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Abstraci— We present first and second order necessary con-
ditions of optimality for a general class of nenlinear measure
driven dynamic control systems subject to both equality and
inequality endpoint state constraints. An important feature of
our result is that the conditions remain informstive even for
abnormal control processes. Qur result is obtained by decoding
the necessary conditions of optimality for an abstract minimiza-
tion problem with equality and irequality type constraints and
constraints given by convex cone.

I. INTRODUCTION

In this article, we present first and second order necessary
conditions for a general nonlinear impulsive optimal control
problem which are also informative for abnormal control
processes and whose denivation does not require a prioti nor-
mality assumptions. These can be regarded as an extension of
the result obtained in [2] since, now, the function defining the
impulsive dynamics also depends on the state variable. The
proof of our result consists in applying a certain a nonlinear
transformation, [8], to the initial problem, so that the new
one is such that the impulsive dynamics do not depend on .
in applying the first and second order mecessary conditions
of optimality derived in {2), and, then, in decoding these in
terms of the data of the original problem,

Dynamic optimization problems arising in a variety of
application areas such as finance, mechanics, resources man-
agement, and space navigation, (see [8), [9], [10], [11], [12),
[13), [16], just to mention a small but represcntative sample
of references) whaose solutions might involve discontinuous
trajectories have been considered over the years, motivating a
significant research cffort on the so-called impulsive control
problem.

Although the theory of higher order necessary conditions
of optimality for conventional optimal control problems is
well developed (see, for example, [1], [14), [27]), only a few
publications on such conditions are available for impulsive
control systems, [19), [2], [25], [26], in spite of vast amount
of literature addressing optimal impulsive control problems,
[41, 15}, [6), [7], [17], (18], [20), [21], {22), (23], (24].

We note that, while the conditions in [19], [25]} become
trivial, i.e. degenerate, for abnormal problems, ours temain
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informative. Also, our result differs substantially from these
conditions as it can be seen from the fact that these follow
directly from the Maximum Principle in the case the optimal
trajectory is absolutely continuous, i.e., no impulses.

In [7], Legendre-Jacobi-Morse-type second order neces-
sary conditions of optimality for time-optimal control are
derived by vusing in an essential way an extremal principle
and the notion of index of quasiextremality provided in [28].

However, the approach followed here differs substantially
from all the ones in the references cited above as we regard
this problem as a specific instance of a general abstract prob-
lem for which powerful second-order optimality conditions
are derived.

This article is organized as follows: In the next section, we
formulate the considered impulsive optimal control problem,
including the hypotheses assumed on its data as well as
some key definitions and preliminary concepts. In particular,
we detail the adopted notion of solution to the measure
differential equation. The statement of the ficst and second
order necessary conditions of optimality for the dynamic
optimization problem described in the third section, together
with some critical definitions. Issues concerning abnormality,
geometric interpretation and computation are also included.
Also in this section we make several remarks, including
a brief outline of the approach 10 the proof. Finally, tn
the fourth section, we present one example illustrating the
application of these conditions. This example shows that
the first and the second order optimality conditions remain
informative even for abnormal points.

1I. OPTIMAL CONTROL PROBLEM FORMULATION

We consider the following impulsive optimal control prob-
lem:

(P) Minimize J(za,s,w) 1)

subject to  dz(¢) = F(t, z(t), u(t))dt +
G(t, z(t))dw(t), t € [to, 1], @)
Ly(a) £0, Ly(e) =0, (3)
dw e K, (@)
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where J(zo,u,w) = Lp(a), a = (z(to), z(t1)), z(to) =
zg, (t)) = 71, ty < #; are given, and the functions f :
[to,t1]) x R* x R™ — R™ G : [to,tjl x R — R"*k,
Li: B* x R® — R} for i =0,1,2, (d(L;) denotes the
dimension of the vector functions L., i=0,1,2, d(Lu) =1),
satisfy the following assumptions:

(H1) Functions Ly, Ly, L, are C2,

(H2) The function f is twice differentiable w.rt, z, u for
almost all ¢t € [tp,t,], and, together with the first and
second order derivatives are measurable wrt. ¢ and
bounded on any bounded subset.

(H32) The matrix function G € C?,

{H4) The matrix G satisfies the so called Frobenius condition,
ie.,

Gi(t,z)G(t,z) - Gi(t,z)Gi(t,z) =0,
where G* is i*® column of G.
We denote by dw the k-dimensional Borel measure as-

sociated with the function of bounded variation w(t) right
continuous on (fg, ¢;], and define the cone X by

K= {dw € C'(Ito,ﬁ];Rk) (Vg e C([f-o,t;]) s
QJ(t) € K° Vt, f¢(t)dw 20V Borel B C ltn,t;]}.

(5)

Here K is a given convex, closed, pointed cone from R,
and KO is its dual.

The pair (u,w) is called admissible comtrol if u € LT,
w € BV* such that dw € K.

Definition 1. Given any given admissible control (u,w)
and initial condition zq, there exists a unique trajectory, z(-),
which is a right continuous function of bounded variation on
(to, 1), such that

o(t) = 2o + J,f (8, 2(6), u(8))d8 + [/G(8,%(6))dw.(8)

+ Za;S! fol Gls;, z‘(T))cidT:
z(ta} = xp.

Here, dw, and dw,(t) := Yosict Cy 2y (being ¢f € K,
3; € [tg, 1] the jump times, and §, the Dirac measure at §)
represent, respectively, the continuous and the atomic parts
of the measure .

Notice that, given (H2), the uniqueness is guaranteed by
the Frobenius condition, (H4). This ensures the robustness
of the dynamic system (2) with respect to the approximation
of generalized control dw by conventional controls v(-) €

LE([to,t1}; K) (see {4], [5], [7), [8]), and it implies that
the solution (6) belongs to the closure of the set of abso-
lutely continuous solutions of equation (2) corresponding to
(u,w} € Lo, x AC.

An admissible control process is a triple (g, , w), where
(u,w) is an admissible control and the corresponding trajec-
tory satisfies the given endpoint constraints.

Qur problem can nrow be clearly stated: minimize J over
the set of admissible control processes.

Definition 2. We say that the admissible process
(zg,u*,w*) is a local minimizer of the problem (P) if
there exists ¢ > 0 and, for any finite-dimensional subspace
R C L2 [to.t1], £r > O such that the process (), u*, w*)
yields a minimum to the problem (1)-(3) with the additional
constraints fla — a°|| < e, ldw — dwliceito.1,1i8%) < &
e — v*llLgfto.en) < €R. ul) € R.

Notice that the defined type of local minima is finite
dimensional in % and weak in dw.

For the sake of simplicity of the arguments, we assume Lhat
admissible process and corresponding trajectory investigated
for minimum of problem (P) satisfies:

(H5) The measure dw" has the form

dw*(t) = v*(t)dt + Y cb,(t)

sES

©)

where v*(f) = @*(f) ae. with respect to the Lebesgue
measure on [tg, 1], §* C [to, 1] is the set of jump times of
w*(-), assumed to be finite, and ¢* = [w*(s)] := w*(st) -
w*({s™), i.c., the.function w*(-} has no singular continuous
part and has a finite number of jump times.

Moreover, since (x5, u*, w") is investigated for local min-
imum only, i.e., in the sense of definition 2, then we can
assume, without any loss of generality, that all endpoint
inequality constraints are active at the optimal trajectory x*,
ie.,

Ly(a®*) =0 where a*= (z°(p),z"(21)). @

ITI. NECESSARY CONDITIONS OF OPTIMALITY

In order to state the necessary conditions of optimality
for problem (P), we need to introduce the following funda-
mental auxiliary concepts: local maximum principle, critical
cone, and quadratic form.

Local maximum principle. Let ¥ € R", A =
(Mo, A1, A2) € R! x RHI1} 5 R4(L2) apd define the Pontrya-
gin function H = Hy+ Hi, and the endpoint Lagrangian {*,
respectively by:

Ho(t,ﬂ’h lev u) = (’J), f(t,:_:,u)),
H(t,z,¥,v) = &Gt zw), and
IA(CL) = AoLo(a) + {M, Iy (G)) + {Az, La(a)).
Definition 3. We say that a process (xg, u*,w") satisfies

the Euler-Lagrange conditions or the local Maximum Prin-
ciple if there exists A # 0, such that

AD 2 0! Al 2 U; (’\]!Ll(a.)) =0 (8)
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and the vector function ¢, solution, in the integral sense of
(6)', 1o the adjoint system

—dy(t) = Hog(t)dt + H, (t)dw*(t), (an
~$(t1) = 13, (a”)
which satisfy the following conditions:
dlto) = 1,(a%) (12)
H,t) = 0 dt-a.e. (13)
{(Hy(t),v) Y{t,v) € [to, 11] x K, (14)

<0
(Hy(1),w'(t)) = 0 dw* —ae.,
where w*(t) = % is the Radon Nicodym derivative of
the measure dw* with respect to its total variation measure.
Remark that any adjoint trajectory ¥(t) and the function
H{t) depend on A due to the wransversality condition {12).

The notation above needs some explanation. When some
arguments of a given function are missing, ie., H{t),
H(t,u), or H,(t), this means that the function is considered
being evaluated along the examined (reference) process. This
notation is also adopted for other functions in similar con-
texts. The "aver the function label means the total derivative
with respect 1o time. An argument variable appearing in sub
index means that a partial derivative is being considered, e.g.,

Ha,(t) = ££).

Let A = A(zg, u*, w*) be the set of all Lagrange multipli-
ers A satisfying the local maximum principle and normalized
by the condition ||A|| = 1. The following result is well known
(see [1])

Theorem 4. A # @ is a first order necessary condition for
a weak local minimum for problem (P),

(15)

However, we shall prove here that it is also necessary for
the local minimum in the sense of definition 2. Remark that
the local maximum principle holds without the assumption
(H5).

Ciritical cone. In order to ensure a compact statement of
the second order conditions, we shall use the total derivative
w.ri. time along the solution to the following ordinary

lie.,

(1) = ~i3, (a*) + [/ Hoz(6)d8 + [} Mz, (8)dwy(8)
+ 5, e (Plsi) — gl s, ) tE [t ta), (9
Yit1) = =13, (a").

Here, functions ¢* (1) = ¢*{r;s;,¢') are solutions fo the adjoint limiting
system

dg’ . . . .
-oL = Ho (s DS, d =) U0
with (he comesponding solution z%(7) to svstem ¢23) when z(s™) =
z*(s™).

differential system?

H
~
W

where F(t, z, v, v) = f(t,z,u)+G(¢, z)v. Under Frobenius
condition, this derivative does not depend on v, but in any
other cases, we always put v*{t) = w*(t) (6). Denote
by BV™(5*) the set of n-dimensional vector functions of
bounded variation whose jump times are supported on S*. It
is clear that z*(-), ¥(-}, and w*(-) are in BV(5*) spaces of
the corresponding dimension.

F(t,z,u,v)
Ho(t,z,¢,u,v)
v, wt)eK

(16)

Definition 5. A variation (dzg,6u,dw) € R™ x LT x
BV*(5*) is called critical if the corresponding state tra-
jectory variation, éx € BV™(S5"), satisfies the following
conditions:

<0,i=
(Biala),80) + (Limy o), G £ 12 30 a7
da = {bz(to),bx(t1)), Sun = dwlty) (1)
sz = Fy(t)0x + Fu(t)du — (H,)L(t)ow, t¢ 8§ (19
d(dw) € X + Lin{dw*}, dw(ty) =0 20)
dx(s) = 8q(1;s8,¢), Vs e S* @
where 8g(7; s,¢) := 8g*(7) is a solution to the sysiem
A = Higals,2*(1),0)5¢°
g (0) = ézo (22)

§q*(0) = 8z(s~), s>t

and the function z°(7) is the solution to the limiting system

& - Glss, )i,

o #(0) = a(s7)

(23)

when s; = 5, z(s™) = x"(s™) ( recall that ¢ = [w*(s)]
= w*(s} — w" (5~ )) underlying the solution concept (6).

Denote by K- the cone of all critical variations,

Quadratic form. For any A € A define the quadratic form

Q* (8, bu, bw) = daTI2, (a*)6a + Q} (a, 6w;)

t
~- [ @ bz, 0u,sw)(t)dt (24)
to

tFor example, {Hy)z = — ) .
igz® (0).um (£).ew® (2}
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where Q* and Q7 are the following quadratic forms:

Q (82, 0u, 6w) = suT H2,68 + 2627 H) bu
~28wT (AN, 6u — swT (HM), 6w (25)
—26wT (BN 6z + §zT H) bz
Q7 (8-}, 6w1) = 202(t0) 13,5, ()G (t1 )dwy
—26x(ty) T H2, (t1)0w;
+8w] GT(t1)(L3, 2, (e")C(t1)
—H2 (t1))8wy =D _ (827 (s) T (5)0x(s)
sES
=3zT (s )0 (s7)éx(s7)).

(26}

Here 8z{-) is the corresponding solution to (20), (21), (22),
d2(t5} = bz, wity) = 0, and the ¢ dependence in Q> is
omitted. )

The n x n matrix ¥*(t) € BV™*"{S*) in formula (26)
is given by .

VA e) = —2ZT(L;1) fy Z7' 7 (r, ) Hg(7; 1)
Z- Y t)drZ(1;1).

where Hyg,(r;t) denotes Hig (2 (7;8),¢%(m;0),w* ()
and the n x n matrix Z(7;t)} satisfies the linear differential
equation

27)

~& ZHt ), ZOn =1

Here, 2*(r:t), ¢*(7;t) are the solutions to the limiting
systems

&~ o), () =2 0)
—%g‘;' = le(taz.?q‘:w‘(t))’ Q’(l;t)'= d’(t)

Notice that ¥(ty) = 0 from the fact that w(t;) = 0.

Main result. Consider the following modified variational
equation:

6z = Fi(t)0z + Fy(t)ou ~ (H,)(t)mbw, t¢ S (28)
with jump conditions (21) and {22), with

6z(0) = dzo € R", due L™, dwelk, (29
(=]

where 7 is the matrix of the orthogonal projection from R*
onto the linear subspace N defined by N = K n(-K)3.
Define the quadratic form ©) on R® x L™ x L%, x R*
obtained from Q* by formally replacing 6w, by h.
Put L = (L,, L2) and denote by X, the linear subspace
of R* x LT x LX x RF of all wples (§z¢,5u,dw, k) €

‘0bviously C*{{tg,t1], N} is the maximal linear subspace contained in

R™ x L™ x L x R* such that the corresponding solution
of (28) with {21), (22), satisfies

La(a*)sa+ Ly, (a*)G(t1)rh =0, (h € R).
Define the linear operator A : K — RAL) by the formula

A(62(0), 6u,dw, h) = L (a*)}éxg + Ly, (a*)éz1 +
L, (a®)G(ts)mh,

where 4z is the comresponding solution to (28), (29), (21),
(22). Let & = codim (/mA)*.

Consider the subset Ag{z*,u*,w*} (or A, for short) of
vectors A € A(z”,u*, w*) such that the index of the form
Q) on the subspace K, is not greater then d. We recall that
the index of a quadratic form g on a given subspace V is
the maximum dimension of any subspace of V' where the
quadratic form is negative definite.

Theorem 6 (Necessary conditions of optimality). Let the
control process (z*, %", w") be a local optimal to the problem
(P). Then, A, # @ and, for any (dzq,du, dw) € K., we
have

A
{2‘?\’: 0*(dzg, du, dw) = 0. (30)

Note that, by definition of A,, the cone A; € A, and,
therefore, theorem 6 is stronger than well known conditions
for which cone A, in (30) is replaced by A, [25]), [26].

The proof of this result is organized ino several steps as
follows. First, we transform {P) into an equivatent problem
whose impulsive dynamics do not depend on the state vari-
able. Then, we apply the optimality conditions proved in [3).
Finally, the local maximum principle and the second order
conditions are decoded in order to be expressed in terms of
data of the original problem.

Remark 7. Second order necessary conditions of optimal-
ity are also considerable for the abnormal case (see [1], (2],
[3]). For problem (F), the abnormality of admissible control
process (dxp, u(-), w(-)) means that the convex hull of the
A(bzq, u(-), w(-)) contains 0. Notice that, for the abnormal

41t can be easily shown that d is equal 1o the dimension of the kernel of

A
{n + k + a(L)) x d{L) block matrix operator B ; RAL)

G(t;)‘.‘r
RPFHRFHL), whepe

A=Lzgle™) + ®(01)Lzy (%),
t
BwmLs, (a'):':!:(tl) j¢— Wrexre)T e e T oL (%),
; oz

being ¢ a fundamental sofution 1o the system (28), i.e..
d%q’(t) = Fx{t)®(t),dt-ae. P(tg) =1,

and r(}) is the n x (m+ k) block mawix defined by [F(t) —(H )}y(t)7]
and A+ denotes the transpose of A.
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case, second order conditions in which A is used instead of
A, in formula (30} become trivial (i.e., uninformative).

Remark 8. In the expression for the form Q3 in the last
term there appears terms which feature left limits, §z(s~)7,
T (s57), s € §*. However, in order to compute these terms it
is not necessary 1o extract limits from the left. For example,
to compute ¥*(t™) at some fixed point t € 5, ¢ > ¢y, it
is sufficient to do the following. First, we must solve the
following system of differential equations

& Gt - ), (LY =2
d * - * » &
-SE = Hul 2w - ), ¢ (1) = w(e),
and, then, solve the matrix differential cquation
-‘Z—f = ZHiga(t, 2" (n1), (" (8) = ), Z(0:t) = I.

This gives us the function Z(7,¢~). After this, we compute
U*{¢~) by formula (27). So, for our purpose, we need to
solve two Cauchy problems (for each atom).

1V. EXAMPLE

Letn>5,k=n~1 z=col(zi,...,2,) € R". { € R¥
be a given nonzero vector, and Q be a symmetric & x & matrix
such that the index of each of the matrices Q and (—() is
not less than 2.%

Consider the problem

Minimize J(z,w)
subject to  dzi = fylz,t)dt +dw;, i =1Lk, Vi€ ([0,1]
dzy = folz, t)dt + {Qcol(xy, - .. , Tk ), dwd,
Vtelo,1]

z(0) =0, z,(1)=0.
Here, J{z,w) i= ((, (z:(1),...,7(1))), K = RF, and w =

cob{wy, ..., wk).

Assume that, fori =1,...,n, the f;’s are arbitrary given
smooth functions such that £;(0,t) = 0, f.(0,%) = 0, and
Srzz(0,8) = 0. It can be readily seen that the Frobenius
condition holds.

Let us investigate the admissible control process (0,0,0)
and prove that it is not a locally optimal control process.

Fix any A € A. From (14), we obtain, for (-} = (-} =
(1 (), ..o 0n()), W:(t) =0, i = 1,...,k, and from (11),
we have ¥/, (¢} = ¥n,0 = const.

Hence, by vsing (11), (12), and the fact that { # 0, we
obtain A ={h: A =0, Ap; =0, i=1L,n—1, dpp =
:)\g.ﬂt i} and, consequently, A consists of only two vectors
A=-hand A= ;}5(0,...,0,1,—1) and 0 =17‘5.

5As an example, consider k = 4 and @ = diag(1,1, -1, —1).
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Let 8% = col{dxy,...,dx). It can be easily shown that
d=1and

1
Q2{6w) = Yo j (Qd%, sw)dt.
0

Hence, QX (6w) = $tn,0{Q62(1),627(1)). This implies
that, for any #, 0 = %1 the index of the function 2} is not
less than 2. So A = @ and consequently the process (0,0, 0)
is not optimal. Also notice that this process is abnormat and

max Q*(dw) > 0,
AEA

¥ §w (because of X, A € A) and the last inequality is not
informative. ’
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