t) is the vector of generalized velocities taking into account the time differentiation of
the three components of the displacement field expressed in the tri-orthogonal curvilinear coordinate system.
The first variation of the kinetic energy yields the virtual work of the inertial forces, given by

δT = −
∫

Ω0

[∫ +h

−h

ρδuTü HαHβ Hz dz

]
dα dβ, (52)

which is expanded with more detail in terms of the variations of the generalized displacements and stresses
in Appendix F1.

The electro-mechanical enthalpy of the piezoelectric medium is expressed in terms of mechanical and
electrical quantities by

H =
1
2

∫
V

(
σTε − DTE

)
dV . (53)
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Taking into account the plane-stress piezoelectric constitutive Eq. (C15) in the Appendix, the first variation
of the previous equation yields

δH = δHε − δHE

=
∫

Ω0

[∫ +h

−h

σTδε HαHβHz dz −
∫ +h

−h

DzδEz HαHβHz dz

]
dα dβ, (54)

which is expanded with more detail in terms of the variations of the generalized displacements and internal
forces and moments in Appendix F2.

The last term of Eq. (50) involves the work done by the applied mechanical forces Wu, applied on the
inner and outer surfaces and lateral edges of the shell, and the work done by the applied electrical charges
density Wφ on the top and bottom electroded surfaces. To write the expressions for the net external loads
work recall that Ω denotes a surface at a distance z and parallel to the middle-surface, where Ωt and Ωb

denote the top and bottom surfaces for which z = ±h, and that Γ denotes the boundary of the shell element,
with Γα and Γβ being the boundary edges of constant β and α coordinates, respectively (with the circle on
the integral implying that it includes the total boundary of the shell). Thus, the work of the non-conservative
loads is given by

W = Wu − Wφ. (55)

The mechanical counterpart is given by

Wu =
∫

Ωt

F t
zw dΩt +

∫
Ωb

F b
z w dΩb +

∮
Γα

[∫ +h

−h

(σ̂ββv + σ̂βαu + σ̂βzw)
1

z
(0)
α

dz

]
dα

+
∮

Γβ

[∫ +h

−h

(σ̂ααu + σ̂αβv + σ̂zαw)
1

z
(0)
β

dz

]
dβ, (56)

where F t
z = F t

z(α, β, t) and F b
z = F b

z (α, β, t) are transverse normal forces applied on the top and bottom
surfaces, and the hat over the stresses, σ̂αα = σ̂αα(β, z, t), σ̂αβ = σ̂αβ(β, z, t) and σ̂zα = σ̂zα(β, z, t), for the
edges normal to α, and σ̂ββ = σ̂ββ(α, z, t), σ̂βα = σ̂βα(α, z, t) and σ̂βz = σ̂βz(α, z, t), for the edges normal
to β, denotes prescribed stresses on the boundary edges. Regarding the electrical counterpart, it is given by

Wφ =
∫

Ωt

τ tϕ dΩt +
∫

Ωb

τ bϕ dΩt, (57)

where τ t = τ t(α, β, t) and τ b = τ b(α, β, t) are prescribed electric charge densities on the top and bottom
electroded surfaces.

Considering in Eq. (38) that the induced electric field has no contribution for the electric potential at
the surface electrodes, assuming the bottom electrode grounded, i.e., ϕ(α, β, z = −h, t) = 0, and retaining
only the normal mechanical load on the top surface F t

z , the first variation of Eq. (54) yields the net virtual
work of the non-conservative external effects

δW = δWu − δWφ, (58)

with its terms given by

δWu =
∫

Ω0

Zδw0 dα dβ +
∮

Γα

[∫ +h

−h

(σ̂ββδv + σ̂βαδu + σ̂βzδw)
1

z
(0)
α

dz

]
dα

+
∮

Γβ

[∫ +h

−h

(σ̂ααδu + σ̂αβδv + σ̂zαδw)
1

z
(0)
β

dz

]
dβ, (59)

δWφ =
∫

Ω0

τδφdα dβ, (60)

where Z = F t
z (1 + h/Rα) (1 + h/Rβ) and τ = τ tλ (1 + h/Rα) (1 + h/Rβ). The virtual work of the non-

conservative forces δWu is expressed with more detail in terms of the variations of the generalized displace-
ments and prescribed forces and moments in Appendix F3.
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E. Weak Forms of the Governing Equations in Terms of Internal Forces and Moments

The weak form of the governing electro-mechanical equations in terms of internal forces and moments are
obtained by substituting the variational terms in Eqs. (52), (54) and (58) into the Hamilton’s principle in Eq.
(50). The virtual generalized displacements, surface stresses and electric potential difference are zero where
the corresponding variables are specified. For time-dependent problems, the admissible virtual generalized
variables must also vanish at time t = t0 and t = t1. Thus, using the fundamental lema of variational
calculus and collecting the coefficients of each variation of the different generalized variables (displacements,
surface stresses and electric potential) into independent equations yields for the generalized displacements
δu0, δv0, δw0, δθα and δθβ :∫

Ω0

[
δu0(Iuu

11 ü0 + Iuu
13

∂ẅ0

∂α
+ Iuu

14 θ̈α + Iτu
11

¨̄τzα + Iτu
21

¨̃τzα) + δ
∂u0

∂α
(N�11

αα + N�21
ββ )

+δ
∂u0

∂β
(N51

αβ) + δu0(Q41
zα)

]
dα dβ −

∮
Γα

δu0(N̂11
αβ)dα −

∮
Γβ

δu0(N̂11
αα)dβ = 0, (61)

∫
Ω0

[
δv0(Iuu

22 v̈0 + Iuu
23

∂ẅ0

∂β
+ Iuu

25 θ̈β + Iτu
32

¨̄τβz + Iτu
42

¨̃τβz) + δ
∂v0

∂β
(N�12

αα + N�22
ββ )

+δ
∂v0

∂α
(N52

αβ) + δv0(Q32
βz)

]
dα dβ −

∮
Γα

δv0(N̂22
ββ)dα −

∮
Γβ

δv0(N̂22
αβ)dβ = 0, (62)

∫
Ω0

[
δw0(Iuu

33 ẅ) + δ
∂w0

∂α
(Iuu

13 ü0 + Iuα
33

∂ẅ0

∂α
+ Iuu

34 θ̈α + Iτu
13

¨̄τzα + Iτu
23

¨̃τzα) + δ
∂w0

∂β
(Iuu

23 v̈0 + Iuβ
33

∂ẅ0

∂β

+Iuu
35 θ̈β + Iτu

33
¨̄τβz + Iτu

43
¨̃τβz) + δw0(M�131

αα + M�231
ββ ) + δ

∂2w0

∂α2
(M�132

αα ) + δ
∂2w0

∂β2 (M�232
ββ )

+δ
∂2w0

∂α∂β
(M53

αβ) + δ
∂w0

∂α
(Q43

zα) + δ
∂w0

∂β
(Q33

βz) − δw0Z
]
dα dβ −

∮
Γα

[
δ
∂w0

∂β
(M̂23

ββ)

+δ
∂w0

∂α
(M̂13

αβ) + δw0(Q̂33
βz)

]
dα −

∮
Γβ

[
δ
∂w0

∂α
(M̂13

αα) + δ
∂w0

∂β
(M̂23

αα) + δw0(Q̂33
zα)

]
dβ = 0, (63)

∫
Ω0

[
δθα

0 (Iuu
14 ü0 + Iuu

43

∂ẅ0

∂α
+ Iuu

44 θ̈
α

0 + Iτu
14

¨̄τzα + Iτu
24

¨̃τzα) + δ
∂θα

∂α
(M�14

αα + M�24
ββ )

+δ
∂θα

∂β
(M54

αβ) + δθα(Q44
zα)

]
dα dβ −

∮
Γα

δθα(M̂14
αβ)dα −

∮
Γβ

δθα(M̂14
αα)dβ = 0, (64)

∫
Ω0

[
δθβ

0 (Iuu
25 v̈0 + Iuu

35

∂ẅ0

∂β
+ Iuu

55 θ̈
β

0 + Iτu
35

¨̄τβz + Iτu
45

¨̃τβz) + δ
∂θβ

∂β
(M�15

αα + M�25
ββ )

+δ
∂θβ

∂α
(M55

αβ) + δθβ(Q35
βz)

]
dα dβ −

∮
Γα

δθβ(M̂25
ββ)dα −

∮
Γβ

δθβ(M̂25
αβ)dβ = 0. (65)

In a similar way, for the generalized surface stress variables δτ̄zα, δτ̃zα, δτ̄βz and δτ̃βz one gets∫
Ω0

[
δτ̄zα(Iτu

11 ü0 + Iτu
13

∂ẅ0

∂α
+ Iτu

14 θ̈α + Iττ
11

¨̄τzα + Iττ
12

¨̃τzα) + δ
∂τ̄zα

∂α
(T �11

αα + T �21
ββ )

+δτ̄zα(T 41
zα) + δ

∂τ̄zα

∂β
(T 51

αβ)
]
dα dβ −

∮
Γα

δτ̄zα(T̂ 11
βα)dα −

∮
Γβ

δτ̄zα(T̂ 11
αα)dβ = 0, (66)

∫
Ω0

[
δτ̃zα(Iτu

21 ü0 + Iτu
23

∂ẅ0

∂α
+ Iτu

24 θ̈α + Iττ
12

¨̄τzα + Iττ
22

¨̃τzα) + δ
∂τ̃zα

∂α
(T �12

αα + T �22
ββ )

+δτ̃zα(T 42
zα) + δ

∂τ̃zα

∂β
(T 52

αβ)
]
dα dβ −

∮
Γα

δτ̃zα(T̂ 12
βα)dα −

∮
Γβ

δτ̃zα(T̂ 12
αα)dβ = 0, (67)
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∫
Ω0

[
δτ̄βz(Iτu

32 v̈0 + Iτu
33

∂ẅ0

∂β
+ Iτu

35 θ̈β + Iττ
33

¨̄τβz + Iττ
34

¨̃τβz) + δ
∂τ̄βz

∂β
(T �13

αα + T �23
ββ )

+δτ̄βz(T 33
βz) + δ

∂τ̄βz

∂α
(T 53

αβ)
]
dα dβ −

∮
Γα

δτ̄βz(T̂ 23
ββ)dα −

∮
Γβ

δτ̄βz(T̂ 23
αβ)dβ = 0, (68)

∫
Ω0

[
δτ̃βz(Iτu

42 v̈0 + Iτu
43

∂ẅ0

∂β
+ Iτu

45 θ̈β + Iττ
34

¨̄τβz + Iττ
44

¨̃τzα) + δ
∂τ̃βz

∂β
(T �14

αα + T �24
ββ )

+δτ̃βz(T 34
βz) + δ

∂τ̃βz

∂α
(T 54

αβ)
]
dα dβ −

∮
Γα

δτ̃βz(T̂ 24
ββ)dα −

∮
Γβ

δτ̃βz(T̂ 24
αβ)dβ = 0. (69)

The last equation regards the electrostatic equilibrium and is obtained by collecting the coefficients of the
variation of the generalized electric potential difference δφ as∫

Ω0

[
δφ
[
(P �11

αα + P �21
ββ )

∂u0

∂α
+ (P �12

αα + P �22
ββ )

∂v0

∂β
+ (P �13

αα1 + P �23
αα1)w0 + (P �13

αα2)
∂2w0

∂α2
+ (P �23

ββ2)
∂2w0

∂β2

+(P �14
αα + P �24

ββ )
∂θα

∂α
+ (P �15

αα + P �25
ββ )

∂θβ

∂β
+ (R�11

αα + R�21
ββ )

∂τ̄zα

∂α
+ (R�12

αα + R�22
ββ )

∂τ̃zα

∂α

+(R�13
αα + R�23

ββ )
∂τ̄βz

∂β
+ (R�14

αα + R�24
ββ )

∂τ̃βz

∂β
+ (Sφφ)φ − τ

]
dα dβ = 0. (70)

The previous equations are the weak forms of the governing equations of the doubly-curved orthotropic
generic piezoelectric shell layer. As can be seen, the 3-D problem has been brought to a 2-D form in function
of the reference surface curvilinear coordinates α and β. Hence, the FE solution of the shell problem can be
derived in a manner similar to that of plates with some additional terms regarding the curvatures. It is worthy
to mention that in the present refined shell theory no assumptions regarding the thinness of the shell were
considered and as a consequence the formulation fully accounts for the effects of the z/Rα and z/Rβ terms.
Additionally, the ”mixed” partially refined theory also considers additional generalized variables concerning
the shear stresses on the top and bottom surfaces of the shell layer which will be used at the elemental FE
level to impose transverse interlaminar (interlayer) continuity of the shear stresses and homogeneous shear
stress conditions on the top and bottom global surfaces of the multilayer shell.

F. Constitutive Equations of the Internal Forces and Moments

The strains, and there by the stresses, of the proposed theory where shown to be non-linearly dependent
across the thickness of a thick anisotropic elastic shell. Thus, as far as the mathematical model is concerned,
it is convenient to integrate the stress distributions through the thickness of the shell and to replace the
usual consideration of stress by statically equivalent internal forces and moments. By performing such
integration, the variations with respect to the thickness coordinate z are completely eliminated to yield a
2-D mathematical model of the 3-D physical problem. These integrations were carried out in Appendix F,
and the virtual work quantities of Hamilton’s principle in Eq. (50) were expressed in terms of internal forces
and moments.

Contrarily to what is often presented in the literature, and since the thickness terms z/Rα and z/Rβ

were fully retained in the formulation, in the definitions of force and moment resultants given in Eqs. (F5)
and (F9) of Appendix F one may notice that the symmetry of the stress tensor (that is, σαβ = σβα) doesn’t
necessarily implies that the correspondent force resultants or the moment resultants are equal, even if we
consider the restriction of dealing with a doubly-curved shell as stated in Eqs. (39). That relation holds
only for a spherical shell, flat plate or a thin shell of any type where the assumptions 1 + z/Rα ≈ 1 and
1 + z/Rβ ≈ 1 are taken into account. Vanishing of the moments about the normal to the differential
element yields an additional relation among the twisting moments and twisting shear forces (cf. [6, Sec.
8.2.4]). In order to avoid inconsistency associated with rigid body rotations (i.e., rigid body rotation gives
a nonvanishing torsion except for flat plates or spherical shells) the additional relation must be accounted
for in the formulation (see the treatment of Sanders which is described for example by Kraus [1, Sec. 3.2],
Leissa [4, Sec. 1.4.5] or Reddy [6, Sec. 8.2.4]). However, if the rotation is of the same order of magnitude as
the strain components, which is actually the case in most problems, then, as noted by Koiter,7 the torsion is
negligible. Thus, for general engineering purposes the foregoing inconsistencies can generally be overlooked
which will be the case in this work.
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Next the constitutive equations that relate the internal forces and moments in Eqs. (F5) of Appendix
with the strains of the layer and/or generalized displacements are derived. To this end it is recalled that
an orthotropic piezoelectric material is considered for the generic shell layer and that it obeys Hooke’s law
under plane-stress assumption as defined in Eq. (C15) of Appendix. Thus, the internal in-plane forces are
collected as ⎧⎪⎨

⎪⎩
(N�11

αα , N�12
αα )

(N�21
ββ , N�22

ββ )
(N51

αβ , N52
αβ)

⎫⎪⎬
⎪⎭ =

〈⎧⎪⎨
⎪⎩

σαα(z�εu
11 , z�εu

12 )
σββ(z�εu

21 , z�εu
22 )

σαβ(zεu
51 , zεu

52 )

⎫⎪⎬
⎪⎭

u〉
−
〈⎧⎪⎨
⎪⎩

σαα(z�εu
11 , z�εu

12 )
σββ(z�εu

21 , z�εu
22 )

σαβ(zεu
51 , zεu

52 )

⎫⎪⎬
⎪⎭

φ〉
, (71)

where the superscripts (·)u and (·)φ denote quantities referred to the mechanical displacements (or strains)
and electrical potential, and for convenience 〈. . .〉 denotes thickness integration defined as

〈. . .〉 =
∫ +h

−h

(. . .)
1

z
(0)
α z

(0)
β

dz. (72)

Therefore, considering the converse piezoelectric constitutive behavior in Eq. (C15) and considering only the
prescribed electric field component Êz yields⎧⎪⎨

⎪⎩
(N�11

αα , N�12
αα )

(N�21
ββ , N�22

ββ )
(N51

αβ , N52
αβ)

⎫⎪⎬
⎪⎭ =

〈⎡⎢⎣c̄∗11 c̄∗12 0
c̄∗12 c̄∗22 0
0 0 c̄∗66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εαα(z�εu
11 , z�εu

12 )
εββ(z�εu

21 , z�εu
22 )

εαβ(zεu
51 , zεu

52 )

⎫⎪⎬
⎪⎭
〉

−
〈⎧⎪⎨
⎪⎩

ē31(z�εu
11 , z�εu

12 )
ē32(z�εu

21 , z�εu
22 )

0

⎫⎪⎬
⎪⎭ Êz

〉
. (73)

Similarly, the out-of-plane forces are collected as{(
Q32

βz, Q
33
βz, Q

35
βz

)
(
Q41

zα, Q43
zα, Q44

zα

)
}

=

〈{
σβz(zεu

32 , zεu
33 , zεu

35 )
σzα(zεu

41 , zεu
43 , zεu

44 )

}〉
, (74)

which, since they are not coupled with the transverse electric field, but only with the induced in-plain
components which effects were already considered through the use of effective shear stiffness parameters, is
expressed in terms of the shear strains as{(

Q32
βz, Q

33
βz, Q

35
βz

)
(
Q41

zα, Q43
zα, Q44

zα

)
}

=

〈[
c̄�
44 0
0 c̄�

55

]{
εβz(zεu

32 , zεu
33 , zεu

35 )
εzα(zεu

41 , zεu
43 , zεu

44 )

}〉
. (75)

The moment resultants of the in-plane stresses are collected and expressed by⎧⎪⎨
⎪⎩

(M�131
αα ,M�132

αα ,M�14
αα ,M�15

αα )
(M�231

ββ ,M�232
ββ ,M�24

ββ ,M�25
ββ )

(M53
αβ ,M54

αβ ,M55
αβ)

⎫⎪⎬
⎪⎭ =

〈⎧⎪⎨
⎪⎩

σαα(z�εu1
13 , z�εu2

13 , z�εu
14 , z�εu

15 )
σββ(z�εu1

23 , z�εu2
23 , z�εu

24 , z�εu
25 )

σαβ(zεu
53 , zεu

54 , zεu
55 )

⎫⎪⎬
⎪⎭

u〉

−
〈⎧⎪⎨
⎪⎩

σαα(z�εu1
13 , z�εu2

13 , z�εu
14 , z�εu

15 )
σββ(z�εu1

23 , z�εu2
23 , z�εu

24 , z�εu
25 )

σαβ(zεu
53 , zεu

54 , zεu
55 )

⎫⎪⎬
⎪⎭

φ〉
. (76)

Similarly to what has been considered for the in-plane forces in Eq. (73) the internal moments are re-written
as ⎧⎪⎨

⎪⎩
(M�131

αα ,M�132
αα ,M�14

αα ,M�15
αα )

(M�231
ββ ,M�232

ββ ,M�24
ββ ,M�25

ββ )
(M53

αβ ,M54
αβ ,M55

αβ)

⎫⎪⎬
⎪⎭ =

〈⎡⎢⎣c̄∗11 c̄∗12 0
c̄∗12 c̄∗22 0
0 0 c̄∗66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εαα(z�εu1
13 , z�εu2

13 , z�εu
14 , z�εu

15 )
εββ(z�εu1

23 , z�εu2
23 , z�εu

24 , z�εu
25 )

εαβ(zεu
53 , zεu

54 , zεu
55 )

⎫⎪⎬
⎪⎭
〉

−
〈⎧⎪⎨
⎪⎩

ē31(z�εu1
13 , z�εu2

13 , z�εu
14 , z�εu

15 )
ē32(z�εu1

23 , z�εu2
23 , z�εu

24 , z�εu
25 )

0

⎫⎪⎬
⎪⎭ Êz

〉
. (77)
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By last, in a similar way to what has been done in Eqs. (73) and (75), the resultants of the stresses related
with the interlayer surface stresses are expressed by⎧⎪⎪⎨

⎪⎪⎩

(
T �11

αα , T �12
αα , T �13

αα , T �14
αα

)(
T �21

ββ , T �22
ββ , T �23

ββ , T �24
ββ

)
(
T 51

αβ , T 52
αβ , T 53

αβ , T 54
αβ

)
⎫⎪⎪⎬
⎪⎪⎭ =

〈⎡⎢⎣c̄∗11 c̄∗12 0
c̄∗12 c̄∗22 0
0 0 c̄∗66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εαα(z�ετ
11 , z�ετ

12 , z�ετ
13 , z�ετ

14 )
εββ(z�ετ

21 , z�ετ
22 , z�ετ

23 , z�ετ
24 )

εαβ(zετ
51 , zετ

52 , zετ
53 , zετ

54 )

⎫⎪⎬
⎪⎭
〉

−
〈⎧⎪⎨
⎪⎩

ē31(z�ετ
11 , z�ετ

12 , z�ετ
13 , z�ετ

14 )
ē32(z�ετ

21 , z�ετ
22 , z�ετ

23 , z�ετ
24 )

0

⎫⎪⎬
⎪⎭ Êz

〉
, (78)

and {(
T 33

βz , T 34
βz

)
(
T 41

zα, T 42
zα

)
}

=

〈[
c̄�
44 0
0 c̄�

55

]{
εβz(zετ

33 , zετ
34 )

εzα(zετ
41 , zετ

42 )

}〉
. (79)

For the sake of simplicity of exposition of the internal forces and moments, the previous equations are
not developed here in terms of the generalized displacements and electric potential. The reader is referred
to Appendix G to further details concerning that matter.

IV. Finite Element Solution

A. Preliminary Comments on the FE Solution of the Fully and Partially Refined Models

In this section the FE solution of the weak form of the governing electro-mechanical coupled equations of
the partially refined mathematical model of doubly curved shells in Eqs. (61)-(70) is developed. Regarding
the FE solution of the fully refined model, it will not be derived here for reasons related with the complexity
of the formulation. As can be seen from the fully refined definitions of the displacement field presented in
Eqs. (20), (23) and (24), the fully refined weak forms would involve high-order derivatives of the generalized
displacements which would complicate the formulation and FE solution dramatically. That would require
higher order continuity of the variables, which would be cumbersome for FE solutions, with the outcome
of considering an equivalent 2-D theory representative of the full 3-D elasticity problem. It is well known,
however, that in the major part of the problems, the transverse stress is small when compared with the other
stress components. An exception is, for example, in thermo-mechanical analysis where the transverse stress
σzz plays an important role (see Carrera8,106), which is not the case here. That refinement is not pursued
here since the trade-off between accuracy and complexity is not appellative for the physical problem to be
treated in this work.

B. Spatial Approximation

For the sake of brevity the weak forms of the partially refined model in Eqs. (61)-(70) are expressed in terms
of the internal forces and moments (stress resultants). However, if the constitutive equations of the internal
forces and moments, presented in Sec. F and detailed in Appendix G, are taken into account, the weak forms
can still be expressed in terms of the generalized variables. That will not be made here explicitly, but those
relations will be implicitly taken into account to derive the elemental matrices and vectors.

Thus, from the analysis of the weak forms in (61)-(70) and/or the internal forces and moments in Ap-
pendix G, it can be seen that they contain at the most first-order derivatives of the generalized displacements
u0, v0, θα and θβ and surface stresses τ̄zα, τ̃zα, τ̄βz and τ̃βz, requiring C0 continuity, and in contrast to
what is traditionally obtained with the FSDT, the present partial refined model contain also at the most
second-order derivatives of the transverse displacement w0, requiring C1 continuity, which is something that
is obtained with the CLT. Thus, the partially refined model, at first sight, yields something that resembles
a blend of the CLT and FSDT. Additionally, the electric potential difference requires zero-order derivatives,
and is assumed constant at the elemental electrodes, which is convenient since it imposes at least at the
elemental level the physical equipotential area condition of the electrodes, which should also be assumed
between adjacent FEs. Thus, the displacement variables, u0, v0, θα, θβ , w0, ∂w0/∂α, ∂w0/∂β and (or not)
∂2w0/∂α∂β (nonconforming or conforming elemental approaches), and shear stress variables, τ̄zα, τ̃zα, τ̄βz

and τ̃βz, must be carried as nodal variables in order to enforce their interelement continuity. Regarding the
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electric potential difference variable, φ, is carried out as an elemental variable and interelement continuity
is not enforced.

For the FE solution, linear Lagrange C0 continuity rectangular interpolation functions might be used to
approximate all the displacement and stress variables whereas the generalized transverse displacement w0

should be approximated using Hermite C1 continuity rectangular interpolation functions over a four-noded
element Ωe

0. The combined conforming or nonconforming elements have a total of 12 or 11 degrees of freedom
(DoFs) per node, respectively, and 1 electrical DoF per element. Therefore, let

u0(α, β, t) ≈
n∑

j=1

ūj
0(t)L

e
j(α, β), v0(α, β, t) ≈

n∑
j=1

v̄j
0(t)L

e
j(α, β),

θα(α, β, t) ≈
n∑

j=1

θ̄
j
α(t)Le

j(α, β), θβ(α, β, t) ≈
n∑

j=1

θ̄
j
β(t)Le

j(α, β),

τ̄zα(α, β, t) ≈
n∑

j=1

¯̄τ j
zα(t)Le

j(α, β), τ̃zα(α, β, t) ≈
n∑

j=1

¯̃τ j
zα(t)Le

j(α, β),

τ̄βz(α, β, t) ≈
n∑

j=1

¯̄τ j
βz(t)L

e
j(α, β), τ̃βz(α, β, t) ≈

n∑
j=1

¯̃τ j
βz(t)L

e
j(α, β),

w0(α, β, t) ≈
m∑

r=1

w̄r
0(t)H

e
r (α, β), φ(α, β, t) ≈ φ̄(t). (80)

where (ūj
0, v̄

j
0, θ̄

j
α, θ̄

j
β) and (¯̄τ j

zα, ¯̃τ j
zα, ¯̄τ j

βz,
¯̃τ j

βz) denote the values of the generalized in-plane displacements,
rotations and surface shear stresses at the jth node of the Lagrange elements, w̄r

0 denote the values of
w0 and its derivatives with respect to α and β at the nodes of the Hermite elements, and Le

j and He
r

are the Lagrange and Hermite elemental interpolation functions, respectively. For the conforming four-
noded rectangular element (n = 4 and m = 12) the total number of DoFs per element is 49 and for the
nonconforming is 45.

C. Discrete Finite Element Equations of the Shell Layer

Substituting the spatial approximations of the generalized displacements, surface stresses and electric po-
tential difference in Eqs. (80) into the weak forms in Eqs. (61)-(70), the ith equation associated with each
weak form is given as

n∑
j=1
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ij

¨̄uj
0 + M14

ij
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ij

¨̄̄τ j
zα + M17

ij
¨̃̄τ j

zα + K11
ij ūj
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ij θ̄

j
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ij θ̄
j
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βz) +
m∑
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(M13
ir

¨̄wr
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ir w̄r
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iφφ̄ − F 1
i = 0, (81)
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ij θ̄

j
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ij θ̄
j
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¯̄τ j
βz + K29

ij
¯̃τ j

βz) +
m∑

r=1

(M23
ir

¨̄wr
0 + K23

ir w̄r
0) + K2

iφφ̄ − F 2
i = 0, (82)

n∑
j=1

(M31
rj

¨̄uj
0 + M32

rj
¨̄vj
0 + M34

rj
¨̄θj

α + M35
rj

¨̄θj
β + M36

rj
¨̄̄τ j

zα + M37
rj

¨̃̄τ j
zα + M38

rj
¨̄̄τ j

βz + M39
rj

¨̃̄τ j
βz + K31

rj ūj
0 + K32

rj v̄j
0

+ K34
rj θ̄

j
α + K35

rj θ̄
j
β + K36

rj
¯̄τ j

zα + K37
rj

¯̃τ j
zα + K38

rj
¯̄τ j

βz + K39
rj

¯̃τ j
βz) +

m∑
s=1

(M33
rs

¨̄ws
0 + K33

rs w̄s
0) + K3

rφφ̄ − F 3
r = 0,

(83)
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n∑
j=1

(M41
ij

¨̄uj
0 + M44

ij
¨̄θj

α + M46
ij

¨̄̄τ j
zα + M47

ij
¨̃̄τ j

zα + K41
ij ūj

0 + K42
ij v̄j

0 + K44
ij θ̄

j
α + K45

ij θ̄
j
β

+ K46
ij

¯̄τ j
zα + K47

ij
¯̃τ j

zα + K48
ij

¯̄τ j
βz + K49

ij
¯̃τ j

βz) +
m∑

r=1

(M43
ir

¨̄wr
0 + K43

ir w̄r
0) + K4

iφφ̄ − F 4
i = 0, (84)

n∑
j=1

(M52
ij

¨̄vj
0 + M55

ij
¨̄θj

β + M58
ij

¨̄̄τ j
βz + M59

ij
¨̃̄τ j

βz + K51
ij ūj

0 + K52
ij v̄j

0 + K54
ij θ̄

j
α + K55

ij θ̄
j
β

+ K56
ij

¯̄τ j
zα + K57

ij
¯̃τ j

zα + K58
ij

¯̄τ j
βz + K59

ij
¯̃τ j

βz) +
m∑

r=1

(M53
ir

¨̄wr
0 + K53

ir w̄r
0) + K5

iφφ̄ − F 5
i = 0, (85)

n∑
j=1

(M61
ij

¨̄uj
0 + M64

ij
¨̄θj

α + M66
ij

¨̄̄τ j
zα + M67

ij
¨̃̄τ j

zα + K61
ij ūj

0 + K62
ij v̄j

0 + K64
ij θ̄

j
α + K65

ij θ̄
j
β

+ K66
ij

¯̄τ j
zα + K67

ij
¯̃τ j

zα + K68
ij

¯̄τ j
βz + K69

ij
¯̃τ j

βz) +
m∑

r=1

(M63
ir

¨̄wr
0 + K63

ir w̄r
0) + K6

iφφ̄ − F 6
i = 0, (86)

n∑
j=1

(M71
ij

¨̄uj
0 + M74

ij
¨̄θj

α + M76
ij

¨̄̄τ j
zα + M77

ij
¨̃̄τ j

zα + K71
ij ūj

0 + K72
ij v̄j

0 + K74
ij θ̄

j
α + K75

ij θ̄
j
β

+ K76
ij

¯̄τ j
zα + K77

ij
¯̃τ j

zα + K78
ij

¯̄τ j
βz + K79

ij
¯̃τ j

βz) +
m∑

r=1

(M73
ir

¨̄wr
0 + K73

ir w̄r
0) + K7

iφφ̄ − F 7
i = 0, (87)

n∑
j=1

(M82
ij

¨̄vj
0 + M85

ij
¨̄θj

β + M88
ij

¨̄̄τ j
βz + M89

ij
¨̃̄τ j

βz + K81
ij ūj

0 + K82
ij v̄j

0 + K84
ij θ̄

j
α + K85

ij θ̄
j
β

+ K86
ij

¯̄τ j
zα + K87

ij
¯̃τ j

zα + K88
ij

¯̄τ j
βz + K89

ij
¯̃τ j

βz) +
m∑

r=1

(M83
ir

¨̄wr
0 + K83

ir w̄r
0) + K8

iφφ̄ − F 8
i = 0, (88)

n∑
j=1

(M92
ij

¨̄vj
0 + M95

ij
¨̄θj

β + M98
ij

¨̄̄τ j
βz + M99

ij
¨̃̄τ j

βz + K91
ij ūj

0 + K92
ij v̄j

0 + K94
ij θ̄

j
α + K95

ij θ̄
j
β

+ K96
ij

¯̄τ j
zα + K97

ij
¯̃τ j

zα + K98
ij

¯̄τ j
βz + K99

ij
¯̃τ j

βz) +
m∑

r=1

(M93
ir

¨̄wr
0 + K93

ir w̄r
0) + K9

iφφ̄ − F 9
i = 0, (89)

where i = 1, . . . , n, and r = 1, . . . ,m. Regarding the weak form of the equation governing the electrostatic
equilibrium in Eq. (70) yields

K1
φiū

i
0 + K2

φiv̄
i
0 + K3

φrw̄
r
0 + K4

φiθ̄
i
α + K5

φiθ̄
i
β + K6

φi
¯̄τ i

zα + K7
φi

¯̃τ i
zα + K8

φi
¯̄τ i

βz + K9
φi

¯̃τ j
βz + Kφφφ̄−Qφ = 0. (90)

The coefficients of the mass matrix Mxy
ij = Myx

ji , stiffness matrix Kxy
ij = Kyx

ji , piezoelectric coupling matrix
Kx

iφ = Kx
φi, capacitance matrix Kφφ, force vectors F x

i and electric charge Qφ are defined in Appendix H.
In matrix notation Eqs. (81)-(90) can be expressed in terms of the elemental matrices and vectors of the

generic layer l as[
Ml

uu Ml
uτ

Ml
τu Ml

ττ

]{
¨̄u

l(t)
¨̄τ

l(t)

}
+

[
Kl

uu Kl
uτ

Kl
τu Kl

ττ

]{
ūl(t)
τ̄ l(t)

}
+

{
Kl

uφ

Kl
τφ

}
φ̄(t) =

{
Fl

u(t)
Fl

τ (t)

}
, (91)

{
Kl

φu Kl
τφ

}{
ūl(t)
τ̄ l(t)

}
+ Kφφφ̄(t) = Qφ(t), (92)

25 of 51

American Institute of Aeronautics and Astronautics



where, since Kyx = (Kxy)T and Myx = (Mxy)T, one gets Ml
τu = (Ml

uτ )T, Kl
τu = (Kl

uτ )T, Kl
φu = (Kl

uφ)T

and Kl
τφ = (Kl

τφ)T, and the matrices and vectors are

Ml
uu =

⎡
⎢⎢⎢⎢⎢⎣

M11 0 M13 M14 0
0 M22 M23 0 M25

M31 M32 M33 M34 M35

M41 0 M43 M44 0
0 M52 M53 0 M55

⎤
⎥⎥⎥⎥⎥⎦ , Kl

uu =

⎡
⎢⎢⎢⎢⎢⎣

K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

⎤
⎥⎥⎥⎥⎥⎦ ,

Ml
uτ =

⎡
⎢⎢⎢⎢⎢⎣

M16 M17 0 0
0 0 M28 M29

M36 M37 M38 M39

M46 M47 0 0
0 0 M58 M59

⎤
⎥⎥⎥⎥⎥⎦ , Kl

uτ =

⎡
⎢⎢⎢⎢⎢⎣

M16 M17 0 0
0 0 M28 M29

M36 M37 M38 M39

M46 M47 0 0
0 0 M58 M59

⎤
⎥⎥⎥⎥⎥⎦ , ūl(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ū0

v̄0

w̄0

θ̄α

θ̄β

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

Ml
ττ =

⎡
⎢⎢⎢⎣
M66 M67 0 0
M76 M77 0 0
0 0 M88 M89

0 0 M98 M99

⎤
⎥⎥⎥⎦ , Ml

ττ =

⎡
⎢⎢⎢⎣
K66 K67 K68 K69

K76 K77 K78 K79

K86 K87 K88 K89

K96 K97 K98 K99

⎤
⎥⎥⎥⎦ , τ̄ l(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

¯̄τ zα

¯̃τ zα

¯̄τβz

¯̃τβz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

Kl
uφ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K1
φ

K2
φ

K3
φ

K4
φ

K5
φ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, Fl
u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F1

F2

F3

F4

F5

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, Kl
τφ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K6
φ

K7
φ

K8
φ

K9
φ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, Fl
τ (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F6

F7

F8

F9

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (93)

The coupled ”mixed” electro-mechanical FE model in Eqs. (91) and (92) is based on the weak forms of the
equations of motion and electrostatic equilibrium, which where obtained through Hamilton’s principle, and is
expressed in terms of displacement (and the derivatives of the transverse displacement), surface shear stresses
and electric potential difference DoFs, which are all coupled. It should be noted that the contributions of
the internal forces defined in vectors Fl

u and Fl
τ to the force vector will cancel when element equations

are assembled. They will remain in the force vector only when the element boundary coincides with the
boundary of the domain being modeled. However, as is well known, the contributions of the distributed
applied loads Z(α, β) to a node will add up from elements connected at the node and remain as a part of the
force vector (see Reddy [107, pp. 313-318]). Regarding the electric potential difference it is assumed constant
in each element and, as can be seen in Eq. (91), it produces an equivalent mechanical load though the Kl

uφ

and Kl
τφ vectors. Regarding the Eq. (92), associated with the sensing capabilities os the piezoelectric shell

layer, it establishes the electrostatic relation at the shell layer FE level between the strains (related with the
”mixed” displacements), induced electric potential difference and surface electric charge.

D. Assemblage of Matrices from Layer to Multilayer Level

In this section the elemental equations derived for the generic single shell layer are adapted in order to allow
the generalization of the present theory to a multilayer, or discrete layer, type formulation. To that end,
since the displacements DoFs of the elemental equations of the shell layer are defined in terms of in-plane
generalized displacements in the middle surface and rotations of the normals to the middle surface, first the
DoFs are transformed to equivalent in-plane displacements on the top and bottom surfaces of the generic
shell layer element. Additionally, since the effects of the surface top and bottom shear stresses have been
represented in terms of mean and relative quantities, another transformation is required to the stress DoFs
to dispose of top and bottom shear stresses DoFs. The transverse displacement is assumed constant in the
multilayer shell (i.e., is constant, and the same, for all layers). These transformations allow the displacement
and stress DoFs of different layers to be assembled imposing not only displacement continuity but also shear
stress continuity across the interfaces of the multilayer shell FE. Thus, the FE is ”regenerated” (in opposition

26 of 51

American Institute of Aeronautics and Astronautics



to the well-known ”degeneration” approach) in the form of an equivalent eight-noded 3-D element with 2 in-
plane displacement and 2 shear stress DoFs per node, and one transverse displacement (and its derivatives)
and one electric potential difference per element. Therefore, the ”regenerated” formulation is suitable for
assemblage of elemental matrices from single layer to multilayer level.

The effects of the pairs of generalized variables (u0, θα) and (v0, θβ) in the global displacement field are
taken into account through new equivalent pairs of generalized variables (ut, ub) and (vt, vb), with each pair
containing the in-plane translations at the top and bottom surfaces, respectively. Thus, rather than describ-
ing the in-plane displacement field by a translation and a rotation at one point, it can more conveniently be
described here by the translation at two points on the top and bottom surfaces.

According to Eq. (44), and using the adequate coefficients of matrices zu(z = h) and zτ (z = h), the
displacement field u(α, β, z) on the top surface is given as

ut = zu
11(h)u0 + zu

13(h)
∂w0

∂α
+ zu

14(h)θα + zτ
11(h)τ̄zα + zτ

12(h)τ̃zα. (94)

Then, from the previous equation u0 = u0(α, β) is written as

u0 =
1

zu
11(h)

ut − zu
13(h)

zu
11(h)

∂w0

∂α
− zu

14(h)
zu
11(h)

θα − zτ
11(h)

zu
11(h)

τ̄zα − zτ
12(h)

zu
11(h)

τ̃zα. (95)

Substituting the definition of u0 = u0(α, β, z = 0) in terms of ut = ut(α, β, z = h) yields

u =
zu
11

zu
11(h)

ut +
[
zu
13 − zu

11

zu
13(h)

zu
11(h)

]
∂w0

∂α
+
[
zu
14 − zu

11

zu
14(h)

zu
11(h)

]
θα

+
[
zτ
11 − zu

11

zτ
11(h)

zu
11(h)

]
τ̄zα +

[
zτ
12 − zu

11

zτ
12(h)

zu
11(h)

]
τ̃zα. (96)

From the previous equation it can be seen that some transformations to the first line of matrices zu(z)
and zτ (z) was performed in order to make a transformation of the generalized in-plane displacement u0

on the middle surface to the translation on the top surface ut. Performing a similar process to eliminate
the rotation θα of Eq. (96) and express the displacement u also in terms of the translation on the bottom
surface ub, another transformation is performed considering also the terms of the first line of zu(z = −h)
and zτ (z = −h). Similar relations hold for the second pair of variables (v0, θβ). For the sake of brevity
the algebra of these relations will not be be presented here but can easily be derived from the previous
explanation.

Other required transformation to ”regenerate” the 2-D element is performed according to Eqs. (4) and
(5), where relationships between the mean and relative shear stresses and the shear stresses on the interfaces
of the generic shell layer σt

zα, σb
zα, σt

βz and σb
βz can be easily established.

According to the previous discussion, the relationship between the original and ”regenerated” set of
generalized variables used to defined the in-plane displacement field can be established by means of a trans-
formation matrices Tu and Tτ as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ū0

v̄0

w̄0

θ̄α

θ̄β

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= Tu

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ūt

ūb

v̄t

v̄b

w̄

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

¯̄τ zα

¯̃τ zα

¯̄τβz

¯̃τβz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Tτ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ̄t
zα

σ̄b
zα

σ̄t
βz

σ̄b
βz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (97)

Performing the previous transformations into the FE elemental matrices in Eqs. (91) and (92), where the
elemental matrices and vectors are transformed according to (similar relations hold for the stiffness matrices)

M∗l
uu = TT

uMl
uuTu, M∗l

ττ = TT
uMl

ττTu, M∗l
uτ = TT

uMl
uτTτ ,

K∗l
uφ = TT

uKl
uφ, K∗l

τφ = TτKl
τφ, F∗l

u = TT
uFl

u, (98)

27 of 51

American Institute of Aeronautics and Astronautics



yields [
M∗l

uu M∗l
uτ

M∗l
τu M∗l

ττ

]{
¨̄u
∗l(t)

¨̄τ
∗l(t)

}
+

[
K∗l

uu K∗l
uτ

K∗l
τu K∗l

ττ

]{
ū∗l(t)
τ̄ ∗l(t)

}
+

{
K∗l

uφ

K∗l
τφ

}
φ̄(t) =

{
F∗l

u (t)
F∗l

τ (t)

}
, (99)

{
K∗l

φu K∗l
τφ

}{
ū∗l(t)
τ̄ ∗l(t)

}
+ Kφφφ̄(t) = Qφ(t), (100)

From this point forward, the generic layer elemental matrices can be assembled in the thickness direction
in order to create the desired multilayer FE according to the representative multilayer shell model to be
generated. Displacement and shear stress continuity at the through-the-thickness interfaces of adjacent
elements (discrete layers) is imposed in the assemblage process, as is usually done with the displacement
DoF of 3-D elements, and it is assumed that no slippage occurs in the interfaces between adjacent layers. It
is worthy to mention that the resultant multilayer elemental matrices are needed, for example, when there
is the need to consider segmented layers, as is the case when dealing with arbitrary damping treatments
(piezoelectric or viscoelastic patches) mounted on a host shell structure. After the through-the-thickness
assemblage, the multilayer elemental matrices are written as[

Me
uu Me

uτ

Me
τu Me

ττ

]{
¨̄u

e(t)
¨̄τ

e(t)

}
+

[
Ke

uu Ke
uτ

Ke
τu Ke

ττ

]{
ūe(t)
τ̄ e(t)

}
+

{
Ke

uφ

Ke
τφ

}
φ̄

e(t) =

{
Fe

u(t)
Fe

τ (t)

}
, (101)

{
Ke

φu Ke
τφ

}{
ūe(t)
τ̄ e(t)

}
+ Ke

φφφ̄
e(t) = Qe

φ(t), (102)

where the superscript (·)e is used to denote multilayer elemental matrices and vectors. Regarding the
electrical part of the FE equations, It should be noted that since the multilayer shell can contain several
piezoelectric layers, there is more than one electrical DoF and therefore instead of a single electrical potential
we have a vector φ̄

e of electrical potential differences and the correspondent capacitance matrices Ke
φφ and

electric charge vector Qe
φ.

Assuming homogeneous shear stress conditions on the free top and bottom surfaces of the multilayer shell
element and performing a dynamic condensation to the shear stress DoFs, as suggested for a generic system,
for example, by Kidder108 or O’Callahan109 and Gordis,110 yields the multilayer FE elemental equations in
terms of elemental reduced matrices and vectors in terms of only displacement variables as

M̂e
uu

¨̄u
e(t) + K̂e

uuū
e(t) + K̂e

uφφ̄
e(t) = F̂e

u(t), (103)

K̂e
φuū

e(t) + Ke
φφφ̄

e(t) = Qe
φ(t). (104)

A generic fully discretized global electro-mechanical system is obtained by ”in-plane” assembling the ele-
mental multilayer FE matrices and vectors yielding

Muu¨̄u(t) + Kuuū(t) + KT
φuφ̄(t) = Fu(t), (105)

Kφuū(t) + Kφφφ̄(t) = Qφ(t), (106)

where the superscript (·)e and the hat above the elemental matrices and vectors have been dropped to denote
global matrices and vectors of the fully discretized FE model.

The electrical DoFs vector in Eqs. (105) and (106) can be partitioned into the actuating and sensing
DoFs,

φ̄(t) = col[φ̄a(t), φ̄s(t)], (107)

where the subscripts (·)a and (·)s denote the actuating and sensing capabilities. Furthermore, the stiffness
matrix can be written as the sum of the elastic and piezoelectric layers stiffness matrices KE

uu and KP
uu,

respectively. Hence, considering open-circuit electrodes, and in that case Qφ(t) = 0 (see Vasques and
Rodrigues42), the non specified potential differences in (106) can be statically condensed in (105) and the
equations of motion and charge equilibrium become

Muu¨̄u(t) +
(
KE

uu + KP∗
uu

)
ū(t) = −KT

φuaφ̄a(t) + Fu(t), (108)

φ̄s(t) = −K−1
φφsKφusū(t), (109)
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where
KP∗

uu = KP
uu − KT

φusK
−1
φφsKφus. (110)

It is worthy to mention that a through-the-thickness distribution of the induced electric potential within the
piezoelectric layers was already considered in the formulation through the modification of the strain definition,
as described in Sec. C, and the use of effective shear stiffness parameters in Eqs. (C12) of Appendix. Thus, the
static condensation in Eq. (108) only considers the linear counterpart of the electrical potential distribution,
which is the one that in fact contributes to the sensor voltage. Moreover, a second alternative where the
equipotential area condition is satisfied by means of a modified static condensation of the non-specified
potentials might be utilized, which corresponds to a more realistic approach, that becomes more significant
for bare piezoelectric structures or as the length of the piezoelectric layers approaches the length of the host
structure (see Refs. 42 and 111 for further details).

E. Inclusion of Viscoelastic Damping Effects

In this section the coupled piezo-elastic multilayer FE model in Eqs. (108) and (109) is extended to the case
where the multilayer shell includes also damping layers of isotropic viscoelastic materials. In order to fully
account for the viscoelastic damping effects in the FE model, the temperature and frequency dependent
material properties of the viscoelastic materials cause some difficulties, increasing the complexity of the
mathematical model. Usually, for simplicity, the temperature is assumed constant, and only the frequency
dependent constitutive behavior is considered in the underlying models. If general transient responses are
required, time domain models are suitable and versatile alternatives to frequency domain methods such as
the CMA, since they allow the reduction of the computational burden due to the re-calculation of the stiffness
matrix for each discrete frequency value (see, for example, Refs. 112 and 113). A good alternative is a time
domain model based on a variation (or Laplace transformed) of the ADF (Anelastic Displacement Fields)
model, originally developed by Lesieutre and his co-workers,54,55 as proposed by Vasques et al.68 For the
sake of brevity only key steps of the derivation of the Laplace transformed variation of the ADF model will
be presented here. The reader is referred to Refs. 68 and 96 for further details.

The Laplace transformed formulation of the ADF model takes a definition of the complex (frequency
dependent) modulus of elasticity of the viscoelastic material in the frequency (Laplace) domain and utilizes
so-called internal, or dissipation, or anelastic (after Lesieutre) variables, to simplify the equations. The
use of additional variables has however the drawback of increasing the size of the problem. Afterward,
through an inverse Laplace transform one obtains an amenable and computationally tractable augmented
viscoelastically damped system of linear ordinary differential equations that can be solved by standard
(linear) numerical procedures. With this procedure the FE model implementation of the ADF model is more
straightforward when compared with the Lesieutre’s original direct time domain formulation based on the
methods of irreversible thermodynamics and a decomposition of the total displacement field in an elastic
and anelastic counterpart.

The process of deriving an augmented coupled elastic-anelastic (using the original designation of Lesieu-
tre) utilizes the definition of the material modulus function sG̃(s) given by Lesieutre and his co-worker54,114

as a series of functions in the Laplace domain,

sG̃(s) = G0

(
1 +

n∑
i=1

Δis

s + Ωi

)
, (111)

where G0 = limt→∞ G(t) is the relaxed (or static, or low-frequency) shear modulus, Ωi is the inverse of the
characteristic relaxation time at constant strain and Δi the correspondent relaxation resistance. To take into
consideration the relaxation behavior, the entire ADF model itself may be comprised of several individual
fields where n series of ADF are used to describe the material behavior. Given measured values of the shear
modulus in the form of frequency dependent complex modulus G(jω), the relaxed shear modulus G0 and the
series of material parameters Δi and Ωi can be determined using curve fitting or optimization techniques.
The number of series of ADF parameters determines the accuracy of the matching of the measured data
over the frequency range of interest (see Ref. 68).

Considering a piezo-visco-elastic multilayered shell, the stiffness matrices of the piezoelectric and elastic
layers of the FE equation of motion in Eq. (108) are collected into a single matrix KEP∗

uu , and the viscoelastic
layers are collected into a complex stiffness matrix KV

uu(jw). However, the complex shear modulus (note
that assuming a frequency independent Poisson’s coefficient both shear and extensional stiffness terms are
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considered in the viscoelastic stiffness matrix through the extensional and shear modulus relationship) of
the viscoelastic stiffness matrix is factored out of KV

uu(jw) yielding KV
uu(jw) = G(jw)K̄V

uu. Assuming that
all the viscoelastic layers have the same material, Eq. (108) follows a hereditary stress-strain law115 as

Muu¨̄u(t) + Duu ˙̄u(t) + KEP∗
uu ū(t) + G(t)K̄V

uuu(0) +
∫ t

0

G(t − τ)K̄V
uu

∂ū(τ)
∂τ

dτ = F(t), (112)

where F(t) = Fu(t)−KT
φuaφ̄a(t) and Duu is a viscous proportional damping matrix. Transforming Eq. (112)

to the Laplace domain yields(
s2Muu + sDuu + KEP∗

uu

)
ũ(s) + sG̃(s)K̄V

uuũ(s) = F̃(s). (113)

Substituting the material modulus function representation in Eq. (111) into (113) yields

(
s2Muu + sDuu + KEP∗

uu

)
ũ(s) + G0K̄V

uu

(
1 +

n∑
i=1

Δis

s + Ωi

)
ũ(s) = F̃(s). (114)

Then, introducing a set of n series of anelastic (or internal, dissipation) ũA
i (s) (i = 1,. . .,n) variables, for

each series, one can define the relationship

ũ(s) − ũA
i (s) =

s

s + Ωi
ũ(s). (115)

Substituting Eq. (115) into (114), and considering the dissipative behavior of the anelastic DoFs given from
Eq. (115) as

ũA
i (s) =

Ωi

s + Ωi
ũ(s), (116)

after some algebra (see Refs. 68 and 96 for details) the time-dependent behavior of the elastic-anelastic
augmented piezo-visco-elastic coupled system, is recovered through the inverse Laplace transform as

Muu¨̄u(t) + Duu ˙̄u(t) +
(
KEP∗

uu + KV ∞
uu

)
ū(t) − KV 0

uu

n∑
i=1

ΔiūA
i (t) = F(t), (117)

Δi

Ωi
KV 0

uu
˙̄u

A
i (t) + ΔiKV 0

uu ūA
i (t) − ΔiKV 0

uu ū(t) = 0, (118)

where KV 0
uu = G0K̄V

uu is the relaxed (static) stiffness matrix of the viscoelastic components and

KV ∞
uu =

(
1 +

n∑
i=1

Δi

)
KV 0

uu . (119)

The augmented coupled system in Eqs. (117) and (118) might still be expressed in compact matrix form as

M̄¨̄q(t) + D̄ ˙̄q(t) + K̄q̄(t) = F̄(t), (120)

where

M̄ =

[
Muu 0
0 0

]
, D̄ =

[
Duu 0
0 DAA

]
, K̄ =

[
KEE KEA

KAE KAA

]
,

q̄(t) = col
(
ū(t), ūA

1 (t), . . . , ūA
n (t)

)
, F̄(t) = col

(
F(t),0, . . . ,0

)
, (121)

and

DAA = diag
(Δ1

Ω1
KV 0

uu , . . . ,
Δn

Ωn
KV 0

uu

)
, KAA = diag

(
Δ1KV 0

uu , . . . ,ΔnKV 0
uu

)
,

KEE = KEP∗
uu + KV ∞

uu , KEA =
[−Δ1KV 0

uu , . . . , − ΔnKV 0
uu

]
, KAE = KT

EA. (122)

As can be seen in Eqs. (117) and (118), the main disadvantage of the ADF model is that, associated with
a FE discretization, and in order to account for the frequency dependence of the viscoelastic material, since
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it adds auxiliary internal DoFs, which for each ADF series must be equal to the number of elastic DoFs, it
leads to large systems. However, model reduction techniques might be utilized in order to reduce the size
of the system. As suggested by Trindade et al.50 the matrices corresponding to the anelastic (dissipative)
DoFs might be reduced and diagonalized to reduce the computational cost. Considering a linear coordinate
transformation ūA

i (t) = ΨAûA
i (t), where ΛA = ΨT

AKV 0
uuΨA is a diagonal matrix composed by the non-zero

eigenvalues of KV 0
uu and ΨA is the correspondent matrix of normalized eigenvectors, such that ΨT

AΨA = I,
matrices DAA, KAA and KAE , and the vector of DoFs q̄(t), might alternatively be modified to

DAA = diag
(Δ1

Ω1
ΛA, . . . ,

Δn

Ωn
ΛA

)
, KAA = diag

(
Δ1ΛA, . . . ,ΔnΛA

)
,

KEA =
[−Δ1KV 0

uuΨA, . . . , − ΔnKV 0
uuΨA

]
, q̄(t) = col

(
ū(t), ûA

1 (t), . . . , ûA
n (t)

)
. (123)

The advantages of the alternative (transformed) representation are that in the case where only some
part of the structure is covered with viscoelastic layers only some FEs have viscoelastic components and
KV 0

uu can have several rows and columns of zeros, which in turn leads to some zero eigenvalues. Thus, the
size of ûA

i (t) can be substantially smaller than that of ūA
i (t). Furthermore, one may notice from M̄ that

the anelastic DoFs have no inertia and therefore the global mass matrix M̄ is singular and is not positive-
definite. However, the singularity of the mass matrix can be overcome if instead of solving the second-order
system in Eq. (120) one considers a state-space representation with an adequate design of the state variables.
Moreover, the number of flexible modes is kept the same and the dissipative modes, which correspond to
the internal relaxations of the viscoelastic material, are overdamped with low observability. The ADF model
represents a good alternative to accurately model the damping behavior of the viscoelastic materials. It
is easily implemented at the FE level, yields good trade-off between accuracy and complexity and allows
transient analysis.

V. Active Control of Vibration

A. State Space Design

The state-space approach is the basis of the modern control theories and is strongly recommended in the
design and analysis of control systems with a great amount of inputs and outputs. In this method, dynamic
systems are described by a set of first-order differential equations in variables called the state. See related
textbooks in Refs. 116 and 117.

To apply the augmented elastic-anelastic piezo-visco-elastic coupled FE model in control design, the
system in Eq. (120) is transformed into a state-space form. Therefore, in order to overcome the singularity
of the mass matrix the state-space vector x(t) is chosen as

x(t)=

{
q̄(t)
˙̄u(t)

}
, (124)

where the chosen state variables are the augmented vector q̄(t), composed by the mechanical (elastic) DoFs
vector ū(t) and a reduced set of anelastic transformed coordinates vectors ûA

i (t), and the the time derivative
of the mechanical DoFs vector ˙̄u(t). It is worthy to mention that the time derivatives of ûA

i (t) are not
considered here since these variables are massless. Thus, the coupled system in Eq. (120) and the sensing
Eq. (109) can be expressed in terms of the state variables vector x(t), yielding

ẋ(t) = Ax(t) + Bφuφ(t) + Buuu(t), (125)
y(t) = Cx(t), (126)

where A is the system matrix, Bu and Bφ are the mechanical and electrical input matrices associated with
the mechanical and electrical loads, C is the output matrix, uu(t) and uφ(t) are the mechanical and electrical
input vectors and y(t) is the output vector, given by

A =

⎡
⎢⎣ 0 0 I

−D−1
AAKAE −D−1

AAKAA 0
−M−1

uuKEE −M−1
uuKEA −M−1

uuDuu

⎤
⎥⎦ , Bu =

⎡
⎢⎣ 0

0
M−1

uu

⎤
⎥⎦ , Bφ =

⎡
⎢⎣ 0

0
−M−1

uuKuφa

⎤
⎥⎦ ,
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C =

⎡
⎢⎢⎢⎣

−K−1
φφsKφus 0 0
0 0 −K−1

φφsKφus

I 0 0
0 0 I

⎤
⎥⎥⎥⎦ , y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ̄s(t)
˙̄φs(t)
ū(t)
˙̄u(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, uu(t) = Fu(t), uφ(t) = φ̄a(t).

(127)
The coupled piezo-visco-elastic state-space system in Eqs. (125) and (126) can therefore be used for the

design and simulation of hybrid damping treatments in shells. It is however worth to mention that, as
presented by Vasques and Rodrigues,42 the signal induced by the piezoelectric sensors should be calculated
from an average of the electrical DoFs due to the ”finite” electrical separation of the electrodes of the different
elements (i.e., continuity of the electric potential difference between adjacent elements has not been enforced)
and considerations regarding the equipotential area of the electrodes should be taken into account.

One major disadvantage in using internal variables models such as the ADF to model the damping
introduced by the viscoelastic materials is the creation of additional dissipation coordinates. Even with a
modal reduction of the DoFs of the non viscoelastic elements the order of the system quickly increases as the
number of series of dissipation ADF parameters used in the summation is increased. This size is determined
by the number of series of parameters necessary for an accurate curve fitting of the frequency-dependent
complex shear modulus.68 Larger order makes control design more difficult, especially when these states are
non-physical and can not be directly sensed.118 It is therefore advantageous to look at model reduction to
reduce the system’s size. As suggested by Trindade et al.,50 the matrices corresponding to the internal DoFs
might be reduced and diagonalized through a projection in a suitable reduced modal base. Thus, through an
adequate coordinate transformation based on the eigenvalues and eigenvectors of KV 0

uu and elimination of the
nil eigenvalues, the size of the problem can be substantially reduced. Furthermore, truncated complex state-
space modal models might also be used in order to reduce the system size even further. The reader is referred,
for example, to Trindade et al.,50 Vasques and Rodrigues,96 Friswell and Inman119 and Park et al.120 for
further details about state-space design and model reduction techniques concerning viscoelastically damped
structural systems. For further details regarding control strategies the reader is referred, for example, to the
works of Vasques and Rodrigues.88,91,96

B. Quantification of Damping Mechanisms

Hybrid damping treatments attenuate vibrations and sound radiation through different damping mecha-
nisms. In order to optimize the design of arbitrary hybrid active-passive damping treatments, where the
damping layers are arbitrarily stacked and mounted on the host structure, it is essential to understand their
phenomenological behavior and to be able to identify and quantify the efficiency of the different damping
mechanisms. This treatments comprise on the one hand the damping effects due to the internal molecu-
lar interactions that occur during deformation in general, and vibration in particular, of the viscoelastic
materials, which give rise to macroscopic properties such as stiffness and energy dissipation during cyclic
deformation, and on the other hand the effects due to the piezoelectric actuation which applies forces and
moments on the structure. In order to do that, an approach based upon an energetic balance of the global
kinetic or strain energies is proposed.

Thus, assuming a general closed-loop control system (with a certain control strategy) applied in conjunc-
tion with arbitrary hybrid damping treatments to reduce the vibration and/or noise radiation of a general
structural system, the resultant hybrid damping mechanism basically represents the net interaction and
contribution of the following somewhat different but complemental three damping mechanisms (see Fig. 4):

• A passive mechanism, where the system is assumed in open-loop and where only the damping mainly
due to the shearing of the viscoelastic layers (constrained or not) alone is considered;

• An active mechanism, which decreases the total input power into the structure due to the forces applied
by the active piezoelectric constraining layer through the viscoelastic layer (which assumes a perfect
transmissibility);

• A coupled mechanism, which represents the energy dissipation effects of the increase of shearing in
the viscoelastic layer due to the convenient motion (actuation) of the active piezoelectric constraining
layer.
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Figure 4. Schematic of the methodology to individually quantify the loss coefficients of the damping mecha-
nisms.

Thus, based on the previous definitions, and neglecting other general sources of damping (e.g., the
material damping of the elastic part of the structural system, air-based damping, energy dissipation in the
supports, etc.), which were assumed to be proportional to the velocity and were considered through the
viscous proportional damping model in the global FE model, a normalized loss coefficient quantifying the
net damping achieved with the hybrid mechanism, ηh, is given as

ηh = ηp + ηa + ηc, (128)

where ηp, ηa and ηc are normalized loss coefficients that quantify the energy dissipated by the passive, active
and coupled mechanisms. The hybrid, passive and active coefficients are defined as

ηh =
Er − Eh

Er
, ηp =

Er − Ep

Er
, ηa =

Er − Ea

Er
, (129)

where Er is the reference (kinetic or strain) energy of the structural system and Eh, Ep and Ea are the
hybrid, passive and active energies (kinetic or strain) determined by setting the electric potential difference φ
on or off (open- or closed-loop system) and by assuming or not the loss factor of the viscoelastic material ηv

equal to zero (i.e., a perfect transmissibility of the efforts from the piezoelectric patch to the host structure
is considered) as depicted in Fig. 4. Since the loss coefficients in Eqs. (129) are in fact the ones that we
can determine, at the simulation level, from the outputs of the system, the loss coefficient of the coupled
mechanism can be determined from the others as

ηc = ηh − ηp + ηa. (130)

The latter loss coefficient is of great importance since it allows to infer about the advantages of hybrid
damping configurations when compared with pure active or passive ones. Furthermore, when the hybrid
treatments are incorrectly designed, the active mechanism might have a reduced importance since the vis-
coelastic layer usually reduces the transmissibility of efforts to the host structure. In fact, usually the
transmissibility (stiffness) increases with frequency. Thus, in order to dissipate energy also at low frequen-
cies, the aim would be to actively increase the shearing in the viscoelastic layer. However, due to the loss
factor behavior of viscoelastic materials (usually smaller at low frequencies), the treatment is usually more
efficient for frequencies with higher loss factors, if we have also significant shearing strains. (The energy
released is related with the loss factor times the shearing strain.) Regarding the ”pure” active treatments,
the transmissibility of efforts to the host structure is higher, since the patch is bonded to the structure, and
the aim is actively reducing the input power coming into the structure. Hence, this set of indices provides
an efficient and straightforward means to design hybrid damping treatments since the contributions and
trade-off between the different damping ”ingredients” are fully known and quantified.

It is still worthy to mention that, for simplicity, the present approach to quantify the damping mechanisms
has been presented and discussed for a structural system with an ACLD treatment. However, as obvious,
the methodology is general and can be applied to structural systems with more complex arbitrarily stacked
hybrid damping treatments.
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VI. Conclusion

Based on a fully refined mathematical model of general anisotropic shells a fully coupled piezo-visco-
elastic FE model has been conceptually proposed for multilayer shells. However, for practical reasons, related
with the complexity of the formulation, simplifications regarding the through-the-thickness distribution of
the transverse displacement were considered and a partially refined theory was derived with additional
restrictions inherent to doubly-curved orthotropic shells physics. No simplifications regarding the thinness
of the shell were considered and a plane stress state was considered for the partially refined theory.

It was shown that the refined assumptions and relaxation of some of Love’s classical assumptions led to
a ”mixed” definition of the displacement field in terms of the same generalized displacements of the FSDT
and CLT, and shear stresses on the top and bottom surfaces.

The electrical potential was defined assuming negligible in-plane electric displacement field which allowed
the use of effective shear stiffness parameters which account for the effects of the induced in-plane electric
field components. Regarding the transverse (out-of-plane) electrical behavior, the induced transverse electric
field was considered by means of a modification of the mechanical in-plane strains, which in an analogous
way were modified into effective strains. Thus, the direct piezoelectric effect was condensed into the model
through effective stiffness and strains definitions, and the converse counterpart was considered by the action
of prescribed electric potential differences in each piezoelectric layer.

The governing equations of a generic single layer of the multilayered shell were derived with Hamilton’s
principle in conjunction with the ”mixed” displacement field and the electric potential difference definitions.
The DoFs of the resultant four-noded generic piezo-elastic single layer FE model were then ”regenerated”
into an equivalent eight-node 3-D formulation in terms of top and bottom translations and shear stresses,
and a transverse displacement (and its derivatives) constant in the elemental volume. The through-the-
thickness assemblage of the ”regenerated” FE model of the single layer allowed the generation of a refined
multilayer FE assuring displacement and shear stress interlayer continuity. The dynamic condensation of the
stress DoFs allowed the reduction of the refined multilayer piezo-elastic FE to a an equivalent representation
similar in structure to the one obtained with a first-order partial layerwise theory, but considering nonlinear
in-plane displacement and quadratic shear stresses definitions and also interlayer continuity and homogeneous
conditions, at the top and bottom surfaces of the refined multilayer FE, of the shear stresses. It was shown
that the inclusion of the viscoelastic damping effects can be considered at the global FE model level by using
a Laplace transformed version of the ADF model, with the drawback of increasing the size of the problem.

Last but not the least, the equations of motion were cast in a state-space form suitable for active control
aplications/simulations, alternatives to reduce the size of the state-space piezo-visco-elastic coupled system
were outlined and it was shown that a straightforward methodology using only the outputs of the state-
space system can be derived to individually quantify the different damping mechanisms of arbitrary hybrid
damping treatments.

The resultant partially refined piezo-visco-elastic coupled FE model can therefore be used to model shells
with segmented hybrid (active-passive) damping treatments and used to design damping treatments for
vibration and/or sound radiation suppression.

Appendix

A. Strain-Displacement and Equilibrium Equations in Orthogonal Curvilinear Coordinates

Taking into account that Hz = 1, from the equations of 3-D theory of elasticity, the strain components of
the shell layer are defined as a function of displacements by Sokolnikoff [124, pp. 177-184] as

εαα =
1

Hα

∂u

∂α
+

1
HαHβ

∂Hα

∂β
v +

1
Hα

∂Hα

∂z
w, εββ =

1
HαHβ

∂Hβ

∂α
u +

1
Hβ

∂v

∂β
+

1
Hβ

∂Hβ

∂z
w,

εzz =
∂w

∂z
, εβz = Hβ

∂

∂z

(
v

Hβ

)
+

1
Hβ

∂w

∂β
,

εzα = Hα
∂

∂z

(
u

Hα

)
+

1
Hα

∂w

∂α
, εαβ =

Hα

Hβ

∂

∂β

(
u

Hα

)
+

Hβ

Hα

∂

∂α

(
v

Hβ

)
, (A1)

where u = u (α, β, z), v = v (α, β, z) and w = w (α, β, z) are the displacement components of an arbitrary
point of the shell in the directions of the tangents to the coordinate lines (α, β, z), respectively. The equi-
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librium equations of a differential element of the body of the shell layer in the tri-orthogonal system of
curvilinear coordinates124 is represented by the partial differential equations

∂

∂α
(Hβσαα) +

∂

∂β
(Hασαβ) +

∂

∂z
(HαHβσzα) − ∂Hβ

∂α
σββ − ∂Hα

∂β
σαβ + Hβ

∂Hα

∂z
σzα + HαHβPα = 0,

∂

∂β
(Hασββ) +

∂

∂α
(Hβσαβ) +

∂

∂z
(HαHβσβz) − ∂Hα

∂β
σαα − ∂Hβ

∂α
σαβ + Hα

∂Hβ

∂z
σzβ + HαHβPβ = 0,

∂

∂z
(HαHβσzz) +

∂

∂α
(Hβσzα) +

∂

∂β
(Hασβz) − Hβ

∂Hα

∂z
σαα − Hα

∂Hβ

∂z
σββ + HαHβPz = 0, (A2)

where Pα = Pα (α, β, z), Pβ = Pβ (α, β, z) and Pz = Pz (α, β, z) are the corresponding projections of the
volumetric force in the direction of the tangents to the shell curvilinear coordinate system.

B. First Order Shear Deformation Theory (FSDT) of Anisotropic Shells

According to the Love’s first approximation assumptions for thin shells (the so-called classical Kirchhoff-Love
theory of shells), the following strain and stress definitions are derived for anisotropic shells, by relaxing in
part the so-called Kirchhoff’s hypothesis that normals to the undeformed middle surface remain straight and
normal to the deformed middle surface and suffer no extension (see [4, Sec. 1.3]). Here it is considered that
normals before deformation remain straight but not necessarily normal after deformation, which basically
relaxes the condition of nil out-of-plane shear strains. That theory is known as FSDT or Reissner-Mindlin
theory applied to shells.

Consistent with the assumptions of a moderately thick shell theory, the displacement components are

u∗(α, β, z) = u0(α, β) + zθα(α, β),
v∗(α, β, z) = v0(α, β) + zθβ(α, β),
w∗(α, β, z) = w0(α, β), (B1)

where u0 = u0(α, β), v0 = v0(α, β) and w0 = w0(α, β) are the tangential and transverse displacements
referred to a point on the middle surface, respectively, and θα = θα(α, β) and θβ = θβ(α, β) are the rotations
of a normal to the reference middle surface.

Thus, taken into account the strain-displacement equations of the 3-D elasticity in orthogonal curvilinear
coordinates in Eqs. (A1), as proposed by Byrne, Flügge, Goldenveizer, Lur’ye and Novozhilov between the
1940s and 1960s (cf. [4, Sec. 1.4]), and in a similar form to what has been presented, for example, by
Reddy [6, Sec. 8.2.3] or Leissa [4, Sec. 1.4.1], the in-plane strain definitions are given as,

ε∗αα (α, β, z) = z(0)
α ε∗(0)αα (α, β) + z(1)

α ε∗(1)αα (α, β) ,

ε∗ββ (α, β, z) = z
(0)
β ε

∗(0)
ββ (α, β) + z

(1)
β ε

∗(1)
ββ (α, β) ,

ε∗αβ (α, β, z) = z
(0)
αβ ε

∗(0)
αβ (α, β) + z

(1)
αβ ε

∗(1)
αβ (α, β) , (B2)

where (cf. [4, Sec. 1.4.1])

z(i)
α =

zi

(1 + z/Rα)
, z

(i)
β =

zi

(1 + z/Rβ)
,

z
(0)
αβ = z(0)

α z
(0)
β

(
1 − z2

RαRβ

)
, z

(1)
αβ = z(0)

α z
(0)
β z

(
1 +

z

2Rα
+

z

2Rβ

)
, (B3)

with i = 0, 1 and

ε∗(0)αα (α, β) =
1

Aα

∂u0

∂α
+

v0

AαAβ

∂Aα

∂β
+

w0

Rα
,

ε
∗(0)
ββ (α, β) =

1
Aβ

∂v0

∂β
+

u0

AαAβ

∂Aβ

∂α
+

w0

Rβ
,

ε
∗(0)
αβ (α, β) =

Aα

Aβ

∂

∂β

(
u0

Aα

)
+

Aβ

Aα

∂

∂α

(
v0

Aβ

)
,
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ε∗(1)αα (α, β) =
1

Aα

∂θα

∂α
+

1
AαAβ

∂Aα

∂β
θβ ,

ε
∗(1)
ββ (α, β) =

1
Aβ

∂θβ

∂β
+

1
AαAβ

∂Aβ

∂α
θα,

ε
∗(1)
αβ (α, β) =

Aα

Aβ

∂

∂β

(
θα

Aα

)
+

Aβ

Aα

∂

∂α

(
θβ

Aβ

)

+
1

Rα

(
1

Aβ

∂u0

∂β
− 1

AαAβ

∂Aβ

∂α
v0

)
+

1
Rβ

(
1

Aα

∂v0

∂α
− 1

AαAβ

∂Aα

∂β
u0

)
. (B4)

Regarding the previous strain definitions it is worthy to mention that the zero-order terms ε
∗(0)
αα , ε

∗(0)
ββ and

ε
∗(0)
αβ represent the normal (membrane) and shearing strains of the reference surface, respectively, and the

first order terms ε
∗(1)
αα , ε

∗(1)
ββ and ε

∗(1)
αβ represent the linearly distributed bending components of strain and

the torsion of the reference surface during deformation.
Considering the mechanical counterpart of the anisotropic (general orthotropic) plane-stress constitutive

behavior presented in Eq. (C15), the in-plane stresses are given as

σ∗
αα (α, β, z) = c̄∗11ε

∗
αα (α, β, z) + c̄∗12ε

∗
ββ (α, β, z) + c̄∗16ε

∗
αβ (α, β, z) = σ∗(0)

αα (α, β, z) + σ∗(1)
αα (α, β, z) ,

σ∗
ββ (α, β, z) = c̄∗12ε

∗
αα (α, β, z) + c̄∗22ε

∗
ββ (α, β, z) + c̄∗26ε

∗
αβ (α, β, z) = σ

∗(0)
ββ (α, β, z) + σ

∗(1)
ββ (α, β, z) ,

σ∗
αβ (α, β, z) = c̄∗16ε

∗
αα (α, β, z) + c̄∗26ε

∗
ββ (α, β, z) + c̄∗66ε

∗
αβ (α, β, z) = σ

∗(0)
αβ (α, β, z) + σ

∗(1)
αβ (α, β, z) , (B5)

where in a similar way to the zero-order and first-order strain definitions, Eqs. (B5) are splitted into the
zero-order and first-order stress components, where, for example, for the first Eq. of (B5)

σ∗(0)
αα (α, β, z) = z(0)

α c̄∗11ε
∗(0)
αα (α, β) + z

(0)
β c̄∗12ε

∗(0)
ββ (α, β) + z

(0)
αβ c̄∗16ε

∗(0)
αβ (α, β) ,

σ∗(1)
αα (α, β, z) = z(1)

α c̄∗11ε
∗(1)
αα (α, β) + z

(1)
β c̄∗12ε

∗(1)
ββ (α, β) + z

(1)
αβ c̄∗16ε

∗(1)
αβ (α, β) . (B6)

Similar relations hold for the second and third Eqs. of (B5) which for the sake of brevity are not presented
here.

C. Piezoelectric Constitutive Behavior

The linear piezoelectric constitutive equations in compact matrix notation104 are given by

σ = cEε − eTE, (C1)

D = eε + εSE, (C2)

where σ, ε, E and D are, respectively, the stress, strain, electric field and electric displacement vectors,
and cE , eT and εS are, respectively, the elasticity (at constant electric field), transpose piezoelectric and
dielectric (at constant strain) matrices appropriate for the material.

The material of piezoelectric layers is assumed to be general orthotropic, with the axes of orthotropy not
necessarily parallel (arbitrary orientation of the piezoelectric shell layer) to the axes of principal curvature
of the shell layer (α, β, z), and polarized in the transverse direction z. Furthermore, it has the symmetry
properties of an orthorhombic material of the class mm2.103,104 Representing Eqs. (C1) and (C2), with their
full matrix and vector terms in engineering notation yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σαα

σββ

σzz

σβz

σzα

σαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̄11 c̄12 c̄13 0 0 c̄16

c̄12 c̄22 c̄23 0 0 c̄26

c̄13 c̄23 c̄33 0 0 c̄36

0 0 0 c̄44 c̄45 0
0 0 0 c̄45 c̄55 0

c̄16 c̄26 c̄36 0 0 c̄66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εαα

εββ

εzz

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ē31

0 0 ē32

0 0 ē33

ē14 ē24 0
ē15 ē25 0
0 0 ē36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

Eα

Eβ

Ez

⎫⎪⎬
⎪⎭ , (C3)
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⎧⎪⎨
⎪⎩

Dα

Dβ

Dz

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣ 0 0 0 ē14 ē15 0

0 0 0 ē24 ē25 0
ē31 ē32 ē33 0 0 ē36

⎤
⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εαα

εββ

εzz

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎣ε̄11 ε̄12 0

ε̄12 ε̄22 0
0 0 ε̄33

⎤
⎥⎦
⎧⎪⎨
⎪⎩

Eα

Eβ

Ez

⎫⎪⎬
⎪⎭ . (C4)

For simplicity the superscripts (·)E and (·)S of Eqs. (C1) and (C2) have been dropped. The relationships
between the problem quantities c̄ij , ērj and ε̄rs (i, j = 1, . . . , 6; r, s = 1, 2, 3) and the original material cij ,
erj and εrs when the material system αβ-plane is rotated an angle +θ (rotating from α to β) around the
z-axis are given by

c̄11 = c11 cos4 θ + 2 (c12 + 2c66) sin2 θ cos2 θ + c22 sin4 θ, c̄13 = c13 cos2 θ + c23 sin2 θ,
c̄12 = c12

(
sin4 θ + cos4 θ

)
+ (c11 + c22 − 4c66) sin2 θ cos2 θ, c̄23 = c13 sin2 θ + c23 cos2 θ,

c̄16 = (c11 − c12 − 2c66) sin θ cos3 θ + (c12 − c22 + 2c66) sin3 θ cos θ, c̄36 = (c13 − c23) sin θ cos θ,
c̄22 = c11 sin4 θ + 2 (c12 + 2c66) sin2 θ cos2 θ + c22 cos4 θ, c̄44 = c44 cos2 θ + c55 sin2 θ,
c̄26 = (c11 − c12 − 2c66) sin3 θ cos θ + (c12 − c22 + 2c66) sin θ cos3 θ, c̄45 = (c55 − c44) sin θ cos θ,
c̄66 = 2(c11 + c22 − 2c12) sin2 θ cos2 θ + c66(sin2 θ − cos2 θ)2, c̄55 = c55 cos2 θ + c44 sin2 θ,
c̄33 = c33,

(C5)

and

ē14 = (e15 − e24) sin θ cos θ, ē33 = e33,
ē15 = e15 cos2 θ + e24 sin2 θ, ē36 = (e31 − e32) sin θ cos θ,
ē24 = e15 sin2 θ + e24 cos2 θ, ε̄11 = ε11 cos2 θ + ε22 sin2 θ,
ē25 = (e15 − e24) sin θ cos θ, ε̄12 = (ε11 − ε22) sin θ cos θ,
ē31 = e31 cos2 θ + e32 sin2 θ, ε̄22 = ε11 sin2 θ + ε22 cos2 θ,
ē32 = e31 sin2 θ + e32 cos2 θ, ε̄33 = ε33.

(C6)

The electrostatic equilibrium of a piezoelectric media expressed in the constitutive Eq. (C3) can be
re-written has ⎧⎪⎨

⎪⎩
Dα

Dβ

Dz

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣ε̄11 ε̄12 0
ε̄12 ε̄22 0
0 0 ε̄33

⎤
⎥⎦
⎧⎪⎨
⎪⎩

Êα − Ēα

Êβ − Ēβ

Êz − Ēz

⎫⎪⎬
⎪⎭ , (C7)

where Êα, Êβ and Êz are the electric field components due to the converse prescribed (externally applied)
piezoelectric effects and Ēα, Ēβ and Ēz are the electric field components due to the direct (induced) piezo-
electric effect given by

Ēα = − ε̄22
ε̄∗12

(ē14εβz + ē15εzα) +
ε̄12
ε̄∗12

(ē24εβz + ē25εzα) ,

Ēβ = +
ε̄12
ε̄∗12

(ē14εβz + ē15εzα) − ε̄11
ε̄∗12

(ē24εβz + ē25εzα) ,

Ēz = − 1
ε̄33

(ē31εαα + ē32εββ + ē33εzz + ē36εαβ) , (C8)

where ε̄∗12 = ε̄11ε̄22 − (ε̄12)
2.

Since in the present problem the electrodes are located on the top and bottom surfaces and only a
transverse electric field Êz is externally applied, the conditions Dα = Dβ = 0 hold in the shell surfaces not
covered with electrodes and in contact with a medium with low permittivity, e.g., vacuum or air (see Refs.
40,42 and 45 for further details). Thus, considering the relationships in (C7) the prescribed in-plane electric
field components Êα and Êβ are equal to the induced ones, and in matrix form they are determined from
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Eq. (C4),

{
Eα

Eβ

}
= −

[
ε̄11 ε̄12
ε̄12 ε̄22

]−1 [
0 0 0 ē14 ē15 0
0 0 0 ē24 ē25 0

]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εαα

εββ

εzz

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (C9)

Condensing the in-plane induced electric fields in Eq. (C3) yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σαα

σββ

σzz

σβz

σzα

σαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̄11 c̄12 c̄13 0 0 c̄16

c̄12 c̄22 c̄23 0 0 c̄26

c̄13 c̄23 c̄33 0 0 c̄36

0 0 0 c̄�
44 c̄�

45 0
0 0 0 c̄�

45 c̄�
55 0

c̄16 c̄26 c̄36 0 0 c̄66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εαα

εββ

εzz

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ē31

ē32

ē33

0
0

ē36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ez, (C10)

Dz =
[
ē31 ē32 ē33 0 0 ē36

]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εαα

εββ

εzz

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ ε̄33Ez, (C11)

where the modified constants (or effective shear stiffness parameters) c̄∗44, c̄∗45 and c̄∗55 are given by

c̄�
44 = c̄44 − ε̄11 (ē24)

2 − 2ē14ε̄12ē24 + ε̄22 (ē14)
2

ε̄11ε̄22 − (ε̄12)
2 , c̄�

55 = c̄55 − ε̄11 (ē25)
2 − 2ē15ε̄12ē25 + ε̄22 (ē15)

2

ε̄11ε̄22 − (ε̄12)
2 ,

c̄�
45 = c̄45 − ē15ε̄22ē14 − ē15ε̄12ē24 − ē25ε̄12ē14 + ē25ε̄11ē24

ε̄11ε̄22 − (ε̄12)
2 , (C12)

Similar relations to Eq. (C1) can be expressed for the full strain-stress relationship,

ε = sEσ − dTE, (C13)

where sE is the compliance matrix (at constant electric field) and dT the transpose piezoelectric strain
constant matrix. From Eq. (C10), the reduced form in full matrix and vector terms reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εαα

εββ

εzz

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̄11 s̄12 s̄13 0 0 s̄16

s̄12 s̄22 s̄23 0 0 s̄26

s̄13 s̄23 s̄33 0 0 s̄36

0 0 0 s̄�
44 s̄�

45 0
0 0 0 s̄�

45 s̄�
55 0

s̄16 s̄26 s̄36 0 0 s̄66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σαα

σββ

σzz

σβz

σzα

σαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̄31

d̄32

d̄33

0
0

d̄36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ez, (C14)

where the problem quantities s̄ij , with the shear effective (modified) compliance parameters, and d̄rj might
be obtained from the relationships sE =

(
cE

)−1, taking the matrix cE defined in Eq. (C10), and d = esE .
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If one now reduces Eqs. (C10) and (C11) to the plane-stress constitutive behavior, where σzz ≈ 0, yields⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σαα

σββ

σβz

σzα

σαβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

c̄∗11 c̄∗12 0 0 c̄∗16
c̄∗12 c̄∗22 0 0 c̄∗26
0 0 c̄�

44 c̄�
45 0

0 0 c̄�
45 c̄�

55 0
c̄∗16 c̄∗26 0 0 c̄∗66

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εαα

εββ

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

−

⎡
⎢⎢⎢⎢⎢⎣

ē∗31
ē∗32
0
0

ē∗36

⎤
⎥⎥⎥⎥⎥⎦Ez, (C15)

Dz =
[
ē∗31 ē∗32 0 0 ē∗36

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εαα

εββ

εβz

εzα

εαβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ ε̄∗33Ez = ε̄∗33
(
Êz − Ēz

)
, (C16)

where the elastic stiffness constants have been modified to take the plane-stress assumption into account and
are defined as

c̄∗11 = c̄11 − (c̄13)
2

c̄33
, c̄∗22 = c̄22 − (c̄23)

2

c̄33
, c̄∗66 = c̄66 − (c̄36)

2

c̄33
,

c̄∗12 = c̄12 − c̄13c̄23

c̄33
, c̄∗16 = c̄16 − c̄13c̄36

c̄33
, c̄∗26 = c̄26 − c̄23c̄36

c̄33
, (C17)

and ē∗31, ē∗32 and ē∗32 are reduced (modified) piezoelectric plane-stress constants and ε̄∗33 the dielectric one,
given by

ē∗31 = ē31 − ē33
c̄13

c̄33
, ē∗32 = ē32 − ē33

c̄23

c̄33
, ē∗36 = ē36 − ē33

c̄36

c̄33
, ε̄∗33 = ε̄33 +

(ē33)
2

c̄33
. (C18)

Similar relations to the previous equations hold for the reduced compliances and piezoelectric strain constants
when the plane-stress is considered.

D. Mixed Displacement Field and Strains

According to the in-plane mixed displacements definition in Eqs. (41) and taking into account the shear
angles definition in Eqs. (27), the displacement field can be expresses as

u(α, β, z, t) =
u0

z
(0)
α

+
z
∗(f)
α s̄∗55
z
(0)
α

(
∂w0

∂α
+ θα − u0

Rα

)
− z

∗(0)
α

z
(0)
α

∂w0

∂α
+

z
∗(0)
α s̄∗55
z
(0)
α

τ̄zα +
z
∗(1)
α s̄∗55
z
(0)
α 2h

τ̃zα

= zu
11u0 + zu

13

∂w0

∂α
+ zu

14θα + zτ
11τ̄zα + zτ

12τ̃zα,

v(α, β, z, t) =
v0

z
(0)
β

+
z
∗(f)
β s̄∗44
z
(0)
β

(
∂w0

∂β
+ θβ − v0

Rβ

)
− z

∗(0)
β

z
(0)
β

∂w0

∂β
+

z
∗(0)
β s̄∗44
z
(0)
β

τ̄βz +
z
∗(1)
β s̄∗44
z
(0)
β 2h

τ̃βz

= zu
22v0 + zu

23

∂w0

∂β
+ zu

25θβ + zτ
23τ̄βz + zτ

24τ̃βz, (D1)

where the zu
ij = zu

ij(z) and zu
ij = zσ

ir(z) coefficients are given by

zu
11 =

1

z
(0)
α

− z
∗(f)
α s̄∗55
z
(0)
α Rα

, zu
13 =

z
∗(f)
α s̄∗55
z
(0)
α

− z
∗(0)
α

z
(0)
α

, zu
14 =

z
∗(f)
α s̄∗55
z
(0)
α

,

zu
22 =

1

z
(0)
β

− z
∗(f)
β s̄∗44
z
(0)
β Rβ

, zu
23 =

z
∗(f)
β s̄∗44
z
(0)
β

− z
∗(0)
β

z
(0)
β

, zu
25 =

z
∗(f)
β s̄∗44
z
(0)
β

,

zτ
11 =

z
∗(0)
α s̄∗55
z
(0)
α

, zτ
12 =

z
∗(1)
α

z
(0)
α

s̄∗55
2h

, zτ
23 =

z
∗(0)
β s̄∗44
z
(0)
β

, zτ
24 =

z
∗(1)
β

z
(0)
β

s̄∗44
2h

. (D2)
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It is worthy to mention that these terms are functions of z and incorporate elastic constants of the material
and geometric variables of the shell layer.

The non-zero coefficients of matrices zεu(z) and zετ (z) used to define the strain field in Eq. (47) are given
by

zεu
11 = z(0)

α zu
11, zεu1

13 =
z
(0)
α

Rα
, zεu2

13 = z∗(f)
α , zεu

14 = zu
14z

(0)
α , zεu

22 = z
(0)
22 zu

β ,

zεu1
23 =

z
(0)
β

Rβ
, zεu2

23 = z
∗(f)
β , zεu

25 = zu
25z

(0)
β , zεu

32 =
∂zu

22

∂z
− zu

22z
(0)
β

Rβ
,

zεu
33 = z

(0)
β +

∂zu
23

∂z
− zu

23z
(0)
β

Rβ
, zεu

35 =
∂zu

25

∂z
− zu

25z
(0)
β

Rβ
, zεu

41 =
∂zu

11

∂z
− zu

11z
(0)
α

Rα
,

zεu
43 = z(0)

α +
∂zu

13

∂z
− zu

13z
(0)
α

Rα
, zεu

44 =
∂zu

14

∂z
− zu

14z
(0)
α

Rα
, zεu

51 = zu
11z

(0)
β ,

zεu
52 = zu

22z
(0)
α , zεu

53 = zu
13z

(0)
β + zu

23z
(0)
α , zεu

54 = zu
14z

(0)
β , zεu

55 = zu
25z

(0)
α , (D3)

and

zετ
11 = z(0)

α zτ
11, zετ

12 = z(0)
α zτ

12, zετ
23 = z

(0)
β zτ

23, zετ
24 = z

(0)
β zτ

24, zετ
33 =

∂zτ
23

∂z
− zτ

23

Rβ
z
(0)
β ,

zετ
34 =

∂zτ
24

∂z
− zτ

24

Rβ
z
(0)
β , zετ

41 =
∂zτ

11

∂z
− zτ

11

Rα
z(0)
α , zετ

42 =
∂zτ

12

∂z
− zτ

12

Rα
z(0)
α ,

zετ
51 = z

(0)
β zτ

11, zετ
52 = z

(0)
β zτ

12, zετ
53 = z(0)

α zτ
23, zετ

54 = z(0)
α zτ

24. (D4)

E. Effective Strains Coefficients

The modified (taking into account the electrical induced strains) terms of zεu(z) are

z�εu1
13 = zuε1

13 − d̄∗31λ̄
[
ē∗31

(
z∗uε1
13 − zuε1

13

)− ē∗32(z
∗εu1
23 − zεu1

23 )
]
, z�εu

14 = zuε
14 − d̄∗31λ̄ē∗31 (z∗uε

14 − zuε
14 ) ,

z�εu2
13 = zuε2

13 − d̄∗31λ̄ē∗31
(
z∗uε2
13 − zuε2

13

)− d̄∗31λ̄ē∗32(z
∗εu2
23 − zεu2

23 ), z�εu
15 = −d̄∗31λ̄ē∗32 (z∗εu

25 − zεu
25 ) ,

z�εu1
23 = zεu1

23 − d̄∗32λ̄
[
ē∗31

(
z∗uε1
13 − zuε1

13

)− ē∗32(z
∗εu1
23 − zεu1

23 )
]
, z�εu

21 = −d̄∗32λ̄ē∗31 (z∗uε
11 − zuε

11 ) ,
z�εu2
23 = zuε2

23 − d̄∗32λ̄
[
ē∗31

(
z∗uε1
13 − zuε1

13

)− ē∗32(z
∗εu1
23 − zεu1

23 )
]
, z�εu

22 = zuε
22 − d̄∗32λ̄ē∗32 (z∗εu

22 − zεu
22 ) ,

z�εu
11 = zuε

11 − d̄∗31λ̄ē∗31 (z∗uε
11 − zuε

11 ) , z�εu
24 = −d̄∗32λ̄ē∗31 (z∗uε

14 − zuε
14 ) ,

z�εu
12 = −d̄∗31λ̄ē∗32 (z∗εu

22 − zεu
22 ) , z�εu

25 = zεu
25 − d̄∗32λ̄ē∗32 (z∗εu

25 − zεu
25 ) ,

(E1)

and of zετ (z) are

z�ετ
11 = zετ

11 − d̄∗31λ̄ē∗31 (z∗ετ
11 − zετ

11 ) , z�ετ
12 = zετ

12 − d̄∗31λ̄ē∗31 (z∗ετ
12 − zετ

12 ) ,

z�ετ
13 = −d̄∗31λ̄ē∗32 (z∗ετ

23 − zετ
23 ) , z�ετ

14 = −d̄∗31λ̄ē∗32 (z∗ετ
24 − zετ

24 ) ,

z�ετ
21 = −d̄∗32λ̄ē∗31 (z∗ετ

11 − zετ
11 ) , z�ετ

23 = −d̄∗32λ̄ē∗31 (z∗ετ
12 − zετ

12 ) ,

z�ετ
23 = zετ

23 − d̄∗32λ̄ē∗32 (z∗ετ
23 − zετ

23 ) , z�ετ
24 = zετ

24 − d̄∗32λ̄ē∗32 (z∗ετ
24 − zετ

24 ) , (E2)

where λ̄ = λ/ε̄∗33 and the notation z∗...
ij denoting integration in order to z as

z∗...
ij =

1
2h

∫ +h

−h

z...
ij dz. (E3)

40 of 51

American Institute of Aeronautics and Astronautics



F. Virtual Work Terms

1. Virtual Work of the Inertial Forces

Taking into account Eqs. (2) and the doubly-curved shells restrictions in Eqs. (39) into Eq. (52) yields

δT = −
∫

Ω0

[∫ +h

−h

ρ (δuü + δvv̈ + δwẅ)
1

z
(0)
α z

(0)
β

dz

]
dα dβ

= −
∫

Ω0

[
δu0(Iuu

11 ü0 + Iuu
13

∂ẅ0

∂α
+ Iuu

14 θ̈
α

0 + Iτu
11

¨̄τzα + Iτu
21

¨̃τzα) + δv0(Iuu
22 v̈0 + Iuu

23

∂ẅ0

∂β

+ Iuu
25 θ̈

β

0 + Iτu
32

¨̄τβz + Iτu
42

¨̃τβz) + δw(Iuu
33 ẅ) + δ

∂w0

∂α
(Iuu

13 ü0 + Iuα
33

∂ẅ0

∂α
+ Iuu

34 θ̈
α

0 + Iτu
13

¨̄τzα

+ Iτu
23

¨̃τzα) + δ
∂w0

∂β
(Iuu

23 v̈0 + Iuβ
33

∂ẅ0

∂β
+ Iuu

35 θ̈
β

0 + Iτu
33

¨̄τβz + Iτu
43

¨̃τβz) + δθα
0 (Iuu

14 ü0

+ Iuu
43

∂ẅ0

∂α
+ Iuu

44 θ̈
α

0 + Iτu
14

¨̄τzα + Iτu
24

¨̃τzα) + δθβ
0 (Iuu

25 v̈0 + Iuu
35

∂ẅ0

∂β
+ Iuu

55 θ̈
β

0 + Iτu
35

¨̄τβz

+ Iτu
45

¨̃τβz) + δτ̄zα(Iτu
11 ü0 + Iτu

13

∂ẅ0

∂α
+ Iτu

14 θ̈
α

0 + Iττ
11

¨̄τzα + Iττ
12

¨̃τzα) + δτ̃zα(Iτu
21 ü0

+ Iτu
23

∂ẅ0

∂α
+ Iτu

24 θ̈
α

0 + Iττ
12

¨̄τzα + Iττ
22

¨̃τzα) + δτ̄βz(Iτu
32 v̈0 + Iτu

33

∂ẅ0

∂β
+ Iτu

35 θ̈
β

0 + Iττ
33

¨̄τβz

+ Iττ
34

¨̃τβz) + δτ̃βz(Iτu
42 v̈0 + Iτu

43

∂ẅ0

∂β
+ Iτu

45 θ̈
β

0 + Iττ
34

¨̄τβz + Iττ
44

¨̃τzα)
]
dα dβ, (F1)

where

(Iuu
11 , Iuu

13 , Iuu
14 ) = ρ 〈zu

11(z
u
11, z

u
13, z

u
14)〉 ,

(Iuu
22 , Iuu

23 , Iuu
25 ) = ρ 〈zu

22(z
u
22, z

u
23, z

u
25)〉 ,

(Iuu
33 ) = ρ 〈1〉 ,

(Iuα
33 , Iuu

34 ) = ρ 〈zu
13(z

u
13, z

u
14)〉 ,

(Iuβ
33 , Iuu

35 ) = ρ 〈zu
23(z

u
23, z

u
25)〉 ,

(Iuu
44 , Iuu

55 ) = ρ 〈(zu
14z

u
14, z

u
25z

u
25)〉 ,

(Iτu
11 , Iτu

13 , Iτu
14 , Iττ

11 , Iττ
12 ) = ρ 〈zτ

11(z
u
11, z

u
13, z

u
14, z

τ
11, z

τ
12)〉 ,

(Iτu
21 , Iτu

23 , Iτu
24 , Iττ

22 ) = ρ 〈zτ
12(z

u
11, z

u
13, z

u
14, z

τ
12)〉 ,

(Iτu
32 , Iτu

33 , Iτu
35 , Iττ

33 , Iττ
34 ) = ρ 〈zτ

23(z
u
22, z

u
23, z

u
25, z

τ
23, z

τ
34)〉 ,

(Iτu
42 , Iτu

43 , Iτu
45 , Iττ

44 ) = ρ 〈zτ
24(z

u
22, z

u
23, z

u
25, z

τ
24)〉 , (F2)

where for convenience 〈. . .〉 denotes thickness integration and it is defined by

〈. . .〉 =
∫ +h

−h

(. . .)
1

z
(0)
α z

(0)
β

dz. (F3)

2. Virtual Work of the Internal Electro-Mechanical Forces

Considering the strain definitions in Eq. (45), the term δHε of Eq. (54) is given by

δHε =
∫

Ω0

[∫ h

−h

(σααδεαα + σββδεββ + σβzδεβz + σzαδεzα + σαβδεαβ)
1

z
(0)
α z

(0)
β

dz

]
dα dβ

=
∫

Ω0

[
δ
∂u0

∂α
(N�11

αα + N�21
ββ ) + δ

∂u0

∂β
(N51

αβ) + δu0(Q41
zα) + δ

∂v0

∂β
(N�12

αα + N�22
ββ )

+ δ
∂v0

∂α
(N52

αβ) + δv0(Q32
βz) + δw0(M�131

αα + M�231
ββ ) + δ

∂2w0

∂α2
(M�132

αα ) + δ
∂2w0

∂β2 (M�232
ββ )
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+ δ
∂2w0

∂α∂β
(M53

αβ) + δ
∂w0

∂α
(Q43

zα) + δ
∂w0

∂β
(Q33

βz) + δ
∂θα

∂α
(M�14

αα + M�24
ββ ) + δ

∂θα

∂β
(M54

αβ)

+ δθα(Q44
zα) + δ

∂θβ

∂β
(M�15

αα + M�25
ββ ) + δ

∂θβ

∂α
(M55

αβ) + δθβ(Q35
βz) + δ

∂τ̄zα

∂α
(T �11

αα + T �21
ββ )

+ δτ̄zα(T 41
zα) + δ

∂τ̄zα

∂β
(T 51

αβ) + δ
∂τ̃zα

∂α
(T �12

αα + T �22
ββ ) + δτ̃zα(T 42

zα) + δ
∂τ̃zα

∂β
(T 52

αβ)

+ δ
∂τ̄βz

∂β
(T �13

αα + T �23
ββ ) + δτ̄βz(T 33

βz) + δ
∂τ̄βz

∂α
(T 53

αβ) + δ
∂τ̃βz

∂β
(T �14

αα + T �24
ββ )

+ δτ̃βz(T 34
βz) + δ

∂τ̃βz

∂α
(T 54

αβ)
]
dα dβ, (F4)

where (
N�11

αα , N�12
αα ,M�131

αα ,M�132
αα ,M�14

αα ,M�15
αα

)
=

〈
σαα(z�εu

11 , z�εu
12 , z�εu1

13 , z�εu2
13 , z�εu

14 , z�εu
15 )

〉
,(

N�21
ββ , N�22

ββ ,M�231
ββ ,M�232

ββ ,M�24
ββ ,M�25

ββ

)
=

〈
σββ(z�εu

21 , z�εu
22 , z�εu1

23 , z�εu2
23 , z�εu

24 , z�εu
25 )

〉
,(

Q32
βz, Q

33
βz, Q

35
βz

)
= 〈σβz(zεu

32 , zεu
33 , zεu

35 )〉 ,(
Q41

zα, Q43
zα, Q44

zα

)
= 〈σzα(zεu

41 , zεu
43 , zεu

44 )〉 ,(
N51

αβ , N52
αβ ,M53

αβ ,M54
αβ ,M55

αβ

)
= 〈σαβ(zεu

51 , zεu
52 , zεu

53 , zεu
54 , zεu

55 )〉 ,(
T �11

αα , T �12
αα , T �13

αα , T �14
αα

)
= 〈σαα(z�ετ

11 , z�ετ
12 , z�ετ

13 , z�ετ
14 )〉 ,(

T �21
ββ , T �22

ββ , T �23
ββ , T �24

ββ

)
= 〈σββ(z�ετ

21 , z�ετ
22 , z�ετ

23 , z�ετ
24 )〉 ,(

T 33
βz , T 34

βz

)
= 〈σβz(zετ

33 , zετ
34 )〉 ,(

T 41
zα, T 42

zα

)
= 〈σzα(zετ

41 , zετ
42 )〉 ,(

T 51
αβ , T 52

αβ , T 53
αβ , T 54

αβ

)
= 〈σαβ(zετ

51 , zετ
52 , zετ

53 , zετ
54 )〉 . (F5)

Since the direct piezoelectric effect (the stiffness increase due to the induced electric field) was already
considered in Sec. C, the electric enthalpy term δHE will only consider the applied electric potential coun-
terpart of the transverse electric displacement Dz and electric field Ez defined in Eqs. (36) and (37). Thus,
considering (C16) and an orthotropic layer, the second term of Eq. (54), δHE , is given by

δHE =
∫

Ω0

[∫ +h

−h

δφ

(
−λē∗31

2h
εαα − λē∗32

2h
εββ +

λ2ε̄∗33
4h2

φ

)
1

z
(0)
α z

(0)
β

dz

]
dα dβ

=
∫

Ω0

δφ
[
(P �11

αα + P �21
ββ )

∂u0

∂α
+ (P �12

αα + P �22
ββ )

∂v0

∂β
+ (P �13

αα1 + P �23
αα1)w0 + (P �13

αα2)
∂2w0

∂α2

+ (P �23
ββ2)

∂2w0

∂β2 + (P �14
αα + P �24

ββ )
∂θα

∂α
+ (P �15

αα + P �25
ββ )

∂θβ

∂β
+ (R�11

αα + R�21
ββ )

∂τ̄zα

∂α

+ (R�12
αα + R�22

ββ )
∂τ̃zα

∂α
+ (R�13

αα + R�23
ββ )

∂τ̄βz

∂β
+ (R�14

αα + R�24
ββ )

∂τ̃βz

∂β
+ (Sφφ)φ

]
dα dβ, (F6)

where

(P �11
αα , P �12

αα , P �13
αα1, P

�13
αα2, P

�14
αα , P �15

αα ) =
〈

λē∗31
2h

(z�εu
11 , z�εu

12 , z�εu1
13 , z�εu2

13 , z�εu
14 , z�εu

15 )
〉

,

(P �21
ββ , P �22

ββ , P �23
ββ1, P

�23
ββ2, P

�24
ββ , P �25

ββ ) =
〈

λē∗32
2h

(z�εu
21 , z�εu

22 , z�εu1
23 , z�εu2

23 , z�εu
24 , z�εu

25 )
〉

,

(
R�11

αα , R�12
αα , R�13

αα , R�14
αα

)
=
〈

λē∗31
2h

(z�ετ
11 , z�ετ

12 , z�ετ
13 , z�ετ

14 )
〉

,

(
R�21

ββ , R�22
ββ , R�23

ββ , R�24
ββ

)
=
〈

λē∗32
2h

(z�ετ
21 , z�ετ

22 , z�ετ
23 , z�ετ

24 )
〉

,

Sφφ =
〈

λ2ε̄∗33
4h2

〉
. (F7)
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3. Virtual Work of the Non-Conservative Forces

In a similar way to what has been done before, the integration with respect to z is conveniently carrying
out, and the virtual work of the non-conservative forces δWu can be expressed in terms of prescribed forces
and moments as

δWu =
∫

Ω0

δw0(Z)dα dβ +
∮

Γα

[
δu0(N̂11

βα) + δv0(N̂22
ββ) + δ

∂w0

∂β
(M̂23

ββ) + δ
∂w0

∂α
(M̂13

βα) + δw0(Q̂33
βz)

+ δθα(M̂14
βα) + δθβ(M̂25

ββ) + δτ̄zα(T̂ 11
βα) + δτ̃zα(T̂ 12

βα) + δτ̄βz(T̂ 23
ββ) + δτ̃βz(T̂ 24

ββ)
]
dα

+
∮

Γβ

[
δu0(N̂11

αα) + δv0(N̂22
αβ) + δ

∂w0

∂α
(M̂13

αα) + δ
∂w0

∂β
(M̂23

αα) + δw0(Q̂33
zα) + δθα(M̂14

αα)

+ δθβ(M̂25
αβ) + δτ̄zα(T̂ 11

αα) + δτ̃zα(T̂ 12
αα) + δτ̄βz(T̂ 23

αβ) + δτ̃βz(T̂ 24
αβ)

]
dβ, (F8)

where

(N̂11
αα, M̂13

αα, M̂14
αα) = 〈σ̂αα (zu

11, z
u
13, z

u
14)〉β ,

(N̂22
αβ , M̂23

αβ , M̂25
αβ) = 〈σ̂αβ (zu

22, z
u
23, z

u
25)〉β ,

(Q̂33
zα) = 〈σ̂zα〉β ,

(T̂ 11
αα, T̂ 12

αα) = 〈σ̂αα (zτ
11, z

τ
12)〉β ,

(T̂ 23
αβ , T̂ 24

αβ) = 〈σ̂αβ (zτ
23, z

τ
24)〉β ,

(N̂22
ββ , M̂23

ββ , M̂25
ββ) = 〈σ̂ββ (zu

22, z
u
23, z

u
25)〉α ,

(N̂11
βα, M̂13

βα, M̂14
βα) = 〈σ̂βα (zu

11, z
u
13, z

u
14)〉α ,

(Q̂33
βz) = 〈σ̂βz〉α ,

(T̂ 23
ββ , T̂ 24

ββ) = 〈σ̂ββ (zτ
23, z

τ
24)〉α ,

(T̂ 11
βα, T̂ 12

βα) = 〈σ̂βα (zτ
11, z

τ
12)〉α . (F9)

Once again, for convenience, 〈. . .〉α and 〈. . .〉β denote thickness integration and are defined as

〈. . .〉α =
∫ +h

−h

(. . .)
1

z
(0)
α

dz, 〈. . .〉β =
∫ +h

−h

(. . .)
1

z
(0)
β

dz. (F10)

G. Internal Forces and Moments in Terms of Generalized Variables

⎧⎪⎨
⎪⎩

(N�11
αα , N�12

αα )
(N�21

ββ , N�22
ββ )

(N51
αβ , N52

αβ)

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣A11∂α A12∂β A1

13 + A2
13∂αα + A3

13∂ββ A14∂α A15∂β

A21∂α A22∂β A1
23 + A2

23∂αα + A3
23∂ββ A24∂α A25∂β

A51∂β A52∂α A53∂αβ A54∂β A55∂α

⎤
⎥⎦
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

v0

w0

θα

θβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎣A16∂α A17∂α A18∂β A19∂β

A26∂α A27∂α A28∂β A29∂β

A56∂β A57∂β A58∂α A59∂α

⎤
⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̄zα

τ̃zα

τ̄βz

τ̃βz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎧⎪⎨
⎪⎩

(P �11
αα , P �12

αα )
(P �21

ββ , P �22
ββ )

0

⎫⎪⎬
⎪⎭φ, (G1)

{(
Q32

βz, Q
33
βz, Q

35
βz

)
(
Q41

zα, Q43
zα, Q44

zα

)
}

=

[
0 A32 A33∂β 0 A35

A41 0 A43∂α A44 0

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

v0

w0

θα

θβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

[
0 0 A38 A39

A46 A47 0 0

]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̄zα

τ̃zα

τ̄βz

τ̃βz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (G2)

43 of 51

American Institute of Aeronautics and Astronautics



⎧⎪⎨
⎪⎩
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αα ,M�132

αα ,M�14
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αα )
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ββ ,M�232
ββ ,M�24

ββ ,M�25
ββ )

(M53
αβ ,M54

αβ ,M55
αβ)

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣B11∂α B12∂β B1

13 + B2
13∂αα + B3

13∂ββ B14∂α B15∂β
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23∂ββ B24∂α B25∂β

B51∂β B52∂α B53∂αβ B54∂β B55∂α

⎤
⎥⎦
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

v0

w0

θα

θβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎣B16∂α B17∂α B18∂β B19∂β

B26∂α B27∂α B28∂β B29∂β

B56∂β B57∂β B58∂α B59∂α

⎤
⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̄zα

τ̃zα

τ̄βz

τ̃βz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎧⎪⎨
⎪⎩

(P �131
αα , P �132

αα , P �14
αα , P �15

αα )
(P �231

ββ , P �232
ββ , P �24

ββ , P �25
ββ )

0

⎫⎪⎬
⎪⎭φ, (G3)

⎧⎪⎪⎨
⎪⎪⎩

(
T �11

αα , T �12
αα , T �13

αα , T �14
αα

)(
T �21

ββ , T �22
ββ , T �23

ββ , T �24
ββ

)
(
T 51

αβ , T 52
αβ , T 53

αβ , T 54
αβ

)
⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎣C11∂α C12∂β C1

13 + C2
13∂αα + C3

13∂ββ C14∂α C15∂β

C21∂α C22∂β C1
23 + C2

23∂αα + C3
23∂ββ C24∂α C25∂β

C51∂β C52∂α C53∂αβ C54∂β C55∂α

⎤
⎥⎦
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

v0

w0

θα

θβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎣C16∂α C17∂α C18∂β C19∂β

C26∂α C27∂α C28∂β C29∂β

C56∂β C57∂β C58∂α C59∂α

⎤
⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̄zα

τ̃zα

τ̄βz

τ̃βz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎧⎪⎨
⎪⎩
(
R�11

αα , R�12
αα , R�13

αα , R�14
αα

)(
R�21

ββ , R�22
ββ , R�23

ββ , R�24
ββ

)
0

⎫⎪⎬
⎪⎭φ, (G4)

{(
T 33

βz , T 34
βz

)
(
T 41

zα, T 42
zα

)
}

=

[
0 C32 C33∂β 0 C35

C41 0 C43∂α C44 0

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

v0

w0

θα

θβ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

[
0 0 C38 C39

C46 C47 0 0

]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̄zα

τ̃zα

τ̄βz

τ̃βz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (G5)

Considering the generic internal force or moment terms in Eqs. (73),(77) and (78) as

〈⎡⎢⎣c̄∗11 c̄∗12 0
c̄∗12 c̄∗22 0
0 0 c̄∗66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εαα(g1)
εββ(g2)
εαβ(g5)

⎫⎪⎬
⎪⎭
〉

, (G6)

where gi is used to denote a series of coefficients (gi1, gi2, . . .) of the correspondent z’s used to define the
internal forces and moments, the following rule holds to determine the Aij , Bij and Cij coefficients (with
i = 1, 2, 5 and j = 1, . . . , 9), denoted by the generic Gij ,

G11 = 〈c̄∗11z�εu
11 g1 + c̄∗12z

u�ε
21 g2〉, G3

23 =
〈
c̄∗22z

�εu2
23 g1

〉
, G18 = 〈c̄∗11z�ετ

13 g1 + c̄∗12z
�ετ
23 g2〉 ,

G12 = 〈c̄∗11z�εu
12 g1 + c̄∗12z

�εu
22 g2〉 , G24 = 〈c̄∗12z�εu

14 g1 + c̄∗22z
�εu
24 g2〉 , G19 = 〈c̄∗11z�ετ

14 g1 + c̄∗12z
�ετ
24 g2〉 ,

G1
13 =

〈
c̄∗11z

�εu1
13 g1 + c̄∗12z

�εu1
23 g2

〉
, G25 = 〈c̄∗12z�εu

15 g1 + c̄∗22z
�εu
25 g2〉 , G26 = 〈c̄∗12z�ετ

11 g1 + c̄∗22z
�ετ
21 g2〉 ,

G2
13 =

〈
c̄∗11z

�εu2
13 g1

〉
, G51 = 〈c̄∗66zεu

51 g5〉 , G27 = 〈c̄∗12z�ετ
12 g1 + c̄∗22z

�ετ
22 g2〉 ,

G3
13 =

〈
c̄∗12z

�εu2
23 g1

〉
, G52 = 〈c̄∗66zεu

52 g5〉 , G28 = 〈c̄∗12z�ετ
13 g1 + c̄∗22z

�ετ
23 g2〉 ,

G14 = 〈c̄∗11z�εu
14 g1 + c̄∗12z

�εu
24 g2〉 , G53 = 〈c̄∗66zεu

53 g5〉 , G29 = 〈c̄∗12z�ετ
14 g1 + c̄∗22z

�ετ
24 g2〉 ,

G15 = 〈c̄∗11z�εu
15 g1 + c̄∗12z

�εu
25 g2〉 , G54 = 〈c̄∗66zεu

54 g5〉 , G56 = 〈c̄∗66zετ
51g5〉 ,

G21 = 〈c̄∗12z�εu
11 g1 + c̄∗22z

�εu
21 g2〉 , G55 = 〈c̄∗66zεu

55 g5〉, G57 = 〈c̄∗66zετ
52g5〉 ,

G22 = 〈c̄∗12z�εu
12 g1 + c̄∗22z

�εu
22 g2〉 , G16 = 〈c̄∗11z�ετ

11 g1 + c̄∗12z
�ετ
21 g2〉 , G58 = 〈c̄∗66zετ

53g5〉 ,
G1

23 =
〈
c̄∗12z

�εu1
13 g1 + c̄∗22z

�εu1
23 g2

〉
, G17 = 〈c̄∗11z�ετ

12 g1 + c̄∗12z
�ετ
22 g2〉 , G59 = 〈c̄∗66zετ

54g5〉,
G2

23 =
〈
c̄∗12z

�εu2
13 g1

〉
.

(G7)
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The shear coefficients Aij (with i = 3, 4 and l = 1, . . . , 9) are given by

A32 = 〈c̄�
44z

εu
32 (zεu

32 , zεu
33 , zεu

35 )〉 , A33 = 〈c̄�
44z

εu
33 (zεu

32 , zεu
33 , zεu

35 )〉 ,

A35 = 〈c̄�
44z

εu
35 (zεu

32 , zεu
33 , zεu

35 )〉 , A41 = 〈c̄�
55z

εu
41 (zεu

41 , zεu
43 , zεu

44 )〉 ,

A43 = 〈c̄�
55z

εu
43 (zεu

41 , zεu
43 , zεu

44 )〉 , A44 = 〈c̄�
55z

εu
44 (zεu

41 , zεu
43 , zεu

44 )〉 ,

A38 = 〈c�
44z

ετ
33 (zεu

32 , zεu
33 , zεu

35 )〉 , A39 = 〈c�
44z

ετ
34 (zεu

32 , zεu
33 , zεu

35 )〉 ,

A46 = 〈c�
55z

ετ
41 (zεu

41 , zεu
43 , zεu

44 )〉 , A47 = 〈c�
55z

ετ
42 (zεu

41 , zεu
43 , zεu

44 )〉 . (G8)

H. Coefficients of the Finite Element Matrices

(M11
ij ,M14

ij ,M16
ij ,M17

ij ) = (Iuu
11 , Iuu

14 , Iτu
11 , Iτu

21 )SLL
11 , (M44

ij ,M46
ij ,M47

ij ) = (Iuu
44 , Iτu

14 , Iτu
24 )SLL

11 ,
M13

ir = Iuu
13 SLH

1α , (M55
ij ,M58

ij ,M59
ij ) = (Iuu

55 , Iτu
35 , Iτu

45 )SLL
11 ,

(M22
ij ,M25

ij ,M28
ij ,M29

ij ) = (Iuu
22 , Iuu

25 , Iτu
32 , Iτu

42 )SLL
11 , (M66

ij ,M67
ij ) = (Iττ

11 , Iττ
12 )SLL

11 ,
M23

ir = Iuu
23 SLH

1β , M77
ij = Iττ

22 SLL
11 ,

M33
rs = Iuu

33 SHH
11 + Iuα

33 SHH
αα + Iuβ

33 SHH
ββ , (M88

ij ,M89
ij ) = (Iττ

33 , Iττ
34 )SLL

11 ,
(M34

rj ,M36
rj ,M37

rj ) = (Iuu
34 , Iτu

13 , Iτu
23 )SHL

α1 , M99
ij = Iττ

44 SLL
11 .

(M35
rj ,M38

rj ,M39
rj ) = (Iuu

35 , Iτu
33 , Iτu

43 )SHL
β1 ,

(H1)

K11
ij =

[
A

(11)
11 + A

(21)
21

]
SLL

αα + A
(51)
51 SLL

ββ + A
(41)
41 SLL

11 ,

K12
ij =

[
A

(11)
12 + A

(21)
22

]
SLL

αβ + A
(51)
52 SLL

βα ,

K13
ir =

[
A

1(11)
13 + A

1(21)
23

]
SLH

α1 +
[
A

2(11)
13 + A

2(21)
23

]
SLHH

ααα

+
[
A

3(11)
13 + A

3(21)
23

]
SLHH

αββ + A
(51)
53 SLHH

βαβ + A
(41)
43 SLH

1α ,

K14
ij =

[
A

(11)
14 + A

(21)
24

]
SLL

αα + A
(51)
54 SLL

ββ + A
(41)
44 SLL

11 ,

K15
ij =

[
A

(11)
15 + A

(21)
25

]
SLL

αβ + A
(51)
55 SLL

βα ,

K16
ij =

[
A

(11)
16 + A

(21)
26

]
SLL

αα + A
(51)
56 SLL

ββ + A
(41)
46 SLL

11 ,

K17
ij =

[
A

(11)
17 + A

(21)
27

]
SLL

αα + A
(51)
57 SLL

ββ + A
(41)
47 SLL

11 ,

K18
ij =

[
A

(11)
18 + A

(21)
28

]
SLL

αβ + A
(51)
58 SLL

βα ,

K19
ij =

[
A

(11)
19 + A

(21)
29

]
SLL

αβ + A
(51)
59 SLL

βα ,

K22
ij =

[
A

(12)
12 + A

(22)
22

]
SLL

ββ + A
(52)
52 SLL

αα + A
(32)
32 SLL

11 ,

K23
ir =

[
A

1(12)
13 + A

1(22)
23

]
SLH

β1 +
[
A

2(12)
13 + A

2(22)
23

]
SLHH

βαα

+
[
A

3(12)
13 + A

3(22)
23

]
SLHH

βββ + A
(52)
53 SLHH

ααβ + A
(32)
33 SLH

1β ,

K24
ij =

[
A

(12)
14 + A

(22)
24

]
SLL

βα + A
(52)
54 SLL

αβ ,

K25
ij =

[
A

(12)
15 + A

(22)
25

]
SLL

ββ + A
(52)
55 SLL

αα + A
(32)
35 SLL

11 ,

K26
ij =

[
A

(12)
16 + A

(22)
26

]
SLL

βα + A
(52)
56 SLL

αβ ,

K27
ij =

[
A

(12)
17 + A

(22)
27

]
SLL

βα + A
(52)
57 SLL

αβ ,

K28
ij =

[
A

(12)
18 + A

(22)
28

]
SLL

ββ + A
(52)
58 SLL

αα + A
(32)
38 SLL

11 ,

K29
ij =

[
A

(12)
19 + A

(22)
29

]
SLL

ββ + A
(52)
59 SLL

αα + A
(32)
39 SLL

11 ,
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K33
rs =

[
B

1(131)
13 + B

1(231)
23

]
SHH

11 +
[
B

2(131)
13 + B

2(231)
23

]
SHHH

1αα +
[
B

3(131)
13 + B

3(231)
23

]
SHHH

1ββ

+ B
1(132)
13 SHHH

αα1 + B
2(132)
13 SHHHH

αααα + B
3(132)
13 SHHHH

ααββ + B
1(232)
23 SHHH

ββ1 + B
2(232)
23 SHHHH

ββαα

+ B
3(232)
23 SHHHH

ββββ + B
(53)
53 SHHHH

αβαβ + A
(43)
43 SHH

αα + A
(33)
33 SHH

ββ ,

K34
rj =

[
B

(131)
14 + B

(231)
24

]
SHL

1α + B
(132)
14 SHHL

ααα + B
(232)
24 SHHL

ββα + B
(53)
54 SHHL

αββ + A
(43)
44 SHL

α1 ,

K35
rj =

[
B

(131)
15 + B

(231)
25

]
SHL

1β + B
(132)
15 SHHL

ααβ + B
(232)
25 SHHL

βββ + B
(53)
55 SHHL

αβα + A
(33)
35 SHL

β1 ,

K36
rj =

[
B

(131)
16 + B

(231)
26

]
SHL

1α + B
(132)
16 SHHL

ααα + B
(232)
26 SHHL

ββα + B
(53)
56 SHHL

αββ + A
(43)
46 SHL

α1 ,

K37
rj =

[
B

(131)
17 + B

(231)
27

]
SHL

1α + B
(132)
17 SHHL

ααα + B
(232)
27 SHHL

ββα + B
(53)
57 SHHL

αββ + A
(43)
47 SHL

α1 ,

K38
rj =

[
B

(131)
18 + B

(231)
28

]
SHL

1β + B
(132)
18 SHHL

ααβ + B
(232)
28 SHHL

βββ + B
(53)
58 SHHL

αβα + A
(33)
38 SHL

β1 ,

K39
rj =

[
B

(131)
19 + B

(231)
29

]
SHL

1β + B
(132)
19 SHHL

ααβ + B
(232)
29 SHHL

βββ + B
(53)
59 SHHL

αβα + A
(33)
39 SHL

β1 ,

K44
ij =

[
B

(14)
14 + B

(24)
24

]
SLL

αα + B
(54)
54 SLL

ββ + A
(44)
44 SLL

11 ,

K45
ij =

[
B

(14)
15 + B

(24)
25

]
SLL

αβ + B
(54)
55 SLL

βα ,

K46
ij =

[
B

(14)
16 + B

(24)
26

]
SLL

αα + B
(54)
56 SLL

ββ + A
(44)
46 SLL

11 ,

K47
ij =

[
B

(14)
17 + B

(24)
27

]
SLL

αα + B
(54)
57 SLL

ββ + A
(44)
47 SLL

11 ,

K48
ij =

[
B

(14)
18 + B

(24)
28

]
SLL

αβ + B
(54)
58 SLL

βα ,

K49
ij =

[
B

(14)
19 + B

(24)
29

]
SLL

αβ + B
(54)
59 SLL

βα ,

K55
ij =

[
B

(15)
15 + B

(25)
25

]
SLL

ββ + B
(55)
55 SLL

αα + A
(35)
35 SLL

11 ,

K56
ij =

[
B

(15)
16 + B

(25)
26

]
SLL

βα + B
(55)
56 SLL

αβ ,

K57
ij =

[
B

(15)
17 + B

(25)
27

]
SLL

βα + B
(55)
57 SLL

αβ ,

K58
ij =

[
B

(15)
18 + B

(25)
28

]
SLL

ββ + B
(55)
58 SLL

αα + A
(35)
38 SLL

11 ,

K59
ij =

[
B

(15)
19 + B

(25)
29

]
SLL

ββ + B
(55)
59 SLL

αα + A
(35)
39 SLL

11 ,

K66
ij =

[
C

(11)
16 + C

(21)
26

]
SLL

αα + C
(51)
56 SLL

ββ + C
(41)
46 SLL

11 ,

K67
ij =

[
C

(11)
17 + C

(21)
27

]
SLL

αα + C
(51)
57 SLL

ββ + C
(41)
47 SLL

11 ,

K68
ij =

[
C

(11)
18 + C

(21)
28

]
SLL

αβ + C
(51)
58 SLL

βα ,

K69
ij =

[
C

(11)
19 + C

(21)
29

]
SLL

αβ + C
(51)
59 SLL

βα ,

K77
ij =

[
C

(12)
17 + C

(22)
27

]
SLL

αα + C
(52)
57 SLL

ββ + C
(42)
47 SLL

11 ,

K78
ij =

[
C

(12)
18 + C

(22)
28

]
SLL

αβ + C
(52)
58 SLL

βα ,

K79
ij =

[
C

(12)
19 + C

(22)
29

]
SLL

αβ + C
(52)
59 SLL

βα ,

K88
ij =

[
C

(13)
18 + C

(23)
28

]
SLL

ββ + C
(53)
58 SLL

αα + C
(33)
38 SLL

11 ,

K89
ij =

[
C

(13)
19 + C

(23)
29

]
SLL

ββ + C
(53)
59 SLL

αα + C
(33)
39 SLL

11 ,

K99
ij =

[
C

(14)
19 + C

(24)
29

]
SLL

ββ + C
(54)
59 SLL

αα + C
(34)
39 SLL

11 , (H2)
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F 1
i =

∮
Γe

α

Le
i N̂

11
αβ dα +

∮
Γe

β

Le
i N̂

11
αα dβ, F 2

i =
∮

Γe
α

Le
i N̂

22
ββ dα +

∮
Γe

β

Le
i N̂

22
αβ dβ,

F 3
i =

∫
Ωe

0

He
rZ dα dβ +

∮
Γe

α

(∂He
r

∂β
M̂23

ββ +
∂He

r

∂α
M̂13

αβ + He
r Q̂33

βz

)
dα

+
∮

Γe
β

(∂He
r

∂α
M̂13

αα +
∂He

r

∂β
M̂23

αα + He
r Q̂33

zα

)
dβ

F 4
i =

∮
Γe

α

Le
i M̂

14
αβ dα +

∮
Γe

β

Le
i M̂

14
αα dβ, F 5

i =
∮

Γe
α

Le
i M̂

25
ββ dα +

∮
Γe

β

Le
i M̂

25
αβ dβ,

F 6
i =

∮
Γe

α

Le
i T̂

11
βα dα +

∮
Γe

β

Le
i T̂

11
αα dβ, F 7

i =
∮

Γe
α

Le
i T̂

12
βα dα +

∮
Γe

β

Le
i T̂

12
αα dβ,

F 8
i =

∮
Γe

α

Le
i T̂

23
ββ dα +

∮
Γe

β

Le
i T̂

23
αβ dβ, (H3)

K1
iφ =

∫
Ωe

0

∂Le
i

∂α
(P �11

αα + P �21
ββ ) dα dβ, K2

iφ =
∫

Ωe
0

∂Le
i

∂β
(P �12

αα + P �22
ββ ) dα dβ,

K3
rφ =

∫
Ωe

0

[
He

r (P �131
αα + P �231

ββ ) +
∂2He

r

∂α2
P �132

αα +
∂2He

r

∂β2 P �232
ββ

]
dα dβ,

K4
iφ =

∫
Ωe

0

∂Le
i

∂α
(P �14

αα + P �24
ββ ) dα dβ, K5

iφ =
∫

Ωe
0

∂Le
i

∂β
(P �15
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where the zero- (1), first- (α or β) and second-order (αα, ββ or crossed αβ) derivatives, taken as subscripts
of S, of the Lagrange (L) and Hermite (H) interpolation functions, superscripts of S, where defined as
follows (for the sake of brevity only a few terms are presented since the rest are obvious from the following
relations),
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