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Abstract: A novel graph-based adaptive mesh refinement technique for triangu-
lar finite-volume discretizations in order to solve second-order partial differential
equations is described. Adaptive refined meshes are built in order to solve time-
dependent problems aiming low computational costs. In the approach proposed,
flexibility to link and traverse nodes among neighbors in different levels of refine-
ment is admitted; and volumes are refined using an approach that allows straight-
forward and strictly local update of the data structure. In addition, linear equation
system solvers based on the minimization of functionals can be easily used; specif-
ically, the Conjugate Gradient Method. Numerical and analytical tests were carried
out in order to study the required execution time and the data storage cost. These
tests confirmed the advantages of the approach proposed in elliptic and parabolic
problems.

Keywords: Adaptive mesh refinement, mesh generation, Sierpiński Curve, ellip-
tic and parabolic problems, non-conformal mesh.

1 Introduction

The Finite Volume Method (FVM) represents and evaluates partial differential
equations (PDEs) as algebraic equations. Using the FVM, the PDEs values are
calculated at polytopes on a meshed geometry resulting in a linear equation system
to be computed.

Techniques of adaptive mesh refinement (AMR) are commonly used to localize a
large number of polytopes in specific regions of the mesh, allowing a coarse level
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of refinement in the remaining mesh. Increasing appropriately the number of poly-
topes in certain regions of the mesh to be used within the FVM can have two main
advantages: i) it allows to maintain the accuracy of the original solution and; ii) the
resulting linear equation system is smaller than a uniform refined mesh; hence, low
computational costs and low storage costs are achieved. In evolutionary problems,
such refinement becomes particularly important because of their dynamic nature;
i.e., the variables may have either their value or domain modified only in certain re-
gions, whereas may be relatively stable in other parts. This occurs, for example, in
the study of turbulence in fluid flows or in solid modeling. In summary, techniques
of AMR have been commonly used to provide numerical solutions of PDEs with
low computational costs.

The studies about AMR began in the 1970s, but AMR remains a very active area
of research; recent examples include the works by Nie, Li, and Wang (2012), Gof-
fin, Baker, Buchan, Pain, Eaton, and Smith (2013) and Baker, Buchan, Pain, Tol-
lit, Goffin, Merton, and Warner (2013). Burgarelli, Kischinhevsky, and Biezuner
(2006) proposed a data structure for representing adaptive square-shaped meshes:
the Autonomous Leaves Graph (ALG), which represents an adaptive square-mesh
refinement coupled with a finite-volume solver of PDEs. Regarding triangulations,
Velho, de Figueiredo, and Gomes (1999) described that a triangular mesh is a 2D
simplicial complex, i.e. a simple structure with convenient combinatorial proper-
ties. In addition, simplicial meshes can be related to general meshes and the Finite
Volume Method can be applied with triangular meshes to solve problems with com-
plex geometries.

Here, the meshes addressed are related to simplicial complex structures in noncon-
form meshes for finite volume discretization, which means that hanging nodes are
allowed. Additionally, the generation of the triangular discretization is not an inde-
pendent step of the solution process, but a dynamic adaptive process. Moreover, the
algorithms of AMR maintain the non-degeneracy of the triangular control-volumes
and the meshes are always smooth.

A graph data structure was especially designed to represent the triangular AMR in
the proposed solution. In relation to the total ordering, a Hamiltonian triangulation
is generated with respect to the Hamiltonian ordering found. The aim of maintain-
ing a linear ordering during the triangular AMR is especially important so that all
control volumes (where the variables are evaluated) can be traversed in linear time;
hence, the linear equation systems can be built with low computational cost.

Additionally, linear equation system solvers based on the minimization of func-
tionals can be easily employed with the proposed solution. Furthermore, a graph-
based triangular AMR scheme that provides all the requirements for solution of
PDEs was developed. It is based on cell-centered triangular finite-volume approx-
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imations through an extended finite-volume approach proposed by Schneider and
Maliska (2002) for the solution of PDEs with low computational cost.

In the following, data structures and related algorithms that have been proposed to
construct a dynamic grid in evolutionary problems are described. The 4-triangle
longest-edge partition of triangular volumes, the triangular AMR scheme, and the
graph data structure used, including the refinement and coarsening processes, are
explained in Section 2. The space-filling curve employed in order to traverse the
mesh nodes and the mesh total ordering process are depicted in Section 3. The
experimental tests are presented in Section 4. The complexity of the space-filling
curves applied in ALG and in the approach proposed are discussed in Section 5.
The storage cost of the data structure used for representing adaptive meshes is ad-
dressed in Section 6. Finally, additional remarks are presented in Section 7.

2 Graph-based triangular meshes

A new graph-based triangular AMR technique with triangular cell-centered vol-
umes based on ALG (Burgarelli, Kischinhevsky, and Biezuner (2006)) is described
in this section. Additionally, the process of graph simplification that may occur dur-
ing the computation, which includes refinement and coarsening of mesh volumes,
is also presented. This graph-based triangular AMR technique extends the square
finite volume discretization proposed by Burgarelli, Kischinhevsky, and Biezuner
(2006) to the triangular finite-volume discretization.

2.1 Graph-based AMR technique with triangular cell-centered volumes

A graph explicitly provides all the relations among volumes, being the triangu-
lar volumes with their vertices, edges and other information represented by graph
nodes. Two nodes are directly connected if they represent two triangles with a
common edge. When a triangular volume is refined, an original volume node is
replaced by a new subgraph comprised of: i) 4 volume nodes, ii) 3 transition nodes
and iii) their links. In the local refinement of each triangular volume, the original
nodes are discarded for memory saving, and only the generated volume nodes rep-
resenting the 4 new triangular volumes and the 3 required transition nodes in the
created subgraph pack are stored. In addition, the level of volume nodes of the new
pack is increased of 1 (one).

Transition nodes indicate the refinement level of the volume in relation to their
neighbor volumes. Such nested refinement process is reversible, i.e. it allows a
coarsening operation. Transition nodes link triangles of different levels of an AMR,
allowing a low number of local control volumes; consequently, a reduced linear
equation system that assures the accuracy of the solution is obtained.
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The refinement process proposed is depicted in Fig. 1. Suppose that a single graph
node represents a triangular volume without partition. The triangular volume is
refined and the single graph node is replaced by the subgraph pack shown on the
right side of Fig. 1.

Figure 1: A single graph node that represents an original triangular volume is re-
placed by a subgraph pack (on the right) created after the refinement of the triangu-
lar volume on the left. (The opposite path is performed in the coarsening process.)

In the subgraph on the right side of Fig. 1, two types of nodes are showed: vol-
ume nodes (black circles) and transition nodes (white circles). Each volume node
represents the respective triangular volume in the mesh. Additionally, graph node
pointers are represented by lines and the directed graphs are represented as undi-
rected for clarity, i.e. a line between nodes in the graph means that the nodes point
to each other. Furthermore, the volume nodes point to transition nodes by pairs. In
addition, each transition node also points to two nodes in a subgraph pack. Finally,
a node has 3 pointers, and an unused pointer occurs in the boundary and receives
the null value.

An example of an initial discretization and the corresponding graph are shown in
Fig. 2. In this figure, the triangle barycenters are represented by black circles,
and white circles are used in the graph to link the boundary of the domain. The
scheme proposed leads to high-quality meshes provided that high-quality polygons
are presented in the initial mesh, as shown in Fig. 2: all the polygons are isosceles
right triangles.

During the AMR process, the four triangle longest-edge (4T-LE) partition of Rivara
(1984) is applied. A mesh with an initial triangular volume refined and the resulting
graph are shown in Fig. 3. It should be noted that the boundaries of the domain are
omitted in this figure.

Considering a volume node v with its links to nodes na, nb, and nc as presented on
the left side of Fig. 4, the volume node v can be replaced by a pack consisted of the
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Figure 2: Unit square as an example of the problem domain, and links of the graph
data structure; the nodes represent the initial refinement level, i.e. a refinement of
level 0 (zero).

Figure 3: A refinement example with triangular volumes, and its graph represen-
tation with transition and volume nodes (the subgraph pack is identified by a blue
circle).

volume nodes v1, v2, v3, v4 and the transition nodes t1, t2, and t3. The links among
the nodes of the subgraph pack are set accordingly, including in relation to na, nb
and nc. This is exemplified on the right side of Fig. 4.

Another refinement of the discretized domain visible in Fig. 3 is shown in Fig. 5;
besides, its graph representation and its simplification are also illustrated. As can
be verified in this figure, a graph is simplified if the involved volumes have common
refinement levels, i.e. their vertices in an interface are coincident.
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Figure 4: The volume node v with links to nodes na, nb, and nc on the left side is
replaced by the pack consisted of volume nodes v1, v2, v3, v4 and transition nodes
t1, t2, and t3, presented on the right side.

Figure 5: Refinement of another volume depicted in Fig. 3, its graph representation
and its graph simplification, from left to right, respectively.

2.2 Coarsening process

All nodes in a common pack have an attribute indicating that the nodes belong to the
same subgraph pack. Provided that the neighbor volume nodes are at the same level
of the resulting volume, pointers of the resulting volume node and its neighbors
directly point to each other. Otherwise, transition nodes are created in order to link
neighbors with different levels of refinement. In the coarsening process, the level
of the resulting volume node is decreased of 1 (one) in relation to the old pack.

A subgraph pack selected to be coarsened is showed in Fig. 6, which can be re-
placed by a single volume node as shown in Fig. 7. The final configuration of the
discretization followed by the intermediate graph representation is presented in the
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graph on the right side of Fig. 7.

Figure 6: Example of a discretized domain and its graph representation with a pack
selected to be coarsened.

Figure 7: Collapse of the subgraph pack shown in Fig. 6.

3 Mesh total ordering

Mesh volumes should have some ordering so that each volume is related to a line of
the resulting linear equation system in an implicit formulation. On the other hand,
a triangular sequence defines a total-order relation on the triangles set of a mesh.

Velho, de Figueiredo, and Gomes (1999) explained that a generalized sequential
triangulation, or Hamiltonian triangulation, is a triangulation in which there is an
ordered set t1, . . . , tN of all its triangles so that two consecutive triangles ti and ti+1
share an edge. A path in a graph is said to be Hamiltonian if all nodes included
are visited only once. Each triangle in a Hamiltonian triangulation has an entry
edge and an exit edge with respect to the Hamiltonian ordering, and the knowledge
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of these edges completely characterizes the sequence. Geometrically, a general-
ized triangular sequence can be represented by building an oriented path on the
mesh domain that visits each triangle traversing its entry and exit edges, called a
sequential path. Moreover, the problem of finding the best triangle sequences of a
mesh is NP-hard [Evans, Skiena, and Varshney (1996)]. However, by adding new
points, it is always possible to refine a triangle mesh into a Hamiltonian triangu-
lation [Arkin, Held, Mitchel, and Skiena (1994)]. As such, the scheme presented
here always generates a generalized sequential triangulation since the refinement is
strictly local.

In the scheme proposed here, the 4T-LE partition of Rivara (1984) allows the
use of the Sierpiński-like Curve, which has a low computational cost [Velho,
de Figueiredo, and Gomes (1999); Gonzaga de Oliveira and Kischinhevsky (2008);
Bader, Schraufstetter, Vigh, and Behrens (2008); Bader, Bock, Schwaiger, and Vigh
(2010)] in order to traverse the graph nodes. The space-filling curve used is a Pólya
curve since right isosceles triangles are involved.

The dynamic Sierpiński-like Curve (SlC) for the total-order relation on triangular
volumes of a mesh was implemented as a double-linked list. Only local updates
are carried out during the refinement and coarsening processes. Examples of suc-
cessive adaptive refinements by volume bisection in a quadrangular domain with
triangular volumes ordered by the SlC are shown in Fig. 8. This scheme allows the
straightforward updating of the double-linked list for mesh node ordering.

Figure 8: Successive adaptive refinements with the volumes ordered by a SlC
shown on the right side of each discretization.

Clearly, each volume node must be taken into account when setting up the linear
equation system to be solved. Since triangular volumes are adaptively refined in this
approach, the SlC is an efficient way to number the mesh volumes. The Rivara’s
refinement is applied so that the SlC can be used. The original Rivara’s refinement
is propagated to adjacent triangles to maintain the mesh conforming. However, this
propagation is not considered here since conformity is not required in the FVM.
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Since the 4T-LE is applied, a Hamiltonian triangulation is obtained and each update
of the double-linked list is strictly local. This follows the strictly local updating of
the graph, leading to a subgraph pack, in the refinement or coarsening process.
Moreover, when a volume is refined or a subgraph pack is coarsened, only the local
pointers of the SlC are updated. This Θ(1) method only locally updates the SlC
already defined.

4 Experimental tests

The following tests concern numerical results for the Laplace equation (elliptic
problem) and for the heat conduction equation (parabolic problem). In all tests ac-
complished, the linear equation systems presented sparse, symmetric and positive-
definite coefficient matrices; therefore, a linear equation system solver based on
the minimization of functionals was employed; specifically, the Conjugate Gradi-
ent Method. A pre-conditioner was not used. In relation to the convective terms of
PDEs, an upwind scheme was used. In relation to the diffusive terms, the vertex-
centered scheme proposed by Schneider and Maliska (2002) was extended to a
cell-centered scheme.

In the tests, the criterion used for the refinement was based on the flux across the
interface of neighboring volumes. More precisely, if the gradient of the flux in an
edge was higher than a refinement value defined by the user, both volumes that
share the edge were refined. The choice of this threshold value was based on the
requirements of a large or small refinement at regions of the domain where there
were large or small variation in the behavior of the solution, respectively. This
criterion overestimates the number of refinements needed, since a large difference
of fluxes does not necessarily mean that there is a large variation in the difference
between the approximate and the exact solutions. However, it should be noted that
variations can also occur with the exact solution.

4.1 Heat conduction equation (parabolic problem)

Let’s consider the 2D heat conduction equation with continuous initial and bound-
ary data

φt = ∇
2
φ ,

φ(u,0) = f (u),u ∈Ω, f (u)≡ 0,

φ(u, t) = g(u),u ∈ ∂Ω, t ≥ 0, (1)

in which Ω ⊂ R2 (thus, u = (x,y)), and f is a smooth function limited in Ω. This
problem is well-defined in the Hadamard sense [Zauderer (1989)]. Taking into
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consideration the approximation in a unit square and the FVM basic implicit for-
mulation Mk+1

P φ
k+1
P −∆t

∮
∂Ω

∇φ k+1 ·~nd(∂Ω) = Mk
Pφ k

P, in which M represents the
area of4P, we set the boundary conditions on top, bottom and left sides of the unit
square with a unique prescribed boundary value f and the right side with a different
value. An initial test [Gonzaga de Oliveira and Kischinhevsky (2009)] allowed to
conclude that: after 10 time steps and 7 maximum refinement levels, the mesh con-
sisted of 1496 volumes and the Conjugate Gradient Method converged after 519
iterations.

In another test with the same boundary conditions, the final mesh configuration was
achieved after 10 time steps using 1.0 as the refinement criterion and 7 maximum
refinement levels for each volume. The mesh obtained, shown in Fig. 9, consists of
5285 volumes and the Conjugate Gradient Method converged after 578 iterations.

Figure 9: Final mesh configuration of a triangular AMR approximation to the so-
lution of the heat conduction equation.

The result of the test with boundary condition x− y and refinement criterion equal
to 0.05 is illustrated in Fig. 10. In this case, the final discretization was achieved
after 10 time steps with 6 maximum levels of refinement for each volume resulting
in 6110 volumes.

The result of the test with boundary condition x2− y2, 0.07 as the refinement crite-
rion and 10 time steps is illustrated in Fig. 11. In this example, the discretization
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Figure 10: Triangular AMR approximation to the solution of the heat conduction
equation with boundary condition x− y.

was until 7 refinement levels for each volume resulting in 4472 volumes.

A comparison between the time spent during the triangular AMR stage and the time
spent for all numerical computations is presented in Tab. 1 for the experiments
conducted for this problem using the boundary conditions suggested in Burgarelli,
Kischinhevsky, and Biezuner (2006). In this table, g(x,y) is the boundary condition
of the test, l is the maximum refinement level reached, N is the number of volumes
attained in the grid, RefTime is the normalized time spent in the refinement process,
Time is the total time spent for all numerical computations, and % indicates 100 ·
Re f Time

Time .

The tests described were performed with ∆t = 0.1 and the simulations were exe-
cuted until t = 10 ·∆t. In the same tests, the adopted boundary condition was chosen
according to the steady-state solution intended, and the initial conditions were set
as f (x,0)≡ 0. Additionally, it should be noted that at level l, the minimum volume
size attained was 2−l .

One can conclude from Tab. 1 that the most of the computing time was demanded
by the computation core, i.e. to solve the linear equation system, with the refine-
ment stages demanding a considerably low computational time. Clearly, the higher
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Figure 11: Triangular AMR approximation of the heat conduction equation with
boundary condition x2− y2.

resolution of a mesh, the higher the total computation time. However, the refine-
ment computational time increases much slower than the total computation time
when increasing the number of volumes in the mesh.

4.2 Laplace equation (elliptic problem)

Let’s consider now the Dirichlet problem given by

∇
2
φ = 0 in Ω ∈ R2, φ = f on ∂Ω, (2)

in which φ is the dependent variable of the PDE, Ω is a limited domain in R2,
and f is a defined smooth function on the boundary ∂Ω. This problem is well-
posed in the Hadamard sense [Zauderer (1989)]. Considering that one has equal
and constant prescribed boundary conditions on top, bottom, and left sides of a unit
square, and on the other hand, the right side of the unit square presents a different
value for f , the initial test [Gonzaga de Oliveira, Kischinhevsky, Burgarelli, and
Biezuner (2008)] allowed to conclude that this triangular AMR for finite-volume
discretizations is as simple and straightforward as using the quadrangular ALG. The
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Table 1: Numerical results for the heat conduction equation.

g(x,y) l N RefTime (s) Time (s) %
4 860 1.0 ·10−2 0.23 4.348
5 1007 1.1 ·10−2 0.29 3.448

10 6 3029 4.0 ·10−2 4.86 0.823
7 3566 5.0 ·10−2 8.71 0.574
8 34541 2.3 ·10−1 448.29 0.051
5 956 1.0 ·10−2 0.26 3.846
6 4028 2.0 ·10−2 10.81 0.185

x− y 7 16040 1.3 ·10−1 93.34 0.139
8 66260 6.6 ·10−1 1036.06 0.064
9 174410 1.5 7490.62 0.020
6 3563 5.0 ·10−2 15.74 0.318
7 12602 1.0 ·10−1 81.38 0.123

x2− y2 8 55811 4.1 ·10−1 1013.84 0.040
9 175499 1.5 7147.79 0.021
10 283604 3.68 24862.50 0.015

mesh and the SlC obtained by the proposed triangular AMR scheme are illustrated
in Fig. 12. In this case, the final mesh configuration was achieved using a maximum
of 8 refinement levels for each volume and 1.5 as the refinement criterion. The mesh
was comprised of 4427 volumes, whose Conjugate Gradient Method converged
after 731 iterations.

ALG and the proposed scheme were applied to the Laplace equation and tested
using the same machine. In Tab. 2, the computational times required in each ex-
periment are indicated. The linear equation systems of both schemes were solved
using the same implementation of the Conjugate Gradient Method. The number of
volumes (N column) in the tests at the same refinement level are similar for both
schemes, except in the test with 10 refinement levels. The linear equation systems
were solved faster when the triangular scheme was used (see Time column), even
in the test with 10 refinement levels.

In the test with 8 refinement levels, the refinement time required by each scheme
(RefTime column) were similar. In the other tests, the refinement time of the trian-
gular scheme was slower than the one of ALG. It is worth to emphasize that in both
schemes the refinement time increases much slower than the numerical computa-
tion time (see % column).

Besides, one can conclude from the values in Tab. 2 that the refinement process of
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Figure 12: Sierpiński-like Curve of the triangular AMR scheme applied to the
Laplace equation.

Table 2: Numerical results for the Laplace equation (4 - triangular scheme).

l scheme N Time (s) RefTime (s) %
7 ALG 3169 1.12 0.04 3.57

4 3188 0.89 0.01 1.12
8 ALG 38398 57.39 0.17 0.30

4 38402 42.81 0.19 0.44
9 ALG 169831 650.01 1.54 0.24

4 170258 429.17 0.43 0.10
10 ALG 247246 1809.30 3.67 0.20

4 261260 836.27 0.60 0.07

the proposed scheme scales well for medium-size meshes:

• an increment of 170258/38402 ∼= 4.4 times in the number of volumes re-
sulted in an increment of 0.43/0.19∼= 2.3 of the refinement process time;

• an increment of 261260/170258 ∼= 1.5 times in the number of volumes re-
sulted in an increment of 0.60/0.43∼= 1.4 of the refinement process time.
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5 Complexities of the space-filling curves in ALG and in the approach pro-
posed

In the quadrangular ALG approach, Burgarelli, Kischinhevsky, and Biezuner
(2006) extended the Hilbert Curve for the total ordering of the mesh, and the Modi-
fied Hilbert Curve (MHC) was used in order to number the volumes. The algorithm
that implements the local update of the MHC and its complexity analysis are ad-
dressed in the following.

The algorithm for the local update of the MHC requires the definition of the local
shape of the Hilbert Curve for each local refinement. Briefly, the local curve can
have 4 shapes: @, A, u and t. The HilbertShape method is used and according to
its output, the MHC, a double-linked list, is updated. Pseudocode 1 is an example
of how to call the HilbertShape method. The attributions in Pseudocode 1 allow
that each pointer of the MHC is updated without any loop.

Pseudocode 1: UpdateMHC;

// calls the HilbertShape method and locally updates the MHC

input: the Hilbert coordinate volHilbertCoord of the volume and its refinement level volRefLevel;

output: update the MHC in the pack;

begin

integer: numberOfHilbertShape;

numberOfHilbertShape← HilbertShape (volHilbertCoord, volRefLevel+1);

if (numberOfHilbertShape = 0) then { 11 attributions + 1 condition } // shape: @

else if (numberOfHilbertShape = 1) then { 11 attributions + 1 condition } // shape: t
else if (numberOfHilbertShape = 2) then { 11 attributions + 1 condition } // shape: A

else if (numberOfHilbertShape = 3) then { 11 attributions + 1 condition } // shape: u
end-if;

end;

The number of operations of the local update of the MHC depends on the
HilbertShape method described in Pseudocode 2. It defines the local shape of
the new subgraph pack, and for that the inputs are: the Hilbert coordinate of the
volume being refined, i.e. an attribute kept in each volume object that is used only
to evaluate the local Hilbert shape, and the refinement level of this volume. The
output of Pseudocode 2 is: 0, 1, 2 or 3, representing the local shapes @, t, A and
u, respectively.

Pseudocode 2: HilbertShape; // evaluates the local Hilbert shape

input: the Hilbert coordinate volHilbertCoord of the volume being refined;
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and the refinement level l of this volume;

output: 0, 1, 2 or 3 that represents the local shapes @, t, A and u, respectively;

begin

1. integer: i← 0, j, k;

2. integer: hilbTab[4][4];

3. hilbTab[0][0]← 1; hilbTab[0][1]← 0; hilbTab[0][2]← 0; hilbTab[0][3]← 3;

4. hilbTab[1][0]← 0; hilbTab[1][1]← 1; hilbTab[1][2]← 1; hilbTab[1][3]← 2;

5. hilbTab[2][0]← 3; hilbTab[2][1]← 2; hilbTab[2][2]← 2; hilbTab[2][3]← 1;

6. hilbTab[3][0]← 2; hilbTab[3][1]← 3; hilbTab[3][2]← 3; hilbTab[3][3]← 0;

7. for k from 1 to l-1 do

8. j← volHilbertCoordinate mod 4;

9. i← hilbTab[i][j];

10. volHilbertCoordinate← vollHilbertCoordinate / 4;

11. end-for;

12. return i;

end-HilbertShape method.

Lines from 1 to 6 and 12 in Pseudocode 2 are executed once, line 7 is executed l
times, and each line from 8 to 11 is executed l-1 times. Thus, Θ(l) is the asymptotic
number of operations of the HilbertShape method, in which l is the number of
refinement levels of the pack built. Clearly, the number of operations of the local
update of the MHC is given by calling the HilbertShape method in Pseudocode
2. It should be noted that volRefinementLevel in this algorithm is the number of
refinement levels of the volume just refined, and l in the HilbertShape method is
the number of refinement levels of the pack built.

In the approach proposed here, a Sierpiński-like Curve is employed. The complex-
ity of the algorithm that implements the local update of the SlC, Θ(1), was indicated
in Section 3. One can conclude that the Sierpiński-like Curve with its Θ(1) running
time surpasses the MHC implemented within ALG, which computational time is
Θ(l), in which l is the refinement level of the refined pack.

6 Analyses about storage costs in mesh generation

In this section, the storage costs of data structures used in mesh generation are
discussed: the graph data structure used in the approach proposed and ALG are
analysed in subsections 6.1 and 6.2, respectively. Finally, the storage costs of the
data structures for triangle meshes are addressed in subsection 6.3.
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6.1 Storage cost of the graph data structure proposed

Let’s consider an initial discretization with 8 triangular finite volumes as shown in
Fig. 2, that has some triangles in the boundary not refined so that transition nodes at
this boundary do not occur, and the sequence t0, t1, · · · , tn−1 of triangles in the mesh
with refinement level 0 (zero). A possible case occurs when ti, with i = 1,3,5, · · · ,
is not refined, but t j, with j = 0,2,4, · · · , is refined for all triangles at the refinement
level 0 (zero). If one continues refining the finite volumes in each level in this way,
no transition nodes vanishes because ti and ti+2 are not refined and ti+1 and ti+3 are
for the 4 triangles in a subgraph pack. That is, no adjacent triangles are refined so
that no inner transition node vanishes in the data structure. One can conclude by

induction that
l
∑

i=1
2i+1 = 2l+2−4 (∀l > 0), in which l is the level of refinement, and

also that there are 2l+2− 4+ 2l+3 = 3 · 2l+2− 4 volume nodes in this scenary. In
addition, there are 3 ·2l+2−8 transition nodes.

Each volume node presents 5 pointers: 3 neighbors and the SlC double-linked list:
5 · (3 · 2l+2− 4). As such, the number of transition nodes is relevant in relation to
the number of volume nodes. Defining the class of transition nodes without the
two pointers of the double-linked list results in memory savings, as each transition
node presents 3 pointers: 3 · (3 · 2l+2− 8). Summing up the two terms divided
by the number of triangular finite volumes, yields 24·2l+2−44

3·2l+2−4
∼= 8 nodes in the data

structure per triangle.

On the other hand, the number of vertices is 3 · 2l+2− 3. It should be noted that,
in this case, two edges are inserted to create one triangle, yielding e = 2t, in which
e is the number of edges. Clearly, the number of vertices is just about the number
of triangles. More precisely, from the Euler’s formula, n = t +1, in which n is the
number of vertices and t is the number of triangles. Thus, the number of pointers
in the data structure proposed is just about 8n.

6.2 Storage cost of the ALG structure

Let’s consider now 4 quadrangular finite volumes as the initial discretization and
refine each finite volume in an arbitrary diagonal in each refinement level. That is,
no adjacent volumes are refined so that no inner transition node vanishes in the data
structure.

One can conclude by induction that
l
∑

i=1
2i = 2l+1−2, and that there are 6 ·2l+1−4

nodes in the data structure for 3 · 2l+1− 2 quadrangular finite volumes. It should
be noted that there are just about 2 nodes in the data structure per square in the
meshes. Since there are 6 pointers for each node, the number of pointers in the data
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structure is 12q, in which q is the number of quadrangular finite volumes.

In this case, there are 5 new vertices for 4 new quadrangular finite volumes in a
pack. Thus, the number of vertices is 5 ·2l+1−1, yielding 6·(6·2l+1−4)

5·2l+1−1
∼= 7, and the

number of pointers in the data structure is about 7n, in which n is the number of
vertices.

As such, one can conclude that the number of transition nodes is relevant in relation
to the number of volume nodes. Defining the class of transition nodes without the
2 pointers of the double-linked list results in memory savings. Specifically, the
volume nodes would be 6 · (3 · 2l+1− 2) and the transition nodes would be 4 · (3 ·
2l+1−2) for 3 ·2l+1−2 quadrangular finite volumes. Additionally, the number of
pointers in the graph data structure is just about 6n. This scheme is called improved
ALG in Tab. 3.

6.3 Comparison among storage costs

In Tab. 3, storage costs of common data structures for mesh generation are indi-
cated as found in De Floriani, Kobbelt, and Puppo (2004) and De Floriani and Hui
(2005). It should be noted that the size of an index was assumed as 1 (one).

Table 3: Storage costs of data structures used in mesh generation (adapted from De
Floriani, Kobbelt, and Puppo (2004) and De Floriani and Hui (2005)).

Data Indices per Graph nodes

structure vertice (∼=) per polygon

winged-edge [Baumgart (1975)] 27 -
half-edge data structure [Mäntylä (1988)] 27 -

Doubly-Connected Edge List [Mueller and Preparata (1978)] 21 -
data structure of Botsch, Steinberg, Bischoff, and Kobbelt (2002) 21 -

indexed data structure with adjacencies of Lawson (1977) 13 -
IA [Nielson (1997); Paoluzzi, Bernardini, Attani, and Ferruci (1993)] 13 -
directed edge data structure [Campagna, Kobbelt, and Seidel (1998)] 13 -
Triangle-Segment [De Floriani, Magillo, Puppo, and Sobrero (2004)] 13 7

graph data structure proposed 8 8

improved ALG (for quadrangular meshes) 6 12

indexed data structure 6 -

The Triangle-Segment (TS) data structure [De Floriani, Magillo, Puppo, and So-
brero (2004)] extends the indexed data structure with adjacencies (IA) [Nielson
(1997); Paoluzzi, Bernardini, Attani, and Ferruci (1993)] to general simplicial com-
plexes [De Floriani and Hui (2005)]. For a manifold domain, the TS also encodes
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6t + n patches of information [De Floriani and Hui (2005)]. And, using the Eu-
ler’s formula, t = 2n, both data structures encode 13n in the worst case. Related to
triangle meshes, the Triangle-Segment (TS) encodes 7t in the worst case. In addi-
tion, De Floriani and Hui (2005) claimed that the TS data structure presents lower
storage cost when compared to other data structures used for the same purpose.

One observes in Tab. 3 that the indexed data structure is the one that presents
the lowest storage cost. However, Lawson (1977) extended this data structure in
order to support mesh traversal through edges and increased the storage cost to 13n
(disregarding geometry and attributes), in which n is the number of indexes [De
Floriani, Kobbelt, and Puppo (2004)].

The graph data structure proposed here supports efficient mesh traversal. It is
worth to note that a volume node vi can reach its adjacent volume node v j travers-
ing |vi.level− v j.level| transition nodes. As so, it can be concluded that the new
data structure is competitive against the data structures reviewed by De Floriani,
Kobbelt, and Puppo (2004) in terms of storage cost.

The data structure proposed is also competitive against the ALG in terms of running
time (see Tab. 2). In addition, the 8n storage cost of the data structure proposed
is also competitive with the 6n storage cost of both the improved ALG and the
indexed data structures.

Both graphs for triangular AMR and ALG for quadrangular-meshes employ an
encoding scheme that represents finite volumes, i.e. triangles and quadrangular
finite volumes, respectively. This graph data structure for triangular AMR presents
a storage cost of 8v and the ALG storage cost is equal to 12v, in which v is the
number of finite volumes (see subsections 6.1 and 6.2).

7 Conclusions

A triangular discretization for the Finite Volume Method to solve partial differential
equations with a graph-based adaptive mesh refinement based on a cell-centered
scheme was proposed. The required data for solving the PDE is stored in a graph
data structure that represents the triangular AMR.

The data structure proposed was especially designed in order to minimize the num-
ber of operations required in the triangular AMR process. The scheme developed
enables the replacement of a single triangle by a pack of triangles in any region of
interest. Furthermore, as long as a triangle is refined, a graph node is replaced by a
subgraph that represents the new triangles inserted. Similarly to ALG, low memory
storage is achieved since the refined nodes in the local refinement are discarded.

The refinement process proposed allows that the created new pack from a single
triangle may be coarsened, i.e. it may return to a previous stage. The connection
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between triangular neighbors is either direct or there are few steps to reach volume
nodes among neighbors in different refinement levels. Furthermore, only strict
local changes in the data structure occur.

The strategy based on ALG belongs to a group of methods that deals with the AMR
technique and allows triangular local mesh refinements with low computational
costs. The implementation of the strategy allows flexibility in reaching triangular
neighbors with different refinement levels and, since it was not conceived for any
particular problem or geometry, it can be applied to study several phenomena and
classes of PDEs.

The proposed data structure also seeks to have low computational cost and flexibil-
ity in ordering the triangular mesh. For this, the mesh total-ordering is performed
using a Sierpiński-like Curve that was implemented by means of a double-linked
list. The refinement and coarsening schemes of the triangular volumes enable
straightforward updating of both in the linked list for volume meshes total ordering
and graph nodes as well.
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tal ordering of a graph-based adaptive simplicial-mesh refinement for finite volume
discretizations. In 31o. Congresso Nacional de Matemática Aplicada e Computa-
cional (CNMAC), pp. 581–585.

Gonzaga de Oliveira, S. L.; Kischinhevsky, M. (2009): A graph-based adaptive
triangular-mesh refinement applied to classical elliptic and parabolical problems.
In 32o. Congresso Nacional de Matemática Aplicada e Computacional (CNMAC),
pp. 607–612.

Gonzaga de Oliveira, S. L.; Kischinhevsky, M.; Burgarelli, D.; Biezuner, R.
(2008): Graph-based adaptive simplicial-mesh refinement for finite volume dis-
cretizations. In Congresso Ibero-Latino-Americano de Métodos Computacionais
em Engenharia (CILAMCE).

Lawson, C. L. (1977): Software for C1 surface interpolation. In Rice, J. R.(Ed):
Mathematical Software III, Academic Press, pp. 161–164.

Mäntylä, M. (1988): An Introduction to Solid Modeling. Computer Science
Press.

Mueller, D. E.; Preparata, F. P. (1978): Finding the intersection of two convex
polyhedra. SIAM Theoretical Computer Science, vol. 7, pp. 217–236.

Nie, Y. F.; Li, Y. Q.; Wang, L. (2012): Parallel node-based local tetrahedral mesh
generation. Computer Modeling in Engineering & Sciences (CMES), vol. 83, no.
6, pp. 575–597.

Nielson, G. M. (1997): Tools for triangulation and tetrahedralizations and con-
structing functions defined over them. In G. M. Nielson, H. Hagen, H. M.(Ed):
In: Scientific Visualization: overviews, Methodologies and Techniques, ch. 20, pp.
429–525, Silver Spring, MD. IEEE Computer Society.

Paoluzzi, A.; Bernardini, F.; Attani, C.; Ferruci, V. (1993): Dimension-
independent modeling with simplicial complexes. ACM Transactions on Graphics,
vol. 12, no. 1, pp. 56–102.

Rivara, M. C. (1984): Algorithms for refining triangular grids suitable for adap-
tive and multigrid techniques. International Journal for Numerical Methods in
Engineering, vol. 20, pp. 745–756.

Schneider, F. A.; Maliska, C. R. (2002): Numerical solution of bidimen-
sional convective-diffusive problems by the Finite Volume Method using unstructed



CMES Manuscript http://www.techscience.com

Manuscript Preparation for CMES 141

meshes (in Portuguese). In IX Congresso Brasileiro de Engenharias e Ciências
Térmicas, volume 0346.

Velho, L.; de Figueiredo, L. H.; Gomes, J. (1999): Hierarchical generalized
triangle strips. The Visual Computer, vol. 15, pp. 21–35.

Zauderer, E. (1989): Partial Differential Equations of Applied Mathematics.
Wiley-Interscience, 2nd edition.



CMES Manuscript http://www.techscience.com


