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 ABSTRACT 

Rice is cropped worldwide, mainly under wetland conditions and conventional 

management. The use of synthetic chemical compounds (e.g., fertilizers, 

pesticides), which are known to have negative impacts on the environment, is 

regarded as a major problem associated with conventional agriculture. To avoid 

environmental contamination, organic farming, relying on the use of natural 

compounds (e.g., minerals, compost) and ancient agricultural practices (e.g., crop 

rotation) to fertilize the soil and avoid plagues, must be encouraged. Organic 

farming, considered a more sustainable agricultural practice, should progressively 

replace conventional agricultural management systems.  

Bacteria are common soil inhabitants that play important roles not only on the 

degradation of xenobiotic compounds (e.g., pesticides) but also on the biochemical 

cycles, crucial in the maintenance of soil fertility, and thus, crop productivity. Soil 

bacterial communities are known to be shaped by different factors, justifying the 

importance of studying the influence of the farming type. Studies assessing the 

influence of different management practices on soil bacterial communities of paddy 

soils were scarce and motivated the present work. Considering that conventional 

farming is still the most widely used, it was also important to assess the feasibility 

of using bioremediation methods in paddy soils to remove molinate, a herbicide 

used in rice culture protection. Taking into account these problems, two major 

specific objectives were defined as i) the assessment of the influence of the type 

and characteristics of the agricultural management on the paddy soil bacterial 

community composition and functional activity, and ii) the feasibility of molinate 

bioremediation in paddy soils. 

To assess the influence of the type and characteristics of the agriculture 

management, two independent studies were carried out. In the first, the paddy soil 

bacterial community composition and functional activity of a conventional system 

was compared with that of an organic farming field. In the second study, organic 

paddies, where an alfalfa-rice crop rotation system (two years alfalfa followed by 
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two years of rice cropping) was implemented, were compared with an uncropped 

soil. Variations were monitored between two different stages of crop-rotation 

system (first and second year of rice cultivation) and over the annual rice cycle, 

and correlated with different abiotic and biotic parameters presumably capable of 

shaping the bacterial communities. To assess the feasibility of bioremediation, the 

efficiency of degradation and natural microbiota stability were studied using the 

intrinsic potential (natural attenuation) or bioaugmentation. 

The study of the influence of the type and characteristics of the agriculture 

management was carried on with samples collected in the Portuguese experimental 

farm “Bico da Barca”, located in the valley of river Mondego. Composite paddy 

soil samples were collected at different periods of the annual rice cycle (before 

seeding, during rice growth and after harvesting) and the bacterial communities 

were characterized using culture dependent and culture independent methods (16S 

rRNA based Denaturing Gradient Gel Electrophoresis and 454-pyrosequencing). 

Other physical, chemical and biochemical parameters were determined in parallel. 

Comparative analyses of the data were supported by multivariate methods. 

The factor most affecting the bacterial community diversity, structure and 

composition was the presence/growth of rice plants. Uncropped soil showed higher 

bacterial diversity than cropped soils. Some lineages, such as Chloroflexi ("Ellin 

6529"), Acidobacteria-2, AD3, and Nostocaceae were apparently outcompeted in 

cropped soils. 

Over the annual rice cycle, functional changes in conventional and organic farming 

regimens were observed. Variations on the bacterial community structure and 

composition were observed in the organically farmed paddy soil samples, but not 

in those under conventional management.  

Important microbial functions occurring in paddy soil over the rice cycle were the 

organic matter degradation, expressed by intense microbial coefficient (qCO2) and 

proteolytic activity, before rice seeding, and the N2 fixing activity, expressed by a 

high abundance of cultivable diazothophic population, during rice plants growth. 

The first function was associated with high abundance of cultivable aerobic 
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heterotrophic populations. However, the multivariate analysis suggested that both 

aerobic and anaerobic heterotrophs were involved in the proteolytic activity, 

through bacteria belonging to lineages such as Sphingobacteriales, Rhizobiales, 

and Actinomycetales and Bacteroidales and Anaerolineae, respectively. In turn, the 

increase of the abundance of cultivable diazothrophs over the rice cycle could have 

been due to bacteria affiliated to Chloroflexi-Ellin6529, Acidomicrobiales, 

Actinomycetales, Rhizobiales, Rhodospirilales and Betaproteobacteria. Both the 

proteolytic activity and the increase in the abundance of the diazothrophs may have 

contributed to the observed increase in the NH4
+
-N soil content over the rice cycle. 

Another important variation over the rice cycle was the increase of members 

affiliated to Nitrospira after rice harvesting. 

The crop rotation stage was observed to be associated with changes in the 

abundance of bacterial lineages affiliated to potential aerobic and anaerobic 

heterotrophs. The presence of alfalfa root debris and aeration conditions, in the first 

year of rice cultivation, favoured the growth of cultivable aerobic heterotrophic 

populations associated with a high abundance of bacteria affiliated to 

Caulobacterales, Sphingobacteriales, Flavobacteriales and Actinomycetales. On 

the other hand, in the subsequent year of the crop rotation, the high soil water, total 

C and available inorganic-P contents, presumably due to soil organic and inorganic 

amendments and the eventual presence of rice debris, favoured lineages such as 

Bacteroidales, Chlorobi and Anaerolinea. Such differences may have been 

responsible for the different aerobic catabolic activity occurring at the 1
st
 and the 

2
nd

 year of rice cultivation. The high abundance of aerobic heterotrophs was 

correlated with the degradation of complex nutrients, while low abundance of these 

organisms was correlated with the degradation of amino acids, amines and sugars. 

Soil microcosm assays were used to assess the feasibility of using natural 

attenuation and bioaugmentation methods to clean up molinate contaminated paddy 

soils. Both bioremediation approaches reduced the soil molinate content, although 

bioaugmentation allowed a higher extent/faster removal than under natural 

attenuation. In addition, the exogenous degrading culture used in bioaugmentation 
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assays did not disturb the autochthonous bacterial community. The occurrence of 

natural attenuation suggests the existence of indigenous microorganisms able to 

degrade molinate, reflecting the metabolic diversity of the soil and its ability to 

respond to environmental stimuli. 
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 RESUMO 

O arroz é um cereal cultivado mundialmente. Na sua maioria, o arroz é cultivado 

em campos alagados e recorrendo a métodos de agricultura convencional. O uso de 

compostos químicos sintéticos (ex. fertilizantes, pesticidas), devido aos negativos 

impactos que estes têm no ambiente, é visto como o maior problema associado a 

este tipo de prática agrícola. Para evitar a contaminação ambiental, a agricultura 

biológica, que se baseia no uso de materiais naturais (ex. adubos de base mineral e 

composto), e de práticas agrícolas ancestrais (ex. rotação de culturas) para fertilizar 

o solo e evitar as pragas, deverá ser estimulada. A agricultura biológica, 

considerada uma prática agrícola mais sustentável, deveria progressivamente 

substituir as práticas agrícolas convencionais. 

As bactérias são importantes habitantes do solo, e têm um papel essencial não só na 

degradação de xenobióticos (ex. pesticidas), mas também nos ciclos 

biogeoquímicos, cruciais para a manutenção da fertilidade dos solos, e 

consequentemente, para uma boa produtividade das culturas. Tem sido 

demonstrado que as comunidades bacterianas do solo podem ser moldadas por 

diversos fatores, entre eles o tipo de prática agrícola. Assim, torna-se importante 

conhecer as variações das comunidades bacterianas que possam estar associadas a 

determinadas práticas agrícolas. No caso de solos de arrozais, este tipo de 

conhecimento é escasso, facto que motivou o presente estudo. Considerando que a 

agricultura convencional é, ainda, a mais usada, é também importante avaliar a 

viabilidade da utilização de métodos de biorremediação em solos de arrozais para 

eliminar o molinato, um dos herbicidas usados na proteção da cultura de arroz. 

Tendo em consideração estes problemas, foram definidos dois grandes objetivos 

específicos como i) a avaliação da influência do tipo e características da prática 

agrícola na composição e atividade funcional da comunidade bacteriana de solos de 

arrozais, e ii) a viabilidade da utilização de métodos de biorremediação para tratar 

solos de arrozais contaminados com molinato.  
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Para avaliar a influência do tipo e características da prática agrícola foram 

realizados dois estudos independentes. No primeiro, comparou-se a composição e 

atividade funcional das comunidades bacterianas de solos de arrozais sob 

agricultura convencional e biológica. No segundo estudo, compararam-se solos de 

arrozais em modo biológico, onde se implementou um sistema de rotação de 

culturas luzerna-arroz (dois anos de cultivo de luzerna, seguidos de dois anos de 

cultivo de arroz) com solo não cultivado. As variações entre as diferentes fases do 

sistema de rotação de culturas (primeiro e segundo ano de cultivo de arroz) e ao 

longo do ciclo anual do arroz foram monitorizadas e correlacionadas com 

diferentes parâmetros abióticos e bióticos, presumivelmente capazes de influenciar 

as comunidades bacterianas. Para avaliar a viabilidade da biorremediação, estudou-

se a eficiência de degradação e a estabilidade da microbiota autóctone usando o 

potencial intrínseco (remediação natural) ou a bio-inoculação.  

O estudo da influência do tipo e características da prática agrícola foi realizado em 

amostras de solo colhidas no campo experimental “Bico da Barca”, localizado no 

vale do rio Mondego. Amostras compostas de solos de arrozais foram colhidas em 

diferentes períodos do ciclo anual do arroz (antes da sementeira, durante o período 

de crescimento do arroz e após a colheita) e as comunidades bacterianas foram 

caracterizadas usando métodos dependentes e independentes de cultivo 

(eletroforese em gel com gradiente desnaturante e pirosequenciação-454, baseadas 

no gene ribossomal 16S). Em paralelo, foram determinados outros parâmetros 

físicos, químicos e bioquímicos. A comparação e interpretação dos dados foram 

suportadas por métodos de análise multivariada. 

A presença da planta de arroz, isto é, o seu cultivo, foi o fator que mais afetou a 

diversidade, estrutura e composição da comunidade bacteriana dos solos. No solo 

não cultivado a diversidade bacteriana foi maior do que em solos cultivados. Tal 

diferença foi devida ao facto de algumas linhagens bacterianas parecerem ter sido 

menos competitivas em solos cultivados, tais como Chloroflexi ("Ellin 6529"), 

Acidobacteria-2, AD3 e Nostocaceae. 
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Ao longo do ciclo anual do arroz foram observadas variações na funcionalidade das 

comunidades microbianas, tanto em solos sob regime agrícola convencional como 

regime biológico. Contudo, em solos sob agricultura convencional não se 

observaram as variações na estrutura e composição da comunidade bacteriana que 

caracterizaram os solos sob agricultura biológica. 

A degradação de matéria orgânica, expressa pelo intenso coeficiente microbiano 

(qCO2) e atividade proteolítica, observada antes da sementeira do arroz, e a 

atividade diazotrófica, expressa pelo aumento da população diazotrófica cultivável, 

intensificada durante o crescimento da planta, foram as principais funções 

microbianas que ocorreram nos solos ao longo do ciclo do arroz. A elevada 

abundância da população cultivável de heterotróficos aeróbios esteve relacionada 

com a primeira função. Contudo, a análise multivariada sugeriu que quer 

heterotróficos aeróbios quer anaeróbios podem ter estado envolvidos na atividade 

proteolítica, através de bactérias pertencentes às linhagens Sphingobacteriales, 

Rhizobiales, Actinomycetales, Bacteroidales e Anaerolineae, respectivamente. Por 

outro lado, o aumento da abundância da população cultivável diazotrófica ao longo 

do ciclo do arroz pode ter sido devida a bactérias de linhagens como Chloroflexi-

Ellin6529, Acidomicrobiales, Actinomycetales, Rhizobiales, Rhodospirilales e 

Betaproteobacteria. Quer a atividade proteolítica quer o aumento da abundância de 

diazotróficos podem ter contribuído para o aumento do conteúdo em NH4
+
-N do 

solo, observado ao longo do ciclo do arroz. O aumento de organismos afiliados a 

Nitrospira observado após a colheita do arroz foi outra importante variação ao 

longo deste ciclo.  

Observou-se que a fase da rotação de culturas se relacionou com variações na 

abundância de grupos bacterianos de linhagens que incluem organismos 

heterotróficos aeróbios e anaeróbios. A presença de detritos de raízes de luzerna e 

as favoráveis condições de arejamento, no primeiro ano de cultivo do arroz, 

estiveram associados à proliferação da população heterotrófica aeróbia, 

expressando-se na abundância de bactérias afiliadas a Caulobacterales, 

Sphingobacteriales, Flavobacteriales e Actinomycetales. Por outro lado, no ano 



xviii 

subsequente da rotação de culturas, o elevado conteúdo em água, carbono total e 

fósforo inorgânico disponível, presumivelmente devido à adição de suplementos 

orgânicos e inorgânicos ao solo e à eventual presença de detritos de raízes de arroz, 

favoreceram linhagens como Bacteroidales, Chlorobi e Anaerolinea. Estas 

alterações podem ter sido responsáveis pelos diferentes perfis de atividade 

catabólica aeróbia observados no primeiro e no segundo ano do cultivo do arroz. A 

elevada abundância de heterotróficos aeróbios correlacionou-se com a degradação 

de nutrientes complexos, enquanto a baixa abundância destes organismos se 

correlacionou com a degradação de aminoácidos, aminas e açúcares.  

Para avaliar a viabilidade de processos de remediação intrínseca ou de bio-

inoculação para regenerar solos de arrozais contaminados com molinato, foram 

realizados ensaios em microcosmos. Ambos os métodos de biorremediação 

reduziram o conteúdo de molinato no solo, embora a bio-inoculação tenha 

permitido uma remoção mais extensa/rápida do que a obtida usando a remediação 

intrínseca. Além disso, a cultura exógena usada no ensaio de bio-inoculação não 

perturbou a comunidade bacteriana autóctone. A ocorrência de remediação 

intrínseca sugere a existência de microrganismos indígenas capazes de degradar o 

molinato, refletindo a diversidade metabólica do solo e a sua capacidade para 

responder a estímulos ambientais. 
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1.1 Soil  

Soil is the portion of the Earth surface with a thickness inferior to one meter. This 

layer is composed by the products of transformation of soil parent material 

produced over time due to geological, atmospheric and biological transformations 

(Buscot 2005; Maier and Pepper 2009). Due to its origin and composition, soil is 

considered the most complex biomaterial on the planet (Young and Crawford 

2004). Two major components drive this complexity, the abiotic soil architecture 

and the biotic diversity. The remarkable physical, chemical and biological 

heterogeneity among soils globally results from the integration of these 

components. In spite of such heterogeneity, three phase systems characterize all 

soils: i) the solid or mineral inorganic phase, ii) the liquid or solution phase and iii) 

the gas phase or atmosphere. The composition of each of these phases, will define 

the properties of a given type of soil (Maier and Pepper 2009). 

 

1.1.1 The solid phase 

In general, the solid phase represents about 45 to 50 % of the soil volume, and is 

constituted mostly by minerals. In this phase, the organic fraction represents only 

0.1 to 5 % (Maier and Pepper 2009). The major constituents of the mineral fraction 

are silicon (47 %) and oxygen (27 %), which combined with soil components with 

low abundance forms a wide variety of minerals with different sizes (sand, silt and 

clay), depending on the weathering of the parent rock (Buscot 2005; Maier and 

Pepper 2009). The percentage of sand, silt and clay within a porous medium 

defines its texture.  

 

1.1.2 The liquid phase 

The liquid phase represents an exchange medium and is extremely important for 

biological activity. Water represents the major component of this phase and due to 

water capillarity properties and soil porosity, water movement is generally the most 
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important process involved in the transport of chemicals (e.g., nutrients) and 

microorganisms. All microorganisms, even those attached to the solid phase, obtain 

nutrients from and excrete their wastes into the liquid phase. Thus, the soil solution 

is an ever-changing environment, due not only to its chemical properties, but also 

to the dynamic influx and efflux of solutes in response to water movement. Hence, 

the composition of liquid phase is determinant for all biological activities 

associated with the soil, i.e., both of microorganisms and plants (Lombard et al. 

2011; Maier and Pepper 2009).  

 

1.1.3 Soil atmosphere 

In well aerated soils, the soil atmosphere has basic composition similar to the air - 

nitrogen, oxygen and carbon dioxide. Soils with poor aeration, for instance, 

flooded soils (due to irrigation or heavy rain) present comparatively lower relative 

proportions of oxygen and altered ratios of oxygen and carbon dioxide (Maier and 

Pepper 2009). In addition, under both saturated and unsaturated conditions the soil 

structure has a critical role on the water flow rate, which affects the diffusion of 

gases into and out of the soil matrix (Young and Crawford 2004).  

 

1.1.4 Role of soil biota in soil: architecture and biogeochemical 

balance  

Soil is also a complex ecosystem, where bacteria, archaea, fungi, algae, protozoa, 

invertebrates and plants co-habit and interact (Maier and Pepper 2009; Young and 

Crawford 2004). Plant roots, which, in general, are the plant components 

belowground, represent an important part of that ecosystem providing nutrients and 

a beneficial adsorption surface, favouring plant-microbe and microbe-microbe 

interactions. Soil biota, i.e., all the aforementioned organisms, play an important 

role in maintaining soil physic- and biochemical properties. Microbial activity has 

a critical role in the soil architecture, in particular, algae and prokaryotes, which are 
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responsible for particles aggregation (e.g., gum production), whereas fungal 

hyphae and plant roots are responsible to held together physically these aggregates. 

Both, texture and structure affect the movement of water, exogenous components 

and microorganisms. Therefore, microbial diversity and activity results from the 

soil characteristics, contributing also to its heterogeneity (Maier and Pepper 2009; 

Young and Crawford 2004).  

Among the diverse microbial populations inhabiting the soil, prokaryotes are the 

most abundant numerically (Killham 1994). The immense metabolic diversity of 

these organisms (autotrophs, heterotrophs, phototrophs, chemo- organotrophs and 

litotrophs and mixotrophs) relies on the use of both organic and inorganic 

molecules as sources of carbon, nitrogen, energy and electrons (reducing power). 

Thus, prokaryotes have a pivotal role in the cycling of chemical elements, in 

particular, of C and N, and also of S and Fe (Emerson et al. 2010; Falkowski et al. 

2008; Gaby and Buckley 2011; Ghosh and Dam 2009; Hanson and Hanson 1996; 

Hohmann-Marriott and Blankenship 2011; Zumft 1997). Other organisms, such as 

fungi, algae and plants, are also involved in the C cycling. Fungi, which are in 

general chemoorganotrophic aerobes, play an important role in the decomposition 

of organic matter (both simple and complex). Algae and plants, which perform 

oxygenic photosynthesis, are important for the fixation of carbon dioxide, and thus 

for the organic fraction of carbon in soils.  

 

1.1.5 Interactions between organisms  

In soil, microorganisms interact within each other and with macroorganisms. 

Different interactions are established and classical classifications define these 

interactions as symbiotic when only one or both of the elements takes benefit of the 

interaction (commensalism and mutualism, respectively) or parasitic when one 

organism lives on or in another organism and obtains its nutrients at the expense of 

its host (parasitism) (Little et al. 2008). Among microorganisms (in particular, 

prokaryotes) the interaction is mainly cooperative. Different prokaryotes are 
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involved on the degradation of both organic and chemical recalcitrant products 

(e.g., lignin, pesticides among others), as well as in the different stages of the 

biogeochemical cycles. Because microorganisms establish complex metabolic 

networks, it is difficult to get a straightforward definition of commensalism or 

mutualism interactions among prokaryotes. Parasitic interactions among 

prokaryotes are rare, although may occur. An example is given by Nanoarcheum 

equitans, which genome lacks many key metabolic functions and was recently 

described as the only potential prokaryote parasite, being Ignicoccus hospitalis its 

host (Paper et al. 2007). In addition to these interactions, microorganisms can 

interact antagonistically with other microorganisms, in general competing for a 

common resource (e.g., through the production of antimicrobial substances) (Little 

et al. 2008). These categories exist in a continuum. Thus, a clear distinction or 

classification of the established relationships among organisms is not always 

possible. 

Microorganisms and plants have also important interactions. Among the most 

studied are the symbiotic interactions rhizobia-legume, actinorhizal and the 

mycorrhiza, which are highly specific (mutualism) (Chow et al. 2002; Jones et al. 

2007; Pawlowski and Bisseling 1996; Wall 2000; Zahran 1999). A good example 

of parasitism is the interaction between phytopathogenic bacteria and fungi with 

plants (Raaijmakers et al. 2009), causing plant disease. Plant protection is another 

example of interaction. By antagonism bacteria or fungi may hamper the activity of 

plant pathogens (Azcón-Aguilar and Barea 1997; Kobayashi and Crouch 2009; 

Little et al. 2008). In summary, these interactions are important for plant nutrition 

and protection.  
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1.2 Agriculture 

The conversion of native ecosystems into farming areas represents the starting 

point of agricultural management. This was an important achievement of 

humankind, but is also among the oldest anthropogenic activities affecting 

ecosystems. 

Before the industrial revolution, traditional agriculture was, in general, enclosed in 

small farms, which depended exclusively on human manual labour and had low 

productivity. Thus, the impact of agriculture on the surrounding ecosystems was 

lower than when fertilizers and pesticides were introduced in the conventional 

management systems. 

 

1.2.1 Conventional management  

Tremendous changes in agriculture practices were brought by industrial revolution. 

The increase of the human population, related itself with the mechanization of the 

processes (Matson et al. 1997), imposed changes in the agriculture management. 

The low productivity of traditional agriculture management was no longer 

compatible with the world food demand. The factors contributing most to the low 

productivity of traditional farming are the depletion of soil plant nutrients (mainly 

nitrogen) and favourable conditions for the overgrowth of weeds and dissemination 

of pathogens. Consequently, traditional agriculture gave space to the so called 

conventional agriculture.  

In conventional agriculture, primarily, the mechanization of the processes and the 

improvement of irrigation systems allowed the expansion of the area devoted to 

agriculture practices. Moreover, the introduction of chemical compounds, such as 

pesticides and fertilizers, boosted productivity yields by overcoming the nutritional 

deficiencies of plants as well as protecting plants from plagues, phytopathogens 

and weeds (Matson et al. 1997). Such procedures permitted also the long-term 

cultivation in the same field. 
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1.2.1.1 Major negative impacts of pesticides and chemical fertilizers on 

ecosystems (macro-scale overview) 

Conventional agriculture has negative impacts on agriculture and surrounding 

ecosystems. Native lands were ploughed to expand the agriculture area and long-

term cultivation with intensive tillage and monoculture systems were implemented, 

contributing to reduce the soil organic carbon (SOC) storage, mainly under dry 

climate conditions (Al-Kaisi et al. 2005; Ogle et al. 2005; Parton et al. 2005). 

Furthermore, the addition of synthetic fertilizers (in particular, enriched in N and P) 

had negative environmental impacts mainly by leaching water soluble molecules 

(NO3
-
, NH4

+
 and PO4

3-
), causing a generalized contamination and eutrophication of 

aquatic systems. For instance, NO3
- 

may have toxic effects on human beings, in 

particular on infants (Knobeloch et al. 2000) and NH4
+
 and P may induce 

eutrofication of downward aquatic environments (Wu 1999). By loss of gaseous 

forms, NH3 will contribute to enrich the natural ecosystems (e.g., forests, 

grasslands) in N, due to downwind deposition. In addition, NO and N2O will 

contribute to increase the concentration of greenhouse gases in the atmosphere 

(Galloway et al. 2008; Schlesinger 2009).  

Part of the pesticides and chemical fertilizers applied in agriculture are dispersed in 

the environment mainly by volatilization and/or leaching. Additionally, some 

molecules may be trapped within very small soil particles, acting as a long-term 

"sink" of contaminants with a slow but continuous diffusion to the environment 

(Park et al. 2005; Reid et al. 2000; Young and Crawford 2004). Pesticides are not 

organism specific, i.e., their toxic effects span different types of organisms and 

trophic levels (Cochran et al. 1997; Julli and Krassoi 1995; Khan and Thomas 

1996; Moraes et al. 2009; Ondarza et al. 2010). Moreover, the majority of the 

pesticides are not readily biodegradable and have long half-life periods. Many 

pesticides are recalcitrant (Bromilow et al. 1999; Ghosh and Singh 2009; Nagy et 

al. 1995) or are degraded into recalcitrant and/or toxic transformation products 

(Ellis et al. 1998; Pothuluri et al. 1991). The reported contamination of soil and 

surrounding environments (e.g., surface and groundwater) by pesticides results 
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from the above mentioned properties (Albanis et al. 1998; Castro et al. 2005; 

Durand et al. 1992; Gaus 2000; Mabury et al. 1996). The diffusivity of pesticides is 

a relevant issue for public health authorities because it has been observed that the 

contamination may be detected at long distances from the source (Albanis and Hela 

1998). Given their harmful effects, the application of several pesticides has been 

intensively evaluated either by the European and American Environmental 

Protection Agencies. Some pesticides have been forbidden, and others are used 

under restricted conditions (European Environment Agency, 

http://www.eea.europa.eu/ and United States Environmental Protection Agency, 

http://www.epa.gov/pesticides/). 

 

1.2.1.2 Major negative impacts of pesticides and chemical fertilizers on 

ecosystems (micro-scale overview) 

Pesticides may have negative effects on different soil functions and on microbial 

community diversity and activity. Several reports demonstrated that pesticides may 

decrease the soil mineralization activity (El-Ghamry et al. 2001), microbial 

biomass (El-Ghamry et al. 2001; Sheng et al. 2005), the activity of proteolytic 

bacteria (Sheng et al. 2005) and substrate induced respiration and nitrification 

(Saison et al. 2009). On the other hand, pesticides may also increase the activity 

and abundance of N2 fixing members (Chen et al. 2009; Das and Mukherjee 2000) 

and of phosphate-solubilizing microorganisms (Das and Mukherjee 2000). 

Nevertheless, some of the effects on different soil microbial activities (e.g., 

mineralization, nitrogen fixation, nitrification) are usually short-termed (Das and 

Mukherjee 2000; El-Ghamry et al. 2001; Saison et al. 2009). However, long-term 

exposure to some pesticides may lead to the loss of autochthonous members of the 

soil microbial community. Laboratory-scale studies with soil isolates revealed that 

pesticide exposure could induce the loss of specific organisms (Adeleye et al. 

2004). Despite the potential soil resilience, the elimination of some populations 

may restrain its functional activity.  
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The above mentioned alterations combined with the variation on parameters such 

as SOC and soil organic N may contribute to decrease the soil quality (Gregorich et 

al. 1994). After more than a century of conventional agriculture, soils exhaustion 

and the contamination of the environment and of the human food chain claim for 

alternatives. The scientific community, the authorities and the general public 

realise that to avoid loss of soil quality and further contamination of native 

ecosystems it is crucial to establish and improve already existing sustainable 

agriculture practices (Mäder et al. 2002; Matson et al. 1997; Pimentel et al. 2005; 

Rosen and Allan 2007). Moreover, soils already contaminated should be treated 

(Rölling and van Versevel 2002; Vidali 2001). These objectives demand for a 

thorough understanding of the response of ecosystem to the use of synthetic 

chemical compounds and intensive agriculture practices is important.  

 

1.2.1.3 Bioremediation processes to treat contaminated soils 

Different technologies are available to treat contaminated soils. The simplest 

approach consists on digging up the contaminated soil and remove it to a landfill, 

or capping the contaminated areas of a site. None of these methods remediate the 

soil, simply contributing to move the contamination elsewhere or restrain the 

contamination in the original site (Vidali 2001). Advanced techniques such as high-

temperature incineration or chemical decomposition (e.g., base-catalyzed 

dechlorination, UV oxidation) reduce efficiently the levels of contaminants. 

However, these methods are technologically complex, expensive and, in particular 

incineration, are not well accepted by public (Vidali 2001). Bioremediation is 

regarded as a good alternative. In these biological processes, microorganisms 

individually or, more frequently, cooperatively associated, metabolize and degrade 

the pollutants (Wackett and Hershberger 2001). These processes can often be 

carried out on site, offer the possibility to eliminate or transform various 

environmental contaminants into harmless compounds, have relatively low-costs 

and have generally a good public acceptance. 
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Soils bioremediation can be achieved by natural attenuation or bioaugmentation. 

Natural attenuation depends on the ability of the autochthonous community to 

biodegrade a contaminant, whereas bioaugmentation depends on the introduction 

of an exogenous microorganism or mixture of microorganisms (consortium) to 

carry out that task (Vidali 2001; Vogel 1996). The efficiency of both types of 

process is determined by abiotic and biotic factors (e.g. water content, 

bioavailability of the contaminant, electron acceptors, nutrients) (Reid et al. 2000; 

Röling and van Verseveld 2002; Vogel 1996). The capacity to optimize the 

bioremediation transformations relies on a thorough characterization of the 

contaminated site before process implementation. When bioaugmentation is the 

selected method, a possible limitation is that the survival of the exogenous 

degrading microorganism(s) may be compromised under natural conditions. The 

competition with the indigenous community, the existence of predators among 

others may interfere with the exogenous organisms (Thompson et al. 2005; Vogel 

1996; Wackett and Hershberger 2001). Despite the low costs associated with these 

non-destructive processes, when compared to the other remediation methods, 

bioremediation usually needs long periods of time to be effective. Among the 

major reasons for such a delay are the large extension of soils contaminated with 

low concentrations of contaminants (or low bioavailability) and the heterogeneous 

spatial distribution of contaminants and degraders (Wackett and Hershberger 

2001). Although the treatment of contaminated soils is a good solution to avoid the 

dissemination of the pollutants, prevention should always be preferred to avoid the 

continuous contamination of agricultural environments and to preserve the 

ecosystems. Thus, the implementation of environmental friendly farming practices 

(e.g., organic farming) should be encouraged worldwide.  
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1.2.2 Sustainable agriculture 

In addition to the above mentioned facts, an increasing awareness of the citizens on 

the benefits of organic farming (Agriculture and Rural Development, European 

Commission, http://ec.europa.eu/agriculture/organic/download-information_en and 

Pesticide Action Network, North America, 

http://www.panna.org/issues/publication/agroecology-and-sustainable-

development) has been contributing to its implementation. Different strategies have 

been used to implement sustainable agricultural practices. Examples are the 

utilization of transgenic plants, in particular cereals, able to fix nitrogen 

(Charpentier and Oldroyd 2010) or plague resistant (Romeis et al. 2006). However, 

the utilization of ancient agricultural practices has better public acceptance. 

Ancient agricultural practices include the use of green- or animal manure (Ohno et 

al. 2005), composts or liquid fertilizers (Bernal et al. 2009; Silva et al. 2013), and 

the use of controlled release nitrogen fertilizers which reduces the N leaching from 

soils (Peng et al. 2011). All of these have been considered, so far, good alternatives 

to conventional practices. 

Sustainable agriculture also includes practices aiming to increase SOC storage, 

such as setting aside land from agriculture production, reducing tillage intensities, 

and through cropping rotation practices, which also restores the soil N and 

improves water infiltration when legumes are used (Meek et al. 1990; Ogle et al. 

2005). In this type of farming, where herbicides are completely eliminated and 

intensive tillage is diminished, weed suppression becomes an important issue 

(Liebman and Davis 2000). The crop rotation system, which involves the 

sequential cropping of different species (Kelner et al. 1997; Ladha and Reddy 

2003; Larkin and Honeycutt 2006; Sun et al. 2009; Yin et al. 2010; Zhao et al. 

2009) may be a good method to suppress pests and weeds. Because pests are 

usually plant species specific and different soil managements are used for each 

crop, crop rotation is an efficient method to avoid or minimize weeds and pests 

(Liebman and Davis 2000).  
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1.3 Agriculture soil microbial ecology: major goals and 

importance 

Rich and diverse microbial communities as those of soils are supposed to be able to 

respond to different types of perturbation (Ekschmitt and Griffiths 1998). As such, 

the analysis of the prokaryotic communities may give valuable indications about 

the stress responses of an ecosystem and mirror the history of the microhabitat 

(Johnsen et al. 2001). The soil prokaryotic communities are known to be influenced 

by a wide range of biotic and abiotic factors (Table 1.1). The factors contributing 

most to community alterations may vary among different ecosystems, and there is 

always a degree of uncertainty regarding the preferential target populations/ 

functional activities and the interplay among the different variables. It is 

recognized that the general soil properties may be influenced by long-term 

vegetation effects (e.g., deposition of plant debris, plant nutrient uptake) 

(Kowalchuk et al. 2002). Hence, although bulk soil bacterial populations seem to 

be more influenced by general soil properties than by plant species composition 

(Kuramae et al. 2012; Ulrich and Becker 2006), it is possible to conclude that bulk 

soil bacterial communities are slowly modelled by vegetation.  

The complexity of the interactions referred to above require a thorough 

characterization of bulk soils in terms of biotic and abiotic parameters. Only based 

on such studies it will be possible to get additional insights into the interwoven 

relationships among organisms of different trophic levels and the environmental 

factors. 
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Table 1.1 Examples of abiotic and biotic factors shaping prokaryotic communities in soil. 

Factors Effects on soil microbial communities References 

Bulk soil 

Soil characteristics 
Differences on the bacterial communities were related to soil factors and not to land-use type or plant 

species diversity 
(Kuramae et al. 2011; 

Kuramae et al. 2012) 

 
Soil type was the most important determinant of microbial communities assessed by phospholipid fatty acid 

(PLFA) profiles  
(Bossio et al. 1998) 

 Soil type effect exceeded that of plant species in bulk soil 
(Kowalchuk et al. 2002; 

Wieland et al. 2001) 

 Induced different bacterial response to pesticide application (expression of catabolic genes) (Ding et al. 2010) 

Parent material Community structure was clearly related to parent soil material  (Ulrich and Becker 2006) 

Soil texture  Soil texture induced changes in bacterial communities 
(Ulrich and Becker 2006; 

van Diepeningen et al. 2006) 

Carbon content and pH Major determinants of bacterial community composition  (Ausec et al. 2009) 

pH  Low pH induced low bacterial diversity 
(Fierer and Jackson 2006; 

Lauber et al. 2009) 

 Low pH induced decreases in the catabolic evenness (Degens et al. 2001) 

 Low pH did not influence bacterial community diversity (Ausec et al. 2009) 

 Affects microbial biomass, community structure and response to substrate addition 
(Aciego Pietri and Brookes 

2009) 

Available P 
In buffered soils, available P was the major driver of changes in composition of prokaryotic soil 

communities 
(Kuramae et al. 2011) 
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Table 1.1 Continued 

Factors Effects on soil microbial communities References 

Bulk soil 

Water content Induced bacterial community structure and composition changes 
(Asari et al. 2007; Kikuchi et 

al. 2007; Noll et al. 2005) 

Land use 
In successional studies, history of land-use was more critical in shaping the composition of microbial 

communities than vegetation and soil properties 
(Jangid et al. 2011) 

Organic vs conventional 

management 

The farm management history influenced the structure of microbial community, nevertheless both 

communities were positively stimulated by organic amendment (increase in microbial biomass) 
(Stark et al. 2008) 

 
Bacterial diversity was not affected by management, but a higher diversity of bacterial functional 
communities was found in soils from organic than from conventional farms  

(Liu et al. 2007) 

 Significant differences were determined in the microbial PLFA profiles (Bossio et al. 1998) 

 

Organic management induced higher number of bacteria of different trophic groups, species richness in 

bacteria communities and more resilience to a drying-rewetting disturbance in soil than conventional 

management 

(van Diepeningen et al. 2006) 

Arable soil vs forest vs 

native grassland 
Catabolic diversity was highest under native grassland and lowest under exotic forest (Nsabimana et al. 2004) 

Crop vs pasture 
Crop induced lower catabolic diversity, and increased susceptibility to decrease the catabolic evenness 

under stress conditions (pH, salinity, metals)  
(Degens et al. 2001) 

 Decrease in soil microbial biomass (Haynes and Tregurtha 1999) 

Crop vs. forest 
Communities from cropped soils were less diverse at the phylum level, but in contrast a higher diversity 

of members within certain phyla was found in cropped than in forest soil. 
(Roesch et al. 2008) 
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Table 1.1 Continued 

Factors Effects on soil microbial communities References 

Bulk soil 

Planted vs. unplanted Bulk soil bacterial community composition was different (independent of plant species) (Zul et al. 2007) 

 
Cropped soils with Phaseolus vulgaris did not change the abundance of Nitrosospira (cluster 3) members, 
but affected those affiliated to Nitrosomonas (cluster 8), when compared to uncropped 

(Junier et al. 2009) 

Rhizosphere Bulk soil bacterial community were different from those of rhizosphere.  
(Uroz et al. 2010; Wieland et 

al. 2001) 

Rhizosphere 

Plant species Plant species influenced the microbial communities in plant-associated habitats (rhizosphere and rhizoplane) 
(Berg and Smalla 2009; 

Kowalchuk et al. 2002; 

Wieland et al. 2001) 

Management Bacterial community and mycorrhizae were not affected by soil management or geographic source (Chow et al. 2002) 

Soil parent material Soil parent material partly induced changes in the bacterial communities from rhizosphere 
(Ulrich and Becker 2006) 

(Gomes et al. 2010) 
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Soil is known for its functional redundancy (Stres and Tiedje 2006). Indeed, 

phylogenetically divergent lineages of microorganisms may share the capacity to 

undertake some metabolic processes, and thus, display identical activities (Table 

1.2). In addition, mixotrophy, frequent among microorganisms, allows the use of 

different sources of energy and carbon under different conditions (Table 1.2). 

Temporal successions in bacterial communities have been reported in specific soil 

microhabitats (e.g., in plant debris, rhizosphere, bulk soil), showing the 

interdependence of different community members and suggesting that different 

bacterial members may yield distinct roles in the ecosystem (Bastian et al. 2009; 

DeAngelis et al. 2011; Rui et al. 2009). Not surprisingly, the patterns of succession 

may vary according to the environmental conditions (e.g., temperature, soil water 

content, plant growth) (Asari et al. 2007; Junier et al. 2009; Rui et al. 2009; 

Watanabe et al. 2009). Indeed, those environmental conditions may influence the 

development of different phylogenetic lineages, although not necessarily of 

different functional groups. Thus, the phylogenetic lineages responsible for a given 

activity may vary, depending on the (micro-) environmental conditions. As a 

conclusion, it is possible to say that soil functional redundancy is, above all, a 

result of the richness and diversity of the community.  
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Table 1.2 Examples of bacteria involved in particular metabolic activities contributing to soil functional redundancy.  

Functional activity Phylum (examples of genera) References 

Phototrophic  Chlorobi (e.g., Chlorobium, Chloroherpeton) 
(Bryant et al. 2012; Frigaard and Dahl 2008; Hohmann-Marriott and Blankenship 

2011; Imhoff 2003; Madigan 2003) 

 Chloroflexi (e.g., Chloroflexus, Roseiflexus) 
(Blankenship 1992; Bryant et al. 2012; Hanada et al. 2002; Hohmann-Marriott and 

Blankenship 2011; Madigan 2003; Pierson and Castenholz 1974) 

 Cyanobacteria (e.g., Nostoc, Oscillatoria, Synechococcus ) (Gallon et al. 1991; Galloway et al. 2008; Hohmann-Marriott and Blankenship 2011; 

Mager and Thomas 2011) 

 Firmicutes (Heliobacterium) (Blankenship 1992; Gest and Favinger 1983; Hohmann-Marriott and Blankenship 

2011; Madigan 2003) 

 Proteobacteria (e.g., Ectothiorhodospira, Rhodobacter, 

Rhodospirillum)  
(Blankenship 1992; Frigaard and Dahl 2008; Hohmann-Marriott and Blankenship 

2011; Madigan 2003) 

Methylotrophs and 
methanotrophs  

Proteobacteria (e.g., Methylomonas, Methylocystis, 

Methylosinus) 
(Dunfield et al. 2003; Hanson and Hanson 1996; Semrau et al. 2008) 

 
Verrucomicrobia ("Acidimethylosilex fumarolicum", 
"Methyloacida kamchatkensis") 

(Dunfield et al. 2007; Islam et al. 2008; Pol et al. 2007; Semrau et al. 2008) 

Nitrogen fixation Actinobacteria (e.g., Frankia, Streptomyces) 
(Buckley et al. 2007; Huss-Danell 1997; Kevin Vessey et al. 2005; Pawlowski and 

Bisseling 1996; Ribbe et al. 1997; Wall 2000) 

 Chlorobi (Chlorobium) (Dos Santos et al. 2012; Farnelid et al. 2011) 

 Chloroflexi (Roseiflexus) (Dos Santos et al. 2012; Farnelid et al. 2011) 

 Cyanobacteria (e.g., Anabaena, Nostoc) 
(Gallon et al. 1991; Kevin Vessey et al. 2005; Newton 2007; Pawlowski and 

Bergman 2007; Rai et al. 2000) 

 Firmicutes (e.g., Bacillus, Clostridium, Paenibacillus )  (Chen 2005; Dommelen and Vanderleyden 2007; Kennedy et al. 2004; Newton 2007) 
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Table 1.2 Continued 

Functional activity Phylum (examples of genera) References 

Nitrogen fixation 
Proteobacteria (e.g., Azoarcus, Azorhizobium, 
Azospirillum, Bradyrhizobium, Herbaspirillum, 

Pseudomonas, Rhodospirillum, Rhizobium) 

(Dommelen and Vanderleyden 2007; Falk et al. 1985; Kennedy et al. 

2004; Kevin Vessey et al. 2005; Stacey 2007) 

Aerobic ammonia/nitrite oxidation 

(Nitrification) 
Chloroflexi ("Nitrolancetus hollandicus") (Sorokin et al. 2012) 

 Nitrospira (Nitrospira) (Ehrich et al. 1995) 

 
Proteobacteria (e.g., Nitrobacter, Nitrosomonas, 

Nitrosospira) 
(Head et al. 1993; Koops and Pommerening-Röser 2005; Koops et al. 

1991; Sorokin et al. 1998) 

Anaerobic ammonia oxidation 
Planctomycetes (e.g., "Anammoxoglobus", "Brocadia", 

"Jettenia","Kuenenia", "Scalindua") 
(Op den Camp et al. 2007; Strous et al. 1999; van de Graaf et al. 1996) 

Denitrification Firmicutes (e.g., Bacillus, Geobacillus) 
(Liu et al. 2008; Suharti and de Vries 2005; van Spanning et al. 2007; 

Zumft 1997; Zumft and Körner 2007) 

 
Proteobacteria (e.g., Azospirillum, Herbaspirillum, 

Pseudomonas, Rhodobacter) 
(Hiraishi et al. 1996; Ishii et al. 2011; Tago et al. 2011; van Spanning 

et al. 2007; Zumft 1997; Zumft and Körner 2007) 

Dissimilatory nitrate reduction to 

ammonium Firmicutes (e.g., Clostridium) (Caskey and Tiedje 1979) 

 
Proteobacteria (e.g., Desulfovibrio, Enterobacter, 

Pseudomonas, Wolinella) 
(Bokranz et al. 1983; Fazzolari et al. 1990; Samuelsson 1985; Seitz 

and Cypionka 1986; Strohm et al. 2007) 
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Table 1.2 Continued 

Functional activity Phylum (examples of genera) References 

Iron oxidizers Actinobacteria (e.g., Acidimicrobium, Ferrithrix ) (Emerson et al. 2010; Johnson et al. 2009) 

 Chlorobi (Chlorobium) (Emerson et al. 2010; Hegler et al. 2008; Heising and Schink 1998) 

 Firmicutes (Alicyclobacillus, Sulfobacillus) (Emerson et al. 2010; Karavaiko et al. 2005; Norris et al. 1996) 

 Nitrospira (Leptospirillum) (Coram and Rawlings 2002; Emerson et al. 2010; Hippe 2000) 

 
Proteobacteria (e.g., Acidithiobacillus, Leptothrix, 
Rhodobacter, Sideroxydans)  

(Corstjens et al. 1992; Emerson et al. 2010; Hallberg et al. 2010; 

Hegler et al. 2008) 

Iron reducers 
Proteobacteria (e.g., Aeromonas, Desulfuromonas, Geobacter, 

Pseudomonas, Shewanella, Thiobacillus)  
(DiChristina et al. 2002; Knight and Blakemore 1998; Lovley et al. 

1993; Nealson and Saffarini 1994; Straub et al. 1996) 

Sulfur Oxidizers Chlorobi (e.g., Chlorobium, Chloroherpeton) (Frigaard and Dahl 2008; Ghosh and Dam 2009) 

 Proteobacteria (e.g., Acidithiobacillus, Rhodospirillum) (Frigaard and Dahl 2008; Ghosh and Dam 2009; Hallberg et al. 2010) 

Sulfate and sulfur reducers Nitrospira (Thermodesulfovibrio)  (Henry et al. 1994; Sekiguchi et al. 2008) 

 
Proteobacteria (e.g., Desulfovibrio, Desulfobacter, 

Desulfuromonas) 
(Brandt and Ingvorsen 1997; Brysch et al. 1987; Schnell et al. 1989) 
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1.3.2 Assessing soil prokaryotic community structure and composition 

1.3.2.1 Culture dependent and culture independent methods  

Nowadays, soil microbial ecologists, in particular those studying prokaryotes, can 

use a wide variety of tools and techniques that permit the assessment of the 

microbial communities. All the techniques have associated drawbacks and benefits, 

and may extract different information about prokaryotic communities. Therefore, 

the method(s) chosen will depend on the objectives of the study.  

The techniques may be divided into two main groups, those based on culture-

dependent and those based on culture-independent methods. The major drawback 

of the former group is that only about 1 % of microorganisms (in particular, 

bacteria) are, so far, cultivable (Berg and Smalla 2009; Little et al. 2008; Scow et 

al. 2001). The inability to culture some microorganisms may rely on several factors 

such as, the requirement of specific growth conditions available in the natural 

environment (Davis et al. 2005; Davis et al. 2011), and/or the outcompetition by 

fast growing microorganisms (Davis et al. 2011; Scow et al. 2001; Shrestha et al. 

2007). Other non-cultivability forms may correspond to viable but not in a 

cultivable state, for instance due to cell injuries (Kell et al. 1998; Liesack et al. 

2000). Despite these limitations, culture-dependent methods are useful and quite 

informative. For instance, these methods, in particular the most probable number 

(MPN) (Weaver et al. 1994), allow the estimation of the abundance of 

microorganisms involved in certain metabolism (e.g., nitrogen fixation, autotrophy, 

heterotrophy, nitrate reducers) (Kidd et al. 2008; Nogales et al. 2002). The 

abundance of these microbial types may be a valuable indicator to compare soil 

samples from different locations or over a time scale. The fastness and low cost of 

these methods make them attractive, mainly when a first glance of the potential 

functional activities present in the belowground is aimed. 

Culture-independent methods do not require any cultivation stage and are based on 

the examination of biochemical and molecular traits of organisms to characterize 

the taxonomic and functional activity of communities. Commonly used cellular 
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constituents are, for example, nucleic acids, lipids and proteins. Over the last years, 

most of the microbiota soil studies rely on nucleic acids. Although culture 

independent techniques were designed to get a full overview of each biological 

group in a sample, the complexity of some habitats and the limitations of the 

methods often hinder such objective. Soil is one of such habitats (Lombard et al. 

2011; Young and Crawford 2004). The efficiency of the extraction of prokaryotic 

DNA is probably the major methodological limitation to get a full overview of the 

community, irrespective of the analysis method used (e.g., DGGE, T-RFLP, 

conventional cloning and sequencing techniques, high throughput sequencing 

techniques) (Delmont et al. 2011; Feinstein et al. 2009). Additional biases are 

associated with the PCR (e.g., preferential amplifications, primer efficiency and 

selectivity) (Derakshani et al. 2001; Röling and Head 2005; Scow et al. 2001). 

Despite the above mentioned and other drawbacks, the culture-independent 

methods revolutionized the prokaryote ecology studies revealing a so far unknown 

prokaryotic diversity (Janssen 2006; Rappé and Giovannoni 2003). Due to its use 

as gold standard in bacterial taxonomy and the availability of representative public 

databases, the 16S rRNA gene sequence analysis became a popular tool to 

characterize microbial communities in complex environments (Fierer et al. 2007b; 

Hartmann and Widmer 2006; Li et al. 2009; Olsen et al. 1986). DNA fingerprinting 

techniques (e.g., DGGE, T-RFLP) have been important tools for the comparison of 

the prokaryotic communities (Costa et al. 2007; Derakshani et al. 2001; Enwall et 

al. 2007). These fingerprinting methods may target different genomic regions (e.g., 

16S rRNA or catabolic genes) (Junier et al. 2009; Krause et al. 2009; Sakurai et al. 

2007; Stres et al. 2008) and give a fast overview of the structure of prokaryotic 

communities, being important for comparative purposes. DGGE is advantageous 

over T-RFLP because DGGE bands (DNA fragment) can be excised, cloned and 

sequenced supporting the identification of the corresponding organism (Gomes et 

al. 2005; Kikuchi et al. 2007), nevertheless these cloning procedure is time 

consuming and expensive. Fortunately, over the last years the nucleic acid 

sequencing technology had important technical advances. The development of high 
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throughput sequencing techniques, such as 454-pyrosequencing, among others 

(Mardis 2008; Suenaga 2012), which allow the analysis of millions of sequences at 

(comparatively to the Sanger method) reduced costs, contributed to increase the 

analysis output and promote bacterial community studies (Mardis 2008; Suenaga 

2012). These techniques generate a high number of sequences per samples (ranging 

from several hundred thousand or from tens of millions of reads using 454-

pyrosequencing and Illumina, respectively)(Mardis 2008), which allow a higher 

coverage of sample diversity than older sequencing techniques. Despite the bias 

associated (e.g., a large number of low-quality sequences, high computational 

requirements to analyse and process the huge amount of generated data)(Suenaga 

2012; Zinger et al. 2012) the 454-pyrosequencing has been widely used in ecology 

studies (Baldrian et al. 2012; DeAngelis et al. 2011; Fierer et al. 2012), mainly 

because it generates sequences around 400 bp, which are more suitable for 

taxonomic affiliation than sequences around 100 bp generated by other high 

throughput sequencing techniques (Mardis 2011). For this reason, until now, most 

of the studies on soil bacterial diversity use 454-pyrosequencing approach. 

 

1.3.2.2 Measurement of potential soil microbial activity 

Soil functional activity may be inferred from the catabolic activity of the 

community, using community level physiological profiles (CLPP) (Kennedy 1994) 

or enzymatic assays (Weaver et al. 1994). In CLPP different organic substrates are 

tested individually as sources of carbon and energy for the members of the 

community. The final result is a pattern of substrates utilization. The enzymatic 

assays measure the activity of specific biocatalyst under controlled conditions, 

using known substrates for each enzyme family. Depending on the enzymatic 

activities tested, this type of assay may give an estimate of the intensity of 

biological activity or of the diversity of enzymes in the community (e.g., cellulase, 

phosphatase, arylsulfatase). CLPP and enzymatic patterning are not designed to 

identify the active members of a community, but to give a fast and low cost 
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snapshot of the potential functional activities of the soil. Both are useful tools to 

compare microbial communities. 

 

1.3.3 Measuring microbial diversity and integration of environmental 

data 

Over the years, microbiologists adopted and adapted some of animal and plants 

ecology concepts to meet the particular requirements of microbial ecology (Hughes 

et al. 2001). Currently, microbial ecology combines the most recent advances of 

the molecular biology with well consolidated approaches and concepts used in 

ecology, for example, to estimate and compare the richness and diversity of 

animals and plants in their communities.  

 

1.3.3.1 Diversity measures 

Indices that express the diversity and structure of a community are helpful tools to 

compare communities, mainly because they are very objective and easy to 

interpret. Two terms used to refer to biological communities are structure and 

diversity. By definition, structure refers to both the type and individual abundance 

of members that compose the community. Diversity refers to the number and 

individual abundance of each taxonomic or functional unit. Diversity can be 

measured over different ranges of biological organization, i.e., from the gene to the 

phylum (Zinger et al. 2012). Because both measure different characteristics of the 

community, diversity and structure may vary independently (Little et al. 2008). 

Before assessing diversity it is crucial to define clearly the taxonomic or functional 

unit to be measured. Although this unit is frequently referred to as “species” it does 

not have necessarily the taxonomic meaning of species.  

In general, in natural communities a few species are quite abundant while the 

majority of the others are minor representatives. There are several methods for 

measuring microbial diversity. Some methods are very simple consisting on the 
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establishment of a relationship between the number of different types of organisms 

observed versus the sampling effort (Hughes et al. 2001). These are designated as 

accumulation or a rank abundance curves. Examples of more sophisticated, statistic 

based methods, are the rarefaction (Heck Jr et al. 1975) and the richness estimators 

(Chao 1984). The rarefaction results from averaging randomizations of the 

observed accumulation curves, while richness estimators calculate the total 

richness of a sample by extrapolating beyond what has been recorded to estimate 

the unknown asymptote of a species accumulation curve, thus allowing 

comparisons across samples (e.g., nonparametric estimators, among others). The 

nonparametric estimators (e.g., Chao 1, abundance based coverage estimate - ACE) 

consider both the proportion of species that are not unique (i.e., captured at least 

twice) and those that are observed only once. Given microbial communities have, 

in general, a high number of rare species and these estimators consider these low 

abundance classes, nonparametric estimators are the most promising estimation 

methods for microbial studies. Nevertheless, at low sample sizes both Chao 1 and 

ACE will underestimate the true richness. For this reason, analytical methods with 

higher outputs will offer higher accuracy on the estimates to be made. Therefore, 

estimating diversity based on 454-pyrosequencing data will be more accurate than 

based on cloning and sequencing data.  

Advanced diversity indices use algorithms that combine species richness (i.e., the 

number of species in a community) and evenness (measures how homogeneous is 

the abundance of a species in a community). This index varies between 0 and 1, 

respectively for totally uneven or totally even distribution of species in a 

community. The most commonly used diversity indices in ecology are the Shannon 

(H = - Σ(ni/N)log(ni/N), (Shannon and Weaver 1963), the Simpson (Simpson =1- 

Σ(ni/N)
2
;(Simpson 1949)), and the Evenness (E = H/log S; (Pielou 1966)), where 

(S) corresponds to the number of species, (ni) is the abundance of each species and 

(N) is the sum all individuals in the sample. The former index measures diversity 

while the others measure evenness. More recently, another diversity index, named 

phylogenetic diversity (PD), was developed (Faith 1992). This index is defined as 
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the minimum total length among all the phylogenetic branches required to 

embracing a given set of taxa on the phylogenetic tree. Thus, smaller PD values 

can be expected to correspond to smaller expected diversity. 

Two other parameters (α and β diversity) are useful to compare the composition of 

microbial communities, mainly when large datasets are to be used. These 

parameters were defined by Whitthaker in 1972 and are still used. The α diversity 

refers to the number of species observed in a specific environment. The β diversity 

refers to the number of species shared between two different environments. A 

recently developed β diversity measure (UniFrac metric), incorporates also 

phylogenetic inference (Lozupone and Knight 2005). This upgrade of the β 

diversity measure takes into account the degree of divergence between related 

lineages, in addition to the presence or absence of species (unweighted Unifrac) or 

to the relative abundance of each species (weighted Unifrac).  

 

1.3.3.2 Integration of ecological data 

In general, in ecology studies several biotic and abiotic parameters are measured in 

the collected samples (habitat) being analysed, generating different datasets. 

Standard multivariate analysis, originally developed to integrate data from plant 

and animal ecology studies, are successfully used in microbial ecology studies 

(Noll et al. 2005; Sakurai et al. 2007). These methods measure the patterns of 

variation based on large species data sets (e.g., taxonomic or functional units, in 

terms of presence/ absence or abundance) and use correlation analyses to find 

significant relationships within the data set and between two data sets (e.g. abiotic 

and/or biotic environmental parameters and community composition). Within the 

same dataset, methods such as Principal Component Analysis (PCA) or Detrended 

Correspondence Analysis (DCA) are commonly used. The comparison of two 

datasets requires constrained multivariate analysis, using methods such as 

Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) (ter 

Braak 1994; ter Braak 1986).  
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1.4 Rice culture 

More than 50 % of the world’s population feeds on rice, making this one of the 

crops most produced worldwide (FAOSTAT 2010). This cereal is cultivated 

worldwide but the highest production is found in Asia (FAOSTAT 2010). Rice is 

produced in warm areas mainly under wetland conditions, although upland 

conditions can also be used. When cropped under wetland conditions, soil is 

flooded before rice planting, by seeding or seedling, and the flood conditions 

prevail over the rice cycle. Temporary drainage of the fields may occur when 

pesticides or fertilizers are applied (in conventional farming), or when soil is dried 

to avoid the growth of weeds (in organic farming). Rice growth under flooded 

conditions is advantageous because it brings the soil pH near to neutrality, 

increases nutrients availability (in particular, P and Fe), stimulates biological N2-

fixation, supplies nutrients from irrigation water, and prevents water percolation 

and soil erosion (Roger et al. 1993).  

In Portugal, rice has been cultivated since the 18
th 

century. Nowadays three major 

areas of rice production under wetland conditions are defined, at the basin of rivers 

Mondego, Tejo, and Sado (Direção Geral de Agricultua e DesenvolvimentoRural, 

Portugal, http://www.dgadr.pt/). Most of the fields are conventionally farmed, i.e., 

mechanized production and utilization of synthetic fertilizers (N, P and K, using 

ammonium sulphate, ammonium dihydrogen phosphate and potassium chloride, 

respectively) and herbicides, such as propanil, MCPA, butachlor, benthazone and 

molinate. Until 2007, molinate was amongst the most used herbicides worldwide. 

Although still is use in several world regions (e.g., Europe) 

(http://ec.europa.eu/sanco_pesticides/public/index.cfm?event=activesubstance.sele

ction), molinate is no longer utilized in USA 

(http://iaspub.epa.gov/tdb/pages/contaminant/contaminantOverview.do?contamina

ntId=10620). In some small farms rice has been produced using traditional 

practices, without synthetic amendments or phytochemical protectors, and manual 

labour. Given the importance of rice cropping in Portugal, the "Direção Regional 
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de Agricultura e Pescas do Centro" (DRAPC) leads several field studies at the 

experimental farm "Bico da Barca” located in the valley of river Mondego 

(DRAPC, Portugal http://www.drapc.min-agricultura.pt/).  

 

1.4.1 Paddy soils as special habitats  

Rice (Oryza sativa L.) is an annual grass which growth can be divided into three 

agronomic stages of development: vegetative, reproductive, grain filling and 

maturation. The last stage, of grain filling and maturation, culminates with grain 

increase and colour change from green to gold, and the senescence of rice plant 

leaves. Most of these agronomic stages are related to changes occurring 

aboveground. Nevertheless, important changes occur also belowground during rice 

growth. For instance, at the early stage of rice growth, roots stimulate the growth of 

diazotrophs reaching the highest biological N2-fixing activity close to the 

maximum tillering stage (Ikenaga et al. 2003; Knief et al. 2012; Sims and Dunigan 

1984). Maximum tillering stage is preceded by a high root exudation activity 

(Ikenaga et al. 2003), which may stimulate the abundance of organotrophs and 

thus, of bacteria belonging to the phyla Bacteroidetes, Firmicutes, Beta- and 

Gammaproteobacteria abundant in the rice rhizosphere (Knief et al. 2012). The 

oxygen gradient in the rhizosphere may also shape the bacterial communities. 

Because young roots favor oxic environments and old roots favor anoxic 

environments, the gradient is directed from an oxic to an anoxic habitat and from 

the newest to the eldest roots. Therefore, differences may be also observed over the 

rice agronomic stages, with anaerobic bacteria being more abundant in the late 

agronomic stages than at the early stages (Ikenaga et al. 2003). 

The fields where rice is produced, also known as paddy fields, are subjected to 

alternated periods of flooding and drainage. Such variations are associated with 

different states of soil water saturation, causing periodical changes in the redox 

potential, and making the paddy soil a unique agroecosystem. For instance, after 

flooding, oxygen is consumed rapidly due to aerobic bacteria and chemical 
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oxidation reactions, while the inorganic electron acceptors as nitrate, iron III, 

sulfate and carbon dioxide are reduced sequentially. At this stage, most of the soil 

becomes anoxic (Liesack et al. 2000; Roger et al. 1993). Nevertheless, even under 

flooded conditions some oxic compartments will still exist. Mainly in the 

rhizosphere, the diffusive transport of oxygen through the aerenchyma of rice roots 

allows the occurrence of various chemical and microbial oxidation processes 

(Schmidt et al. 2011). In paddy soils other important biological transformations 

take place, mainly under flooding conditions. For example, paddy soils are known 

for an intense denitrifying activity (Ishii et al. 2009), dissimilatory iron reduction 

(Treude et al. 2003), dissimilatory nitrate reduction to ammonium (Yin et al. 2002), 

and methanogenic activity (Watanabe et al. 2006; Watanabe et al. 2007). In 

addition, decomposing activity (e.g., rice straw and roots) is also an important 

microbial activity in paddy soils (Asari et al. 2007; Chin et al. 1999; Rui et al. 

2009). The rice microbial food-web is driven by the contribution of the rice roots, 

which remain belowground after harvesting, and by rice straw, i.e., the plant 

material remaining aboveground after harvesting, which, in general, is further 

ploughed in soil (Liesack et al. 2000; Rui et al. 2009). Therefore, an heterogeneous 

bacterial community is found in bulk soil, where aerobic and anaerobic bacteria 

affiliated to Proteobacteria, Chloroflexi, Chlorobi, Verrucomicrobia, 

Acidobacteria, Actinobacteria, Bacteroidetes, co-exist (Asakawa and Kimura 

2008; Kikuchi et al. 2007; Xuan et al. 2012). 

 

1.5 The main objectives of this study 

Paddy soils have been the object of several scientific reports, which addressed the 

impressive microbial diversity that characterizes the belowground communities, 

and the potential emission of greenhouse gases by these soils. Nevertheless, there is 

still lack of knowledge on the effect of management practices on the paddy soil 

bacterial communities, though the importance of bacterial communities in the 

maintenance of soil fertility and on crop productivity is known. The scarce 
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information on the effect of rice production systems on the paddy soil bacterial 

communities combined with the need to find science-based methods to improve 

and promote sustainable rice production and to treat contaminated soils motivated 

this study. Thus, the present study aimed to assess i) the effect of different 

agriculture managements on the bacterial community of paddy soils; ii) the 

potential of some abiotic and biotic parameters to shape the bacterial communities 

in rice paddy fields; iii) and the feasibility of using bioremediation strategies to 

remediate contaminated paddy soils. 
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Rice is among the three most produced crops in the world, and its productivity has 

been boosted by conventional farming, i.e., addition of synthetic N fertilizers (in 

particular, urea) and herbicides (molinate, propanil, butachlor, among others). 

Beside all the environmental problems associated with pesticide and fertilizers use, 

possible impacts may be extensive to the composition and activity of soil 

microbiota. With access to farms using conventional and organic rice farming and 

given the scarcity of studies comparing microbial communities in soils using both 

management systems, a comparative study emerged as a good research 

opportunity. This comparison aimed to explore the functional and bacterial 

diversity of two paddy soils devoted to conventional and organic farming, 

respectively. The comparative study designed to assess the impact of conventional 

farming on the microbial community of bulk paddy soil is presented in Chapter 3. 

The contamination of soil, leachate and receiving waters by molinate is well 

documented (Castro et al. 2005; Jiménez et al. 1999; Julli and Krassoi 1995; Park 

et al. 2005). This herbicide is one of the most recalcitrant thiocarbamates (Nagy et 

al. 1995) and toxic to different organisms of the trophic chain (Cochran et al. 1997; 

Galhano et al. 2009; Julli and Krassoi 1995). These facts combined with the 

observed changes in the bacterial community structure under conventional farming 

(Chapter 3) motivated further studies. At this stage, the need to develop a 

bioremediation process to attenuate the negative environmental impacts of 

molinate on contaminated paddy soils was evident. This objective was built also on 

the existence of a bacterial mixed culture (mixed culture DC) (Barreiros et al. 

2003), which is, so far, the only culture able to mineralize molinate under a wide 

variety of operating conditions (Correia et al. 2006). The feasibility and potential 

for bioremediation of soils contaminated with molinate using either natural 

attenuation or bioaugmentation strategies was assessed, using microcosm assays. 

This study is described in Chapter 4. 

Although it was possible to remove molinate from contaminated soil samples, 

irrespectively of the bioremediation strategies tested (Chapter 4), the avoidance of 

contamination is always preferred. According to farmers, the sustainable rice 
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production, i.e., agriculture practices less dependent or completely independent of 

the use of synthetic compounds, is possible, and should be encouraged. Most of the 

organic managements adapt ancient agriculture methods, such as crop rotation 

systems. In the majority of the rotation systems, legumes rotate with a cereal. 

These systems are considered a good alternative to intensive farming (monoculture 

systems) due, not only, to their effective capacity to supply nitrogen to the 

following crop but also to suppress the growth of weeds, and, thus, maintain soil 

nutrients and crop yields. Nevertheless, the efficiency of these practices may be 

improved if the variations induced in the soil microbial activity and composition 

are understood. This information is a valuable tool to infer about microbe-microbe, 

microbe-plant or microbe- environment relationships. Therefore, the bacterial 

communities from two paddy soils at different stages of an alfalfa-rice rotation 

system were characterized using 454-pyrosequencing, as described in Chapter 5. In 

Chapter 6, 16S rRNA based metagenome analyses were integrated with all the 

biotic and abiotic data collected in these paddy soils, seeking for potential 

relationships between bacterial community structure and composition and external 

biotic or abiotic factors.  

The results of this study offer an integrated perspective of the bacterial diversity 

and functional activity in bulk paddy soils under conventional versus organic 

farming, as well as under different stages of alfalfa-rice rotation system. Moreover, 

it demonstrates the metabolic diversity of paddy soil microbial communities. These 

topics are discussed in Chapter 7. 
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Fig. 2.1 Scheme of the major goals aimed in the present study. 

Note: The core of this thesis is composed of four articles, two of which were published in 

peer-reviewed scientific journals (Chapters 3 and 4), the third (Chapter 5) and fourth 

(Chapter 6) are submitted for publication. 

 

 

Feasibility of Natural 

attenuation  and 

Bioaugmentation strategies.

Soil contamination with 

molinate 

Sustainable rice 

production

BIOREMEDIATION

VERSUS
ORGANIC

MANAGEMENT

CONVENTIONAL

MANAGEMENT

Chapter 3

ALFALFA-RICE

ROTATION

Chapter 4

Chapter 5

Chapter 6

Polyphasic approach to assess the

major soil functions at different

stages of rotation and rice cycle and

identify the community members

involved on that functions.

Assessment of the influence of the agricultural practices on the structure

and composition and functional activity of rice paddy bulk soil bacterial

community.

Assessment of the influence of the

presence of rice plants, rotation

stage and rice cycle on the structure

and composition of soil bacterial

community.

PADDY SOIL BACTERIAL COMMUNITIES



 

35 

 

 

 

Chapter 3 

Chapter 3- Comparative study of the microbial diversity of bulk paddy 

soil of two rice fields subjected to organic and conventional 

farming 

 

 

 

 

 

 

 

  

Results included in:  

Lopes, A.R., Faria, C., Prieto-Fernández, A., Trasar-Cepeda, C., Manaia, C.M. and 

Nunes, O.C. (2011) Comparative study of the bacterial diversity of bulk paddy soil of 

two rice fields subjected to organic and conventional farming. Soil Biology and 

Biochemistry, 43: 115-125. 
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3.1 Abstract 

Two adjacent paddies of an experimental rice field, subjected to organic and 

conventional farming, were characterized aiming the comparative assessment of 

microbiological variations occurring in the bulk paddy soil over the rice cycle. This 

study comprehended the simultaneous characterization of general physicochemical 

soil properties [total carbon and nitrogen, pH (H2O and KCl), C:N ratio and water 

content], biochemical properties [enzymatic activities and Community Level 

Physiological Profiles (CLPP)], the estimation of cultivable organisms 

(enumeration of fast growing heterotrophic bacteria, actinomycetes and fungi) and 

the assessment of bacterial diversity using a culture-independent method (PCR-

DGGE fingerprinting). The linkage of the parameters measured was analysed by 

canonical correspondence analysis (CCA).  

CCA ordination plots of the CLPP showed a similar pattern of microbial functional 

activity in both agronomic management systems, except in June. Enzymatic 

activity, water content and fungi counts were the main factors affecting the 

observed CLPP time variation. Such a variation was not expressed by the Shannon 

and evenness indices, which did not evidence significant differences in the 

bacterial and functional diversity between or within farming type over the analysed 

period. The cluster and CCA analyses of the DGGE profiles allowed the distinction 

of the bacterial communities of both paddies, with temporal variations being 

observed in the organically managed field but not in the conventional paddy. 

Enzymatic activity, pH and molinate content were the factors which most 

contributed to the observed variations. Altogether these results underline the 

functional redundancy of the rice paddy soil and evidence the temporal variations 

on the metabolic activity of soil, irrespective of farming type. 

Keywords: Cultivable microbial counts, soil enzymatic activity, CLPP, DGGE 

fingerprinting, Bacterial community diversity, Agronomic management. 
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3.2 Introduction 

Soil is a complex ecosystem where living organisms play a key role in the 

maintenance of its properties. Soil biota comprises a huge diversity of organisms 

belonging to different taxonomic and physiologic groups, which interact at 

different levels within the community. Soil microorganisms constitute a source and 

sink for nutrients and are involved in numerous activities, such as  transformation 

of C, N, P and S, degradation of xenobiotic organic compounds, formation of soil 

physical structure and enhancement of plants’ nutrient uptake (Gregorich et al. 

1994; Seklemova et al. 2001). For these reasons, the importance of microorganisms 

in the maintenance of quality and productivity of agricultural soils is 

unquestionable. The responsiveness of microorganisms to environmental factors 

implies that disturbances imposed by agricultural treatments may lead to alterations 

in the composition and activity of soil microbiota and, therefore, may affect soil 

quality (Gregorich et al. 1994; Shibahara and Inubushi 1997).  

In the last decades, conventional management of agricultural soils, namely tillage 

and the utilization of synthetic fertilizers and plant protectors (pesticides), has been 

implemented worldwide, to improve the productivity and the quality of agricultural 

goods at low cost (Hasset and Banwart 1992). Nevertheless, the recognition that 

intensive conventional farming  promotes soil degradation (Liu et al. 2007; Mäder 

et al. 2002), erosion (Eltun et al. 2002), and environmental contamination (e.g. 

Castro et al., 2005) led to a widespread interest in organic farming, with the natural 

control of pests and the utilization of compost and/or manure to substitute synthetic 

fertilizers (Mäder et al. 2002; Shibahara and Inubushi 1997). Over the last years, 

the effect of agricultural management practices on the soil properties and on crop 

yield has been widely studied in diverse types of agricultural soils (Liu et al. 2007; 

Mäder et al. 2002; McCaig et al. 2001).  

Rice paddy soil is considered a unique agro-ecosystem as it is kept flooded during 

the rice growth and is drained during the off crop season. The rice paddy field 

comprises three compartments where the soil is subjected to different physical and 
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chemical conditions: the oxic surface, the anoxic bulk and the rhizosphere plus 

rhizoplane (Liesack et al. 2000). Thus, the high diversity of habitats in the paddy 

field ecosystem offers a spatial and temporal heterogeneity, which enhances 

prokaryote specialization and division into distinct ecological niches (Henckel et 

al. 2001). Most of the microbiological studies in this type of ecosystem have been 

focused on the effect of oxygen concentration in the different field compartments, 

and on specific processes, particularly, methane emission and consumption, N2 

fixation, N mineralization and sulphate reduction (Henckel et al. 2001; Liesack et 

al. 2000; Roger and Ladha 1992; Shibahara and Inubushi 1997; Wind and Conrad 

1997). Different fertilization regimes and the incorporation of organic residues are 

the most commonly addressed issues in studies focusing on agricultural 

management of paddy fields (Shibahara and Inubushi 1997; Watanabe et al. 2006; 

2007; Zhong and Cai 2007). Nevertheless, comparative studies between 

conventional management and organic farming are scarce, if available, for rice 

fields. The worldwide extension and importance of this crop and the availability of 

an experimental rice field where such a comparison was being made, having in 

mind the assessment of productivity yields, made possible and motivated the 

current study.  

In the present work, bulk soil from two adjacent paddies of an experimental rice 

field subjected to different management (organic and conventional) was compared. 

Our major goals were the comparison of the effect of the agricultural management 

on soil properties and the assessment of temporal variations. Specifically we 

intended to determine if the functional and bacterial diversity of soil varied over 

time and if such variations were similar irrespectively of the farming type. With 

this objective, soil subjected to different managements was sampled simultaneously 

at four different times over the rice cycle and was characterized using different 

approaches. The analyses carried out included the soil general characterization as 

well as measurements of biochemical properties, counts of total cell numbers and 

cultivable organisms and the assessment of bacterial diversity using a culture-

independent method. 
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3.3 Materials and methods 

3.3.1 Experimental field 

The study was conducted in two adjacent paddy fields, each with three replicate 

plots, named I, II and III, from the experimental farm “Bico da Barca”, from 

Direção Regional de Agricultura e Pescas do Centro (DRAP C), located in the 

valley of river Mondego, Montemor-o-Velho, Central Portugal (40º11 'N; 08º41 

'W). These fields have the same soil type and cropping system, but have received 

different soil management practices, organic (ORG) and conventional (CONV). 

Paddy field ORG (4200 m
2
) was under organic production for two years (2005-

2007), and before it was uncultivated. Paddy field CONV (7100 m
2
) was subjected 

to conventional management for six consecutive years.  

Rice was seeded in both fields in spring 2007 (Fig. 3.1). The field management of 

paddy ORG was as follows: basal fertilization with mineral gafsa (Fertigafsa, 300 

kg P ha
-1

) and organic amendment with a plant residue commercial compost 

(Fertiormont, 2 t ha
-1

) in early April; flooding on 16
th

 April; drainage and 

mechanical removal of weeds on 20
th 

May; flooding on 21
st
 May; seeding on 22

nd
 

May. The field management of paddy CONV was as follows: flooding on 19
th
 

April; seeding on 23
rd

 April; molinate (Ordram, 50 kg ha
-1

) application on 26
th
 

April; drainage on 1
st
 June; propanil (Stam, 18 L ha

-1
) and bentazone (Basagram, 4 

L ha
-1

) application on 4
th

 June; flooding on 6
th

 June; and fertilization (102 kg N, 63 

kg P2O5 and 35 kg K2O per hectare, as ammonium sulphate, ammonium 

dihydrogen phosphate and diammonium monohydrogen phosphate, and potassium 

chloride, respectively) on 8
th 

June. Both paddies ORG and CONV were drained on 

18
th
 September, and harvested between 18

th
 and 21

st
 September. 

 

3.3.2 Soil sampling 

In both paddy fields, triplicate composite samples (each consisting of three 

different soil cores pooled together) were collected from the upper 0-15 cm of the 
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soil from each of the three plots (I, II and III). The area of each plot of paddies 

ORG and CONV was of 1400 and 2367 m
2
, respectively. In order to assess 

possible modifications caused by the main agronomic management activities in the 

fields during the rice cycle, soil samples were collected on four occasions - 23
rd

 

April, 2
nd

 May,13
th
 June and 15

th
 October of 2007. Soil samples were homogenized 

and cleaned by manual mixing of soil cores and removal of visible root debris, 

respectively. Soil samples were immediately processed for microbiological 

characterization or stored at 4 ºC (for no more than 2 weeks) and -20 ºC, before 

processing for biochemical and molecular characterization, respectively. 

 

Fig. 3.1 Agricultural management procedures of paddy fields ORG and CONV and 

sampling dates. 

 

3.3.3 General soil characterization  

The physical and the chemical properties of bulk soil were analysed following the 

procedures described by Guitián and Carballas (1976). Briefly, total organic C was 

determined by wet oxidation with potassium dichromate, after treatment with 

H2SO4 to facilitate digestion of the organic matter and to ensure the removal of any 

inorganic C present; total N was measured by the Kjeldahl digestion method and 

the pH in water and in 1 M KCl was determined in a soil:solution mixture (1:2.5 
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w:v), with a glass electrode. Molinate concentration in bulk soil was determined by 

gas-chromatography-mass spectrometry, after soxhlet extraction with 

dichloromethane in Agência Portuguesa do Ambiente (http://www.apambiente.pt). 

 

3.3.4 Enumeration of total cells and of cultivable microorganisms 

The enumeration of total cells from bulk soil was performed by the 4,6-diamidino-

2-phenylindole (DAPI) staining method as described by Brunk et al. (1979). For 

each sample 10 g of soil were  suspended in 90 ml of sterile saline solution (0.85 % 

NaCl, w/v) and the mixture was stirred for 30 min at 200 rpm, sonicated 

(sonication bath) for 5 min, and centrifuged at 3000 rpm for 5 min. The 

enumeration of total cells was performed in the supernatant, as described by 

Manuel et al. (2007). 

Fast growing cultivable microorganisms were enumerated using the membrane 

filtration method. Serial dilutions of the soil suspensions were filtered through a 47 

mm membrane with 0.45 µm porosity (Knowles and Barraquio 1994). The media 

Plate Count Agar (Merck), Actinomycetes Isolation Agar (Merck) and Rose 

Bengal-Chloramphenicol (Merck) were used, respectively, for the enumeration of 

fast growing heterotrophic bacteria, actinomycetes and fungi. Plate Count Agar and 

Actinomycetes Isolation Agar cultures were incubated at 30 ºC for 48 h and 7 d, 

respectively; Rose Bengal-Chloramphenicol cultures were incubated at 22 ºC for 7 

d. Data from triplicates were expressed as colony forming units (CFU) g
-1

 dry soil 

(oven-dried soil basis). 

 

3.3.5 Soil enzymatic activities  

Dehydrogenase activity was determined with iodonitrotetrazolium violet (INT) as 

substrate, incubating with 1 M TRIS-HCl buffer pH 7.5 for 1 h. The 

iodonitrotetrazolium formazan (INTF) produced was extracted with a 1:1 (v:v) 

mixture of ethanol and dimethylformamide and measured spectrophotometrically at 
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490 nm. Activity was quantified by reference to a calibration curve constructed 

using INTF standards incubated with soil under the same conditions described 

above, and is expressed in mmol INTF g
-1 

h
-1

 (Camina et al. 1998). Catalase 

activity was determined according to the Trasar-Cepeda et al. (1999) modification 

of the method of Johnson and Temple (1964). The soil samples were incubated 

with H2O2 for 10 min and the residual H2O2 was determined by a colorimetric 

method. The activity is expressed in mmoles H2O2 g
-1

 h
-1

. 

The activity of arylsulphatase was measured by using the method of Tabatabai and 

Bremner (1970), with minor modifications. Briefly, arylsulphatase activity was 

determined with 5 mM p-nitrophenyl sulphate as substrate, with 0.5 M acetate 

buffer (pH 5.8). After incubating for 1 h at 37 ºC, 2 M CaCl2 was added and the 

liberated p-nitrophenol was extracted with 0.2 M NaOH. The enzymatic activity 

was quantified by reference to calibration curves corresponding to p-nitrophenol 

standards incubated with each soil under the same conditions as for the samples 

and the activity is expressed as µmol p-nitrophenol g
-1

 h
-1

. The activity of urease 

was determined as described by Nannipieri et al. (1980). Briefly, urease activity 

was determined using 1065.6 mM urea as substrate, incubating for 1.5 h in 0.2 M 

phosphate buffer (pH 8.0), and measuring the NH4
+
 released with an ammonia 

electrode, and the enzyme activity is expressed as µmol NH3 g
-1

 h
-1

. The activity of 

protease hydrolysing casein (casein-protease) was determined with 1 % casein as 

substrate, incubating for 2 h in 0.05 M  Tris(hydroxymethyl)aminomethane-HCl 

(TRIS-HCl) buffer (pH 9.0) and the released amino acids determined by the Folin-

Ciocalteu colorimetric method described by Ladd and Butler (1972), modified by 

Nannipieri et al. (1979). The casein-protease activity is expressed as µmol tyrosine 

g
-1

 h
-1

. Invertase activity was determined with 35.06 mM saccharose as substrate, 

incubating for 3 h, with 2 M acetate buffer (pH 5.5), the released reducing sugars 

determined following the method of Schinner and von Mersi (1990) and the 

enzymatic activity expressed as µmol glucose g
-1

 h
-1

. 
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All determinations were performed in triplicate and the average activity values 

were expressed on an oven-dried soil basis.  

 

3.3.6 Soil community level physiological profiles (CLPP) analysis 

The ability of microbial communities to utilize different C substrates was 

determined using the method of Kennedy (1994). Five grams of each bulk soil 

replicate sample were suspended in 45 ml of 1 % sodium hexametaphosphate and 

shaken for 30 min, vortexed at maximum speed for 1 min and serially diluted 

(1:10). Fifty microliter aliquots of the dilutions 10
-2

-10
-7

 were inoculated in 96-well 

plates containing different C sources (amines: β-phenyl ethylamine and putrescine; 

amino acids: L-arginine, L-asparagine; L-glutamic acid, L-phenylalanine, L-serine, L-

threonine; carbohydrates: D-(+) cellobiose, α-lactose, β-methyl D-glucoside, D-(+) 

xylose, i-erythritol, maltose, N-acetyl-D-glucosamine, glyceraldehyde; carboxylic 

acids: D-galactonic acid γ-lactone, galacturonic acid, o-hydroxybenzoic acid, p-

hydroxybenzoic acid, malonic acid, α-keto butyric acid, malic acid; polymers: 

Tween 40, Tween 60, α-cyclodextrin, glycogen and miscellaneous: α-D-glucose-1-

phosphate) and prepared as described by Kidd et al. (2008). Substrate utilization 

was indicated by colour development of the tetrazolium violet redox dye (2,5-

diphenyl-3-(α-naphthyl)tetrazolium chloride (TV), 0.15 mM) after 7 d of aerobic 

incubation at 25 ºC. The total number of C sources utilized was recorded and the 

number (MPN) of cells grown at each substrate was estimated using tables for 3 

replicates per dilution level. 

 

3.3.7 Bacterial community analysis 

Bulk soil DNA was extracted from 0.25 g of soil using Power-Soil™ DNA 

Isolation Kit (MO BIO) with an additional incubation step at 65 ºC for 15 min, 

after 40 min agitation at 1300 rpm. Quality of extracted DNA was controlled in 1 

% agarose gels. 
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For PCR-DGGE profiling, a 500 bp fragment (based on the reference strain 

Escherichia coli bases 984 and 1378) was amplified using the 16S rRNA gene 

primers forward F984GC, containing a GC clamp (50-CGC CCG GGG CGC GCC 

CCG GGC GGG GCG GGG GCA CGG GGG GAA CGC GAA GAA CCT TAC-

30) and reverse R1378 (50- CGG TGT GTA CAA GGC CCG GGA ACG-30) 

(Heuer et al., 1997, clamp Nübel et al., 1996). The reaction mixtures (50 µl) 

contained 2 µl of target DNA, 0.5x PCR buffer with 50 mM KCl, 0.5x PCR buffer 

with 20 mM (NH4)2SO4, 0.4 mM dNTP’s, 3 mM MgCl2, 5 % DMSO, 0.6 µM of 

each primer, and 3 U taq DNA polymerase (Fermentas). Thermal cycling 

conditions were as follows: 5 min at 94 ºC, followed by 30 cycles of 30 s at 94 ºC, 

30 s at 64 ºC and 1 min at 72 ºC and a final extension step of 30 min at 72 ºC. 

Amplified products were quantified in Qubit® Fluorometer (Invitrogen) with 

Quant-iT™ dsDNA HS assay kit. 

Amplified bacterial 16S rRNA gene fragments (~75 ng of DNA) were separated in 

a double gradient polyacrylamide gel containing  6-9 % acrylamide, to improve 

band resolution (Cremonesi et al. 1997) and a gradient of 30-58 % of denaturant 

(100 % denaturant corresponds to 7 M urea and 40 % (v/v) formamide), using D-

code System (Bio-Rad). The electrophoresis run in 1x TAE buffer at 60 ºC at a 

constant voltage of 200 V for 6 h and was preceded by a pre run at 60 V for 30 

min. The DGGE gels were silver-stained according to Heuer et al. (1997). 

 

3.3.8 Statistical analyses 

Scanned DGGE gels were analysed with the Bionumerics software (version 6.0, 

Applied Maths, Belgium). DGGE gels were normalized using a standard reference 

sample, which was loaded in 3 lanes in every gel. Samples were compared after 

band-matching analysis in the area 19.3-84.2 % of the gel. Bands were assigned to 

classes of common bands within all profiles, and band-matching tables based on 

densitometric values were obtained. These band-matching tables were the basis for 

community cluster and ordination analysis and for the determination of diversity 
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indices. Similarity between fingerprints was calculated using the Pearson product 

moment correlation coefficient and dendrograms were generated using the 

unweighted pair-group method with arithmetic averages (UPGMA). 

Canonical Correspondence Analysis (CCA) was carried out in order to assess the 

influence of general soil properties, biochemical and microbiological parameters 

(explanatory variables) on the variance of the bacterial community composition 

(DGGE patterns) or microbial functional activity (growth on single C source), 

within and between the soil of paddies ORG (paddy ORG) and CONV (paddy 

CONV), over the rice cycle. CCA was performed using PCORD (version 5, MJM 

Software, Gleneden, USA). The significance of the relationship between 

community data (principal matrix) and the environmental data (second matrix) was 

tested by Monte Carlo permutations test (n = 999).  

Explanatory variables included in both CCA analyses were selected by manual 

forward selection including the permutation test (Monte Carlo permutations test). 

All the soil properties and biochemical and microbiological parameters for which 

the null hypothesis was excluded (P < 0.05) were included in the ordination. 

Abiotic parameters, microbial counts, enzymatic activity and diversity indices 

within each paddy were compared using a two way analysis of variance (ANOVA) 

in function of the sampling time. The post-hoc Tukey test was applied when 

adequate. Paddies ORG and CONV were also compared using the two-sample 

statistical test (t-test). The statistical analyses were done using Excel software 

package (Microsoft Excel). 

 

3.3.9 Analysis of soil functional and structural diversity 

The structural and functional diversity of the microbial community was assessed 

using the Shannon index of diversity (H = - Σ(ni/N)log(ni/N); (Shannon and Weaver 

1963)) and the evenness index (E = H/log S; (Pielou, 1966)). For the bacterial 

community analysis, the number of DGGE bands corresponded to the number of 

species (S) in each sample while for the functional analysis, the number of 
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substrates metabolised (S) in CLPP analysis corresponded to the number of carbon 

sources used for growth by each sample. The relative surface intensity of each 

DGGE band or the log MPN g
-1

dry soil value associated with each substrate (ni) 

and the sum of all the surface band intensity or of all the log MPN g
-1

dry soil 

values associated with substrates used in a given sample (N) were used, 

respectively, as estimates of species abundance or extent of its use (Fromin et al. 

2002).  

 

3.4 Results 

3.4.1 General soil characterization 

Among the physicochemical parameters analysed in the paddies ORG and CONV, 

Water content varied significantly throughout the rice cycle (P < 0.01) (Table 3.1). 

As could be anticipated, the average water content values were lower in October, 

when the two paddies were drained. In spite of some minor differences, paddies 

ORG and CONV differed significantly only for pH, in April and for the water 

content, in May and June. In April, pH H2O and pH KCl values were higher in 

paddy ORG than in CONV (P < 0.05). In comparison with paddy CONV, paddy 

ORG water content was higher in May and lower in June (P < 0.05). As expected, 

molinate was detected only in paddy CONV; the highest concentration was found 

immediately after its application, being also detected about one month later. 
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Table 3.1 Main physical and chemical properties of soil of paddies ORG and CONV. Values are means ± standard deviation (n = 3). 

Parameter April May June October 

 ORG CONV ORG CONV ORG CONV ORG CONV 

pH in water 6.44±0.17 A* 5.67±0.35 A* 6.32±0.05 A 6.21±0.09  A 6.33±0.15 A  6.00±0.27 A 6.23±0.02 A 6.03±0.29 A 

pH KCl 4.78±0.09 A* 4.34±0.25A* 5.01±0.21A 4.76±0.20 A 4.92±0.03A  4.78±0.33A 4.88±0.06 A 4.49±0.31 A 

Total C (%) 1.91±0.13 A 1.94±0.24 A 1.83±0.19 A 2.14±0.11A 1.76±0.45 A  2.25±0.36 A  1.43±0.14 A  1.74±0.35 A 

Total N (%) 0.17±0.02 A 0.18±0.01 A 0.18±0.02 A 0.19±0.01A 0.16±0.01 A 0.17±0.02 A 0.16±0.01 A 0.16±0.01 A 

C/N 12±1 A 11±1 A 10±0A 11±1A 11±3 A 14±1 A 9±1 A 11±3 A 

Water content (%) (g 

H2O/100 g wet soil) 
35.9±0.6 C 36.4±0.8 B 35.7±0.3 C* 34.1±0.9  B* 28.2±0.7 B* 37.6±2.3 B* 24.7±1.1 A 25.0±0.9 A 

Molinate (mg kg-1) < 0.050 A < 0.050 A < 0.050 A* 0.297±0.005 C* < 0.050 A* 0.163±0.003 B* < 0.050 A < 0.050 A 

 

The texture of soil of paddies ORG and CONV was, respectively, sand: 28.2 and 28.2%; silt: 51.1 and 49.7%; and clay: 20.7 and 22.1%. The total exchange bases 

and the cation exchange capacity of soil of paddies ORG and CONV were, respectively, 9.3 and 6.6 cmol(C) kg-1, and 9.3 and 10.0 cmol(C) kg-1; These analyses 

were determined in Instituto Nacional de Recursos Biológicos, Departamento de Ciência do Solo da Estação Agronómica Nacional, Oeiras, Portugal. Molinate 

limit of quantification was 0.05 mg kg-1. A-C, Homogeneous subsets within each paddy (ORG or CONV), as determined by the Tukey test at P < 0.05. *, 

Significant differences between paddies ORG and CONV on basis of the two-sample t-test at P < 0.05.  
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3.4.2 Total and cultivable microorganisms 

In paddy ORG the number of total cells did not vary significantly over the rice 

cycle (Table 3.2). In contrast, cultivable microorganisms varied significantly 

throughout the period under study. In June the number of heterotrophs was higher 

than in April (P < 0.05) but was not different from those of May or October. The 

number of actinomycetes reached its maximum in June (P < 0.05) although not 

significantly different from October. The number of fungi was also higher in June 

and October (P < 0.05) than in April and May.  

In paddy CONV the total number of cells was higher in June and October than in 

April and May (P < 0.05). Among the cultivable populations, only the number of 

heterotrophs varied significantly over the rice cycle, with higher counts in June 

than in April and May (P < 0.05), but not significantly different from those 

observed in October. 

When comparing both paddies, the only significant difference was observed in 

June, when the total number of cells was slightly higher for paddy CONV than for 

paddy ORG (P < 0.05). 
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Table 3.2 Enumeration of heterotrophic bacteria, actinomycetes and fungi in soil of paddies ORG and CONV over the rice cycle. Values are 

means ± standard deviation (n = 3). 

 Total cells Heterotrophs Actinomycetes Fungi 

 log Cells g-1dry soil log CFU g-1 dry soil 

 ORG CONV ORG CONV ORG CONV ORG CONV 

April 8.0 ± 0.2 A 7.9 ± 0.1 A 5.0 ± 0.6 A 5.6 ± 0.4 A 5.2 ± 0.3 A 5.5 ± 0.6 A 3.4 ± 0.3 A 3.7 ± 0.3 A 

May 7.9 ± 0.2 A 7.8 ± 0.1 A 5.7 ± 0.2 A,B 5.5 ± 0.3 A 5.3 ± 0.4 A 5.4 ± 0.6 A 3.2 ± 0.1 A 3.4 ± 0.6 A 

June 7.7 ± 0.1 A* 8.1 ± 0.1 B* 6.4 ± 0.2 B 6.4 ± 0.3 B 6.3 ± 0.3 B 6.1 ± 0.3 A 4.6 ± 0.1 B 4.2 ± 0.4 A 

October 8.1 ± 0.1 A 8.2 ± 0.1 B 5.8 ± 0.2 A,B 5.9 ± 0.2 A,B 5.6 ± 0.3 A,B 5.6 ± 0.3 A 4.3 ± 0.4 B 4.3 ± 0.3 A 

 

A-B, Homogeneous subsets within each paddy (ORG or CONV), as determined by the Tukey test at P<0.05.  

*, Significant differences between paddies ORG and CONV on basis of the two-sample t-test at P<0.05.  
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3.4.3 Soil enzymatic activities 

Four out of the six enzymatic activities analysed presented significant temporal 

variations both in ORG and CONV paddies. Urease and catalase activities 

presented significant variations in both paddies, with the highest value in May. 

Activity of invertase showed similar variations in both paddies though changes 

were only significant for paddy ORG; the highest value was registered in April, 

although not significantly different from that observed in May and October. 

Dehydrogenase activity varied in paddy CONV, with its maximum in June (Table 

3.3).  

When paddies ORG and CONV were compared for their patterns of enzymatic 

activity it was observed that in April paddy CONV showed a higher urease activity 

than paddy ORG (P < 0.05). In May, the dehydrogenase activity was higher in 

paddy ORG than in paddy CONV (P < 0.05) and in October, arylsulphatase 

activity was higher in paddy CONV than in paddy ORG (P < 0.05). 
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Table 3.3 Enzymatic activity of soil of paddies ORG and CONV over the rice cycle. Values are means ± standard deviation (n =3). 

 Dehydrogenase 

(μmol INTF g-1 h-1) 

Catalase 

(mmol H2O2 g
-1 h-1) 

Invertase 

(μmol glucose g-1 h-1) 

 ORG CONV ORG CONV ORG CONV 

April 0.28±0.1A 0.21±0.03 A 0.46±0.17 A 0.28±0.13 A 2.58±0.29 B 2.37±0.71 A 

May  0.51±0.09 A* 0.23±0.02 A* 1.51±0.14 B 1.39±0.06 C 1.93±0.23 A,B 1.63±0.43 A 

June 0.20±0.02 A 0.57±0.33 B 1.32±0.09 B 1.11±0.18 C 1.80±0.36 A 1.81±0.52 A 

October 0.46±0.21 A 0.18±0.03 A 0.68±0.16 A 0.66±0.14 B 2.27±0.15 A,B 2.35±0.02 A 

 

Table 3.3 Continued 

 Urease 

(μmol NH3 g-1 h-1) 

Casein-protease 

(μmol tyrosine g-1 h-1) 

Arylsulphatase 

(μmol PNPg-1 h-1) 

 ORG CONV ORG CONV ORG CONV 

April 0.87±0.09 A* 1.14±0.05 A* 0.41±0.09 A 0.36±0.09 A 0.09±0.01 A 0.11±0.01 A 

May  2.08±0.29 C 2.51±0.58 B 0.43±0.01 A 0.43±0.06 A 0.13±0.03 A 0.13±0.02 A 

June 1.33±0.19 A,B 1.55±0.74 A,B 0.37±0.11 A 0.40±0.10 A 0.11±0.02 A 0.15±0.02 A 

October 1.61±0.33 B,C 1.62±0.24 A,B 0.25±0.09 A 0.29±0.09 A 0.10±0.01 A* 0.14±0.01 A* 
 

A-C, Homogeneous subsets within each paddy (ORG or CONV), as determined by the Tukey test at P<0.05.   

*, Significant differences between paddies ORG and CONV on basis of the two-sample t-test at P<0.05.  
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3.4.4 Soil community level physiological profiles (CLPP) analysis 

All substrates analysed supported the growth of the microbial communities of both 

paddies and in every sampling time studied (Fig. 3.2). The average values of 

Shannon index (H) and of evenness index (E) for functional diversity in both 

paddies were respectively of 1.44 and of 1.00. No significant differences between 

paddies or over time were observed for these indices (Table 3.4). The highest MPN 

of microorganisms growing on the 21 out of the 28 analysed substrates was 

registered in June for both paddies (Fig. 3.2). The exceptions were maltose, 

putrescine, o-hydroxybenzoic and p-hydroxybenzoic acid, D-(+)xylose, D-

(+)cellobiose, L-asparagine. The lowest values were observed in October, except 

for glycogen, L-serine, a-lactose, galacturonic acid in paddy ORG and α-keto 

butyric acid, β-methyl D-glucoside, L-glutamic acid, D-galactonic acid γ-lactone in 

paddy CONV. In the CCA biplot, the total variance in the CLPP data explained by 

axis 1 and 2 was 73.4% (53.8 and 19.6%, respectively) (Fig. 3.3). The species-

environmental correlations were high, with values of 0.999 and 0.967 for axis 1 

and 2, respectively (P < 0.001). The temporal variation of the community 

functional activity of both soils was explained mostly by the urease activity, the 

fungi counts, which presented high intraset correlations with axis 1 (-0.791 and 

0.715, respectively) and the catalase activity and soil water content, which 

presented higher intraset correlations with axis 2 (-0.730 and 0.591, respectively). 

Except in June, paddies ORG and CONV showed a similar pattern of microbial 

functional diversity temporal variation. Malonic (-0.615, P < 0.001) and o- 

hydroxybenzoic (-0.517, P < 0.001) acids, for which higher MPN values were 

registered in May than in October in both paddies, were among the substrates that 

most contributed to the variation observed along axis 1. Glycogen (-0.796, P < 

0.001), L-asparagine (-0.720, P < 0.001), and putrescine (-0.711, P < 0.001) were 

the substrates that most contributed to the variation observed along axis 2. For 

these substrates, the lowest MPN values were registered in April in both paddies, 

whereas in June, higher MPN values were observed in paddy ORG than in paddy 

CONV. 
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Fig. 3.2 Density of microorganisms in soil from paddies ORG and CONV growing in some 

of the tested substrates, over the rice cycle.  

GalLact: D-galactonic acid δ-lactone; Galactur: galacturonic acid; o-OHBenz: o-hydroxybenzoic acid; 

p-OHBenz: p-hydroxybenzoic acid; Malon: malonic acid; Ketobut: α-keto butyric acid; Mal: malic 

acid. Arg: L-arginine; Asn: L-asparagine; Glu: L-glutamic acid; Phe: L-phenylalanine; Ser: L-serine; 

Thr: L-threonine. Cellob: D-(+) cellobiose; Lac: α-lactose, MetGlu: β-methyl D-glucoside; Xyl: D-(+) 

xylose, Eryth: i-erythritol, Malt: maltose; GluAm: N-acetyl-D-glucosamine, Gly: glyceraldehyde. 

TW40: Tween 40; Tw60: Tween 60; Cyclod: α-cyclodextrin; Glucog: glycogen. 
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Table 3.4 Diversity indices of microbial communities in soil of paddies ORG and CONV, 

over the rice cycle.  

 Bacterial Diversity Functional Diversity 

 Shannon index (H) Evenness (E) Shannon index (H) Evenness (E) 

 ORG CONV ORG CONV ORG CONV ORG CONV 

April 1.26 ± 0.02 1.24 ± 0.03 0.93 ± 0.02 0.91 ± 0.02 1.44 1.44 1.00 0.99 

May 1.28 ± 0.04 1.26 ± 0.06 0.94 ± 0.01 0.92 ± 0.02 1.43 1.43 1.00 1.00 

June 1.27 ± 0.03 1.25 ± 0.05 0.93 ± 0.02 0.93 ± 0.03 1.45 1.44 1.00 0.99 

October 1.29 ± 0.03 1.27 ± 0.06 0.95 ± 0.01 0.91 ± 0.03 1.44 1.44 1.00 1.00 
 

No significant differences were observed over the sampling period (P ≥ 0.05). 

 

 

Fig. 3.3 Canonical correspondence analysis biplot of CLPP of soil from paddies ORG and 

CONV and physical, (bio)chemical and microbiological parameters (represented by arrows) 

throughout the rice cycle.  

CAT, catalase activity (mmol H2O2 g-1 h-1), URE, urease activity (μmol NH3 g-1 h-1); Wt, water 

content (%); FUN fungi counts (log CFU g-1drysoil). 
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3.4.5 DGGE analysis of soil bacterial community 

The analysis of DGGE profiles based on the diversity of 16S rRNA bacterial gene 

sequence revealed complex band patterns for both paddies and for every analysed 

period. Considering the totality of the DGGE profiles, a total of 38 well resolved 

bands were detected and assigned, with, in average, 23 bands in each DGGE 

profile. In general, the number of  bands detected simultaneously at different 

sampling dates was higher in paddy CONV (13 bands) than in paddy ORG (6 

bands), and among these, only two were common to both paddies and persistent 

over time. Most of the bands were detected in both paddies, although at different 

sampling periods, or with different intensities. Cluster analyses of DGGE profiles 

of both soils showed the separation between the paddy ORG and paddy CONV 

bacterial communities (Fig. 3.4).  

The Shannon index of diversity (H) and the evenness index (E) values to evaluate 

the bacterial diversity are shown in Table 3.4. Shannon’ index presented an average 

value of 1.28 and 1.26, for paddies ORG and CONV, respectively. The E values 

ranged between 0.93 and 0.95 for paddy ORG and between 0.91 and 0.93 for 

paddy CONV. The analysis of variance of these indices did not reveal significant 

differences within each paddy for the different analysed periods, or between them 

in each sampling time.  

In the CCA ordination analysis of DGGE band patterns, the total variance of the 

data explained by axes 1 and 2 was 20.7 % and 12.2 %, respectively. Both axes 

presented high species-environment correlation values (0.966 and 0.899, for axis 1 

and 2, respectively) (P = 0.001). The CCA biplot allowed the distinction of four 

groups (I-IV) of samples (Fig. 3.5). Group I enclosed all the paddy ORG patterns 

from May and June. Group II was constituted by all paddy CONV patterns, except 

two samples from June and two from October. Group III included all the paddy 

ORG patterns from October. Finally, Group IV included paddy ORG patterns from 

April. The activity of catalase and invertase, as well as the heterotrophic counts, 

which presented an intraset correlation of, respectively, -0.698, 0.478 and -0.456 
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with axis 1 contributed to separate group I from all the others. On the other hand, 

pH (H2O), urease activity and molinate concentration, which presented an intraset 

correlation of, respectively, -0.682, 0.595 and 0.496 with axis 2 contributed to 

delineate groups II, III and IV. 

 

Fig. 3.4 Similarity dendrogram based on Pearson´s correlation coefficient and the 

unweighted pair-group method with arithmetic averages (UPGMA) of DGGE profiles of 

PCR-amplified 16S rDNA fragments of bacterial communities from paddy soils ORG and 

CONV.  
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Fig. 3.5 Canonical correspondence analysis biplot of DGGE patterns of soil from paddies 

ORG and CONV and physical, microbiological and (bio)chemical parameters (represented 

by arrows) throughout the rice cycle.  

CAT, catalase activity (mmol H2O2 g
-1 h-1); URE, urease activity (μmol NH3 g

-1 h-1); INV, invertase 

activity (μmol glucose g-1h-1), HET, heterotrophs counts (log CFU g-1dry soil); pH, pH H2O; MOL, 

molinate concentration (mg kg-1soil). 

 

3.5 Discussion 

Several physicochemical, biochemical and microbiological parameters were 

determined concurrently for paddies ORG and CONV over the rice cycle. With 

these analyses we aimed at assessing possible temporal variations for each of the 

studied agricultural procedures and the influence of the agricultural management 

on the soil properties. The agricultural management of paddy field ORG included a 

period (April-late May) of weeds growth. This is part of the management process 

in which weeds overgrowth during rice cultivation is prevented by its previous 
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growth and subsequent mechanical removal. Thus, from April to June both weeds 

and rice plants grew in this field. Given the management of paddy field CONV, for 

this soil, the samples from April to June corresponded to different stages of the rice 

growth, and included the phytosanitary treatments (molinate in May and propanil 

and bentazone in June) and synthetic fertilization (in June). In both paddies, the 

samples of October corresponded to upland conditions, after harvesting. Among 

the biochemical and physicochemical parameters and microbiological counts 

determined between April and October, a similar trend of variation was observed 

for both paddies. In general, independently of the management practice, enzymatic 

activity reached the maximum in May and the cultivable organisms in June. In 

October the values of most of the measured parameters were, in general, lower than 

in May and/or June, but higher than in April. 

The CLPP and DGGE profile-based richness of soil of paddies ORG and CONV 

were similar over the rice cycle, with all the sole C substrates being used for 

growth and the same average number of DGGE bands being present at all the 

sampling periods for both paddies. Moreover, the Shannon and the evenness 

diversity indices based on the CLPP and DGGE profiles did not vary in each paddy 

over time or differed between paddies at each sampling time. These results suggest 

heterogeneity and co-abundance of different organisms in rice soil with high 

functional diversity, irrespectively of farming type. In fact, the high functional 

diversity of rice field soil was previously reported (Zhou et al. 2008), and it is 

known that this highly heterogeneous habitat favours the growth and survival of 

versatile bacterial members. Hence, these organisms contribute to a diverse 

community, which contrasts with the restricted bacterial communities observed in 

percolating water and rice roots (Asakawa and Kimura 2008; Kikuchi et al. 2007).  

Given the fact that similar diversity indices were observed in both paddies, together 

with an identical over time trend of variation of the analysed parameters, it could 

be argued that the type of agricultural management practice did not have a major 

influence on the functional and microbial communities of the rice soil. In fact, 
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among the microbial counts and the biochemical and physicochemical parameters 

determined, only a few were observed to differ significantly between both 

management systems. Some of the differences found, as the water content in May 

and June, were probably due to field management, rather to intrinsic soil 

properties. The scarcity of other studies comparing conventional (pesticides 

application and synthetic fertilization) and organic rice farming (no pest control, 

mineral and organic amendments) limits a deeper discussion of our data. However, 

the parameters that differed between paddies ORG and CONV (pH, the activity of 

some enzymes and the total cell counts) are reported in literature as being 

susceptible of variation between organically and conventionally farmed soils. The 

higher values of pH registered for paddy ORG than for paddy CONV, particularly 

in April, is in accordance to that described in the literature when comparing 

different agricultural management procedures. In fact, in previous studies, 

organically farmed soils present slightly higher pH values than conventionally 

managed soils (e.g. Mader et al., 2002; Liu et al., 2007) . Several authors reported 

that organic management practices may lead to increased soil microbial biomass, 

activity and microbial functional and taxonomic richness and diversity when 

compared to conventional farming (Carpenter-Boggs et al. 2000; Mäder et al. 

2002; van Diepeningen et al. 2006). Nevertheless, none of the previous studies 

referred to above have focused on rice cultures. In our study, no differences were 

found between both managements in what respects functional and bacterial 

community richness and diversity. Additionally, assuming that the microbial 

biomass can be related to the microbial counts, the results obtained in the present 

study for rice soil did not follow the pattern described by other authors, who 

compared different agricultural procedures for other crops (Carpenter-Boggs et al. 

2000; Mäder et al. 2002; van Diepeningen et al. 2006). In contrast, rice field soil 

studies of Sheng et al. (2005), although not comparing organic with conventional 

farming, are in agreement with ours. Given the uniqueness of the rice culture, 

which includes a long period of flooded conditions, it would not be surprising that 

farming management might trigger different responses in soil communities, than 
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those observed in other crops. In a comparative study of the effects of synthetic 

fertilization and/or pesticides use, Sheng et al. (2005) reported that the microbial 

biomass and the number of heterotrophic bacteria in rice field soil subjected to 

incorporation of synthetic fertilizers alone was not significantly different from rice 

field soil under conventional farming (synthetic fertilization and pesticides), 

although enhanced dehydrogenase activity was observed in the first soil. 

Additionally, Sheng et al. (2005) observed that the highest number of heterotrophs 

in both soils was at tillering stage, which is in agreement with our study, as in June 

rice plants were at the same growth stage. Interestingly, the highest MPN of 

microorganisms growing in the sole C substrates tested was coincident with the 

highest counts of fast growing heterotrophs and actinomycetes. This observation 

may be related with enhanced availability of labile C and N in both soils in June. In 

this period, rice plants were growing towards maturation in both paddies, and the 

highest density of cultivable bacteria and microorganisms growing in the tested 

carbohydrates, amino acids and organic acids, compounds present in root exudates 

(Kong et al. 2008), would support this observation. In fact, photosynthesized 

compounds released from rice roots to the soil can provide nutrients to increase the 

microbial populations (Bai et al. 2000). On the other hand, the addition of synthetic 

N fertilizers in paddy CONV may have also contributed to enhance the growth of 

the cultivable soil populations. Thus, the influence of root exudates may have been 

noticeable in paddy ORG because it did not receive fertilization or any other 

treatment after seeding. 

Multivariate analysis of soil fingerprints is a useful tool to detect shifts in the 

microbial composition of organically and conventionally farmed soils, as well as 

temporal variations in each type of farming system. For instance Hartmann et al. 

(2006) reported significant differences in the microbial communities, characterized 

on basis of T-RFLP profiling, of organically and conventionally managed soils. 

However, the observed shifts were mainly due to the incorporation of farmyard 

manure (FYM), as the microbial communities of organically and conventionally 

managed soils with FYM amendment were similar. In a further study, Hartmann 
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and Widmer (2006) reported highly similar microbial diversity indices values 

among unfertilised, organic and conventional FYM fertilised soils, whereas 

through the analysis of the composition of the communities by T-RFLP profiling 

and by sequence of 16S rRNA genomic libraries strong differences in composition 

were found.  These findings led to the conclusion that changes in the microbial 

community structure may not lead to shifts in the diversity indices values, since 

some taxonomic groups may be compensated by modifications of others 

(Hartmann and Widmer 2006). In another study, Bossio et al. (1998) detected 

highly significant differences in PLFA profiles between organically and 

conventionally farmed tomato soil plots and among sampling dates, while the 

Shannon’s diversity index values based on PLFA relative abundance did not vary 

between farming system type neither over time. This observation, as in our study, 

may indicate the limitation of the Shannon’s diversity index to assess microbial 

diversity on basis of fingerprinting data. Nevertheless, Fromin et al. (2002) in their 

comprehensive review on community analysis by DGGE patterning, refers this 

index as a valuable tool. These observations reinforce the relevance of multivariate 

analyses to infer about temporal variations or farming systems. In fact, such 

analyses allowed an integrated interpretation of the data and revealed that the soil 

functional community structure presented similar temporal variations irrespective 

of the type of management, while the farming type influenced the bacterial 

community structure. 

The CLPP patterns of paddies ORG and CONV varied over time in a similar 

manner, except for June. Parameters as the urease activity, which peaked in May, 

and the fungi counts, which presented high values in October, for both paddies may 

explain the separation of the functional community structure in these months. The 

catalase activity, which showed the lowest values in April, influenced the 

separation of the CLLP patterns of both paddies in this month. Dissimilar 

functional community structure in paddies ORG and CONV was mainly explained 

by the significant differences in the soil water content found in these paddies in 

June. Although also varying over time, in paddy ORG the DGGE patterns-based 
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groups were slightly different from the CLPP-based groups. In this case, the 

bacterial community of May and June grouped together. The high catalase activity 

values and counts of heterotrophs found in May and June, and the high invertase 

activity values registered in April and October contributed to explain the variation 

observed between the communities of May/June and those of April and October. 

The lowest urease activity values and the highest values of pH influenced the 

separation of the DGGE profiles of paddy ORG in April. Similar results were 

obtained by Kikuchi et al. (2007) and by (Watanabe et al. 2006; 2007) when 

analysing, respectively, the bacterial and methanogenic populations of rice soils 

with synthetic fertilization through PCR-DGGE rDNA or RT-PCR rRNA profiling 

over time. As we observed, those authors reported that although the number of 

DGGE bands did not fluctuate throughout the year, multivariate analysis showed 

that differences in bands intensity were sufficient to demonstrate that the period of 

rice cultivation influenced the bacterial and methanogenic communities (Kikuchi et 

al. 2007; Watanabe et al. 2006). Although the agricultural management of rice crop 

is not described by Min-Cheol et al. (2008), these authors reported also temporal 

variations in the microbial community based on PLFA profiles and of 16S rDNA 

clone libraries of rice field soil. Interestingly, the temporal variation in cultivable 

bacteria, actinomycetes and fungi described by Min- Cheol et al. (2008) between 

rice planting and one month after harvest is similar to that observed in the present 

study.  

The DGGE profiles of paddy CONV, which presented a higher number of common 

bands at every analysed period than paddy ORG, formed a distinct group, which 

was correlated, among other factors, with the presence of molinate in the soil. 

When compared to paddy ORG, the bacterial community of the paddy CONV did 

not show temporal variation, suggesting that the bacterial community structure of 

both paddies was distinct at each sampling time. In fact, the cluster analyses of 

DGGE profiles of both paddies run in the same gel, for each of the analysed 

periods, showed that the DGGE patterns of paddies ORG and CONV always 

formed separated clusters (data not shown). The influence of the agricultural 
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management procedures on the structure of the soil bacterial communities was, 

thus, demonstrated in the current study. Nevertheless, differences in land use may 

also have contributed to differentiate the bacterial community structure of both 

paddies, as paddy ORG was under production for only two years while paddy 

CONV was for six years. This study also evidenced the higher plasticity of the 

organically farmed rice soil bacterial community, given its higher responsiveness 

to temporal shifts than that observed in the conventionally farmed paddy. 

In summary, it was observed that the microbial populations of rice field soil 

subjected to organic and conventional farming presented similar functional and 

bacterial richness and diversity, with temporal variations on the microbial density 

(cell counts), CLPP and enzymatic activity. Given these parameters may reflect the 

metabolic capabilities of the fast growing fraction of the bacterial community, our 

results suggest that this bacterial fraction seems to be less affected by the 

agronomic management than the total bacterial community, that was shown to 

differ between organically and conventionally farmed soil. On the other hand, 

functional redundancy of soil microorganisms may also explain the observed 

results. 
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Chapter 4- Molinate biodegradation in soils: natural attenuation versus 

bioaugmentation 
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4.1 Abstract  

The aims of the present study were to assess the potential of natural attenuation or 

bioaugmentation to reduce soil molinate contamination in paddy field soils and the 

impact of these bioremediation strategies on the composition of soil indigenous 

microbiota. A molinate mineralizing culture (mixed culture DC) was used as 

inoculum in the bioaugmentation assays. Significantly higher removal of molinate 

was observed in bioaugmentation than in natural attenuation microcosms (63 and 

39 %, respectively) after 42 days of incubation at 22 °C. In the bioaugmentation 

assays, the impact of Gulosibacter molinativorax ON4
T

 on molinate depletion was 

observed since the gene encoding the enzyme responsible for the initial molinate 

breakdown (harboured by that actinobacterium) was only detected in inoculated 

microcosms. Nevertheless, the exogenous mixed culture DC did not overgrow as 

the heterotrophic counts of the bioaugmentation microcosms were not significantly 

different from those of natural attenuation and controls. Moreover, the 

actinobacterial clone libraries generated from the bioaugmentation microcosms did 

not include any 16S rRNA gene sequences with significant similarity to that of G. 

molinativorax ON4
T
. The multivariate analysis of the 16S rRNA DGGE patterns of 

the soil microcosm suggested that the activity of mixed culture DC did not affect 

the soil bacterial community structure since the DGGE patterns of the 

bioaugmentation microcosms clustered with those of natural attenuation and 

controls. Although both bioremediation approaches removed molinate without 

indigenous microbiota perturbation, the results suggested that bioaugmentation 

with mixed culture DC was more effective to treat soils contaminated with 

molinate.  

Keywords: Natural attenuation, Bioaugmentation, Molinate, Bacterial community, 

Paddy field soil 
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4.2 Introduction 

Thiocarbamate molinate is an herbicide widely used for the control of barnyard 

grass in paddy fields. Contamination of soil, leachate and receiving waters by 

molinate has been observed in various countries at levels up to 100 μg l
−1

 (Carrasco 

et al. 1987; Julli and Krassoi 1995; Mabury et al. 1996). Environmental 

contamination with molinate is a concern because the herbicide and some of its 

degradation products have adverse effects on humans and animals (Cochran et al. 

1997; Ellis et al. 1998; Golovleva et al. 1981; Jewell et al. 1998; Jewell and Miller 

1999). Therefore, strategies to remediate this contamination are necessary. 

The cost-effectiveness of bioremediation when compared with other 

physicochemical remediation processes makes it attractive. Bioremediation relies 

on the metabolic diversity and cooperation of microorganisms, leading to the 

breakdown of different organic pollutants and degradation products thereof 

(Wackett and Hershberger 2001). Given its dependence on microbiological 

activity, the improvement and reliability of the bioremediation processes require 

the characterization of the microorganisms and microbe–microbe and 

environmental interactions (Bombach et al. 2010; Röling and van Verseveld 2002). 

Factors such as the pollutant properties, temperature, availability of nutrients, and 

electron acceptors will influence the rate and extent of biodegradation and, thus, 

the success of the bioremediation processes (Hussain et al. 2009; Reid et al. 2000; 

Röling and van Verseveld 2002; Vidali 2001; Vogel 1996). In spite of the high 

potential of autochthonous microorganisms to eliminate pollutants (natural 

attenuation), the extent of biodegradation may only be residual. For this reason, 

bioaugmentation is sometimes preferred. In bioaugmentation processes, soils are 

inoculated with microorganism(s) able to degrade the pollutant. Successful 

implementation of bioaugmentation depends on the efficiency of the added culture 

to degrade the pollutant under natural conditions and to adapt to the indigenous 

microbiota (Mrozik and Piotrowska-Seget 2010; Thompson et al. 2005; Vogel 

1996). In fact, the competition between exogenous and indigenous microbiota may 
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be responsible for unsuccessful bioaugmentation processes (Bouchez et al. 2000; 

Olaniran et al. 2006). 

Although molinate is considered as one of the most recalcitrant thiocarbamates 

(Nagy et al. 1995), biodegradation in soils by aerobic microorganisms (bacteria and 

fungi) through co-metabolism is reported (Golovleva et al. 1981; Imai and 

Kuwatsuka 1982; Imai and Kuwatsuka 1986a; Skryabin et al. 1978; Thomas and 

Holt 1980). Up to now, only one microbial culture (mixed culture DC) has been 

described as being able to mineralize molinate as the sole source of carbon, 

nitrogen and energy under a wide variety of operating conditions (Barreiros et al. 

2003; Correia et al. 2006). The molinate degradation pathway used by culture DC 

is different (Barreiros et al. 2008) from others previously reported (Golovleva et al. 

1981; Imai and Kuwatsuka 1982; Thomas and Holt 1980). The novel pathway is 

explained in part by the activity of molinate hydrolase (MolA) which is encoded by 

Gulosibacter molinativorax ON4
T
, member of culture DC, and that is responsible 

for the initial breakdown of the herbicide (Barreiros et al. 2008; Duarte et al. 2011). 

MolA leads to the breakdown of molinate into ethanethiol and azepane-1-

carboxilate, which are further mineralized by a metabolic cooperation among the 

five members of mixed culture DC, G. molinativorax ON4
T
, Pseudomonas (two 

strains), Stenotrophomonas and Achromobacter (Barreiros et al. 2008). 

The aim of the present study was to assess the potential for molinate 

biodegradation under either natural attenuation or bioaugmentation processes. 

Additionally, it was also intended to characterize the effects of molinate and 

inoculation with an exogenous inoculum (mixed culture DC) on the indigenous 

microbiota. The effectiveness of natural attenuation and bioaugmentation was 

evaluated using ex situ microcosms with soil samples from an organically farmed 

rice paddy field spiked with molinate. 
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4.3 Materials and methods 

4.3.1 Microcosm assays 

Microcosm assays were prepared with soil samples collected from an organically 

farmed Portuguese rice paddy field from the experimental farm “Bico da Barca” 

(40 º11′N; 08 º41′W) in April of 2007. A composite sample was prepared by 

mixing identical slots of three different sub-samples, each consisting of three soil 

cores pooled together from the upper 0–15 cm of the soil and stored at 4 °C until 

use. The soil pH was 6.4 and its total C and N content was 1.9 and 0.2 %, 

respectively. Other soil characteristics and description of the agricultural 

management of the rice paddy are described elsewhere (Lopes et al. 2011). Prior to 

use, the composite samples were sieved (<2 mm) and air-dried. Soil sterilization 

was done by autoclaving at 121 °C for 1 h for three consecutive days. 

Natural attenuation was assessed in microcosms with soil spiked with molinate (M) 

(natural attenuation = M). Bioaugmentation was assessed under similar conditions, 

with soil inoculated (i) with mixed culture DC (bioaugmentation = Mi) (Barreiros 

et al. 2008; Barreiros et al. 2003). Abiotic losses were assessed in microcosms with 

non-inoculated sterile soil (s) spiked with molinate (CsM). The ability of mixed 

culture DC to grow and degrade molinate in soil was assessed in microcosms with 

inoculated sterile soil spiked with molinate (CsMi). Non-sterile and non-inoculated 

microcosms were used to assess the impact of the experimental setup (microcosms) 

on the indigenous bacterial community (C). The effect of mixed culture DC on the 

indigenous bacterial community was assessed in inoculated non-sterile microcosms 

(Ci). 

 

4.3.2 Setup of microcosms 

Microcosms were prepared by placing 2 g of homogenized moist soil into 25-ml 

sterile glass vials with Teflon-lined caps and incubated at 22 °C at static conditions 

for 42 days. 
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The homogenized soil was prepared as follows: soil amendment was performed by 

mixing non-sterile (M, Mi) or sterile soil (CsM, CsMi) with a sterile molinate 

aqueous solution for 1.5 h at 120 rpm, reaching a final moisture and molinate 

content of 45 % and 0.1 mg molinate g
−1

dry soil,respectively. A sterile water 

solution was used for microcosms that did not contain molinate (C and Ci) in order 

to obtain a final moisture content of 45 %.   

To inoculate the microcosms, mixed culture DC was grown in mineral medium B 

containing 4 mM of molinate as the only source of carbon, nitrogen and energy 

(Barreiros et al. 2003). At the end of the exponential growth phase, the number of 

total cells was estimated using the 4,6-diamidino-2-phenylindole staining method 

as previously described (Manuel et al. 2007). This culture was suspended in a 

molinate solution (for Mi, CsMi) or sterile water (for Ci) in order to obtain an 

initial cell density of approximately 2×10
5
 cellsmixed culture g

−1
dry soil, which 

corresponded to 10 % of the total number of heterotrophs per gram of dry soil. 

 

4.3.3 Sampling from microcosms 

For molinate-spiked microcosms, six independent microcosms were sacrificed for 

each treatment at days 0, 28 and 42 for M, Mi and CsMi (total number of 

microcosm per treatment was 18) and at days 0 and 42 for CsM (the total number 

of microcosms per treatment was 12). Three of the sacrificed microcosms were 

used to determine the molinate concentration and the other three were used to 

enumerate cultivable heterotrophs and for further molecular characterization. For 

comparison, the enumeration of cultivable heterotrophs and molecular 

characterization was also made in microcosms not spiked with molinate (C and Ci) 

sampled at days 0 and 42 (the total number of microcosms per treatment was 6). 

Quantification of molinate and cultivable heterotrophs were performed 

immediately after sampling. The samples used for soil molecular characterization 

were stored at -20 °C until processing. 
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4.3.4 Soil analysis 

The soil molinate content was determined after extracting twice with 4 ml of 

hexane. Prior to extraction, samples (2 g moist soil) were spiked with an internal 

standard to achieve a final concentration of 0.1 mg cycloate g
−1

dry soil. The 

organic extracts were pooled, dried under vacuum, resuspended in 0.85 ml 

methanol and analysed by high performance liquid chromatography as described 

by Barreiros et al. (2003). 

Fast-growing cultivable heterotrophs were enumerated using the plate count 

method. Aliquots of 0.5 g of microcosm soil were suspended in 4.5 ml of sterile 

saline solution (0.85 % NaCl) and serially diluted, spread (100 μl) onto Luria–

Bertani agar plates and incubated at 30 °C for 48 h. 

The soil molinate content and heterotrophic plate counts were expressed as mg of 

molinate or colony forming units (CFU) g
−1

dry soil
 −1

 (oven-dried soil basis), 

respectively, corresponding to the average value of three independent soil 

microcosm analyses. 

 

4.3.5 DNA extraction from soil microcosms 

Total genomic DNA was extracted from 0.3 g of microcosm soil using the Power 

Soil™ DNA Isolation Kit (MO BIO) using a modified version of the protocol 

described by Lopes et al. (2011). Briefly, samples were sonicated (bath sonication) 

for 5 min, agitated at 1,300 rpm for 20 min and incubated at 65 °C for 15 min. 

Genomic DNA quality and quantity was assessed as previously described (Lopes et 

al. 2011). 

 

4.3.6 Bacterial community analysis 

The structure of microcosm soil bacterial communities (M, Mi, C and Ci) at days 0 

and 42 were analysed by denaturing gradient gel electrophoresis (DGGE) of the 
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amplified 16S rRNA gene fragment. PCR amplification of bacterial 16S rDNA 

fragments (~500 bp) was performed using the universal bacterial primers F984-GC 

and R1378 (Heuer et al. 1997; Nubel et al. 1996) as previously described (Lopes et 

al. 2011). The PCR products were quantified (Qubit® Fluorometer) and ~75 ng of 

the amplified 16S rDNA fragments was separated in a double-gradient 

polyacrylamide gel containing 6–9 % acrylamide with a denaturing gradient 

ranging from 30 to 58 % (where 100 % denaturant contained 7 M urea and 40 % 

formamide) as previously described (Lopes et al. 2011). 

 

4.3.7 Detection of molinate hydrolase gene (molA) in soil microcosms 

The presence of the MolA-encoding gene was assessed in soil microcosm samples 

by PCR using the primers F94 (5'-CAGGATCACGAAGGTTGGTT-3') and R1122 

(5'-ATCCACACGAAGTGGTCCTC-3') (G. molinativorax ON4
T

 numbering, 

accession number FN985594) (Duarte et al. 2011). Detection of molA gene was 

performed in M, Mi and Ci microcosms at days 0 and 42 and at day 42 for CsMi 

microcosms. The reaction mixture (25 μl) was composed of  1× buffer with 25 mM 

KCl and 10 mM (NH4)2SO4 (Fermentas), 0.3 mM dNTPs, 4 mM MgCl2, 5 % 

DMSO, 0.4 mg ml
−1

 of bovine serum albumin, 0.4 μM of each primer, 0.75 U taq 

DNA polymerase (Fermentas) and 2 μL of target DNA. The thermal cycling 

conditions consisted of a first denaturation step at 94 °C for 5 min, followed by 35 

cycles at 94 °C (0.5 min), 55 °C (0.5 min) and 72 °C (1.75 min), with a final 20-

min extension at 72 °C. The PCR products were visualized in a 1.5 % agarose gel 

stained with ethidium bromide. Positive reactions (molA+) were indicated by the 

presence of an amplicon of approximately 1.1 kb. The authenticity of the molA 

gene was confirmed by sequencing analysis of the PCR product. The PCR product 

was purified (Purification Kit, GFX™ PCR DNA and Gel Band Purification Kit, 

Amersham Biosciences, NJ, USA), ligated into pTZ57RT/T vector (InsTAclone™ 

PCR cloning kit, MBI Fermentas, Heidelberg, Germany) and used to transform 

Escherichia coli JM109 (NZYTech, Lisbon, Portugal) according to the 
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manufacturer's instructions. The DNA of insert-positive clones was sequenced with 

the universal vector primers M13pUC-F (5'-GTTTTCCCAGTCACGAC-3') and 

M13pUC-R (5'- CAGGAAACAGCTATGAC-3'). Nucleotide sequences were 

determined using a model ABI 3700 DNA Analyser (Applied Biosystems, CA, 

USA). After checking their quality using the BioEdit software (Hall 1999), the 

nucleotide sequences (ca. 1,100 bp) were compared to others available in public 

databases using the BLAST search tool (http://www.ncbi.nlm.nih.gov). 

 

4.3.8 Detection of G. molinativorax ON4
T

 in soil microcosms 

To assess the effect of G. molinativorax ON4
T 

on the soil actinobacterial 

communities, 16S rDNA clone libraries from M, Mi, CsMi, C and Ci microcosms 

at days 0 and 42 were prepared. Given that 16S rDNA actinobacterial specific 

primers F243HGC and R1378 described by Heuer et al. (1997) failed on the 

amplification of G. molinativorax ON4
T
, a modified forward primer (F243GM, 5'-

GGATCAGCC CACGGCCTA-3') was designed. In primer F243GM, two 

nucleotides (fifth and 11th, italicized in the preceding sentence) were substituted in 

comparison to primer F243HGC (Heuer et al. 1997). These nucleotides are 

characteristic of G. molinativorax ON4
T
 and Pseudoclavibacter helvolus DSM 

20419
T
. PCR reactions were performed in a 50-μl reaction mixture with a 

composition identical to that reported earlier, differing on the use of 3 mM MgCl2, 

0.3 μM of each primer, 1.5 U taq DNA polymerase and 3 μL of target DNA. The 

PCR program was 5 min at 94 °C, followed by 35 cycles of 1min at 94 °C, 1min at 

52 °C, 2 min at 72 °C and a last step of 20 min at 72 °C. The amplicons (~1.1 kb) 

obtained from the triplicate microcosms at days 0 or 42 were pooled before gel 

purification (GFX™ PCR DNA and Gel Band Purification Kit, Amersham 

Biosciences, NJ, USA). Cloning of gel-purified amplicons was performed and the 

DNA of insert-positive clones was subsequently sequenced with primer M13pUC-

F as described above.  
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The 16S rRNA gene sequences' quality was checked using the BioEdit software 

(Hall 1999) and were aligned using Clustal W from MEGA 5.0 software (Tamura 

et al. 2011). The sequences retrieved from the clone libraries were processed 

separately for each microcosm assay. Sequences sharing > 98 % similarity were 

considered as corresponding to the same operational taxonomic unit (OTU). The 

OTU identity was assigned based on the EzTaxon library 

(http://www.eztaxon.org/) (Chun et al. 2007). 

 

4.3.9 Statistical analysis 

Statistical analysis (two-way analysis of variance-ANOVA and two-sample 

statistical test-t-test) of molinate degradation and cultivable heterotrophs data was 

performed using the Microsoft Excel software package. 

Analyses of bacterial community profiles in the soil microcosms were performed 

with the Bionumerics software (version 6.1, Applied Maths, Sint-Martens-Latem, 

Belgium) after normalization of scanned DGGE gels with a standard reference. The 

DGGE profiles of all analysed samples were compared after band-matching in the 

area 15.6–85.3 % of the gel. The obtained band-matching tables were the basis for 

community cluster and ordination analysis and for the determination of diversity 

indices [H = -Σ(ni/N)log(ni/N)] (Shannon and Weaver 1963) and [E = H/logS] 

(Pielou 1966). Canonical correspondence analysis (ter Braak 1986) was carried out 

to evaluate the influence of soil molinate amendment and of abundance of the 

heterotrophic population on the variance of the bacterial community composition 

(DGGE patterns). CCA was performed with CANOCO (version. 4.5, 

Microcomputer Power, Ithaca, NY, USA). Monte Carlo permutation test (n=999) 

was used to evaluate the significance of the relationship between community and 

environmental data. 
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4.3.10 Nucleotide sequence accession numbers 

Representative actinobacterial 16S rDNA sequences obtained in this study were 

deposited in GenBank with accession numbers JQ669500 to JQ669509. 

 

4.4 Results 

4.4.1 Molinate degradation and total heterotrophic counts in soil 

microcosms 

Molinate was biodegraded either by natural attenuation or bioaugmentation 

processes. Abiotic losses of molinate did not exceed 4 % (CsM microcosms) 

(Table 4.1). At day 42, a higher herbicide removal (P<0.01) was observed in Mi 

(~63 %) than in M (~39%) microcosms. The highest molinate depletion was 

observed in the inoculated control CsMi (~99 %). 

In general, molinate depletion was accompanied by an increase in the total number 

of soil heterotrophs (Fig. 4.1a). At the beginning of the experiments (day 0), the 

total heterotrophic counts were similar in both M and Mi microcosms (~6.2 and 6.5 

log CFU g
−1

dry soil, respectively). The slight difference observed was due to the 

presence of the inoculum, which corresponded to ~10 % of the total number of soil 

heterotrophs. In the same way, at the end of the incubation period (42 days), the 

total heterotrophic counts were not significantly different in both M and Mi 

microcosms (~7.2 and 7.3 log CFU g
−1

dry soil, respectively). Identical values were 

found in both non-inoculated and inoculated non-spiked controls (C and Ci) (Fig. 

4.1a). In contrast, at day 42, significantly higher counts were observed in CsMi (9.0 

log CFU g
−1

dry soil) than in all the other microcosms. In fact, the difference in the 

number of heterotrophs between CsMi and the other microcosms was 

approximately two orders of magnitude. 
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Table 4.1 Molinate concentration over time and percentage of degradation in microcosm 

assays. 

Time (days) Molinate concentration (µg g
−1

dry soil) (% of degradation) 

 
M Mi CsM CsMi 

0 108 ± 15 (0)    

28 75 ± 28 (31 ± 25) 65 ± 6 (40 ± 5) N.D. 18 ± 29 (83 ± 27) 

42 66 ± 16 (39 ± 15 B) 40 ± 8 (63 ± 7 C) 104 ± 4 (4 ± 4 A) 2 ± 1 (99 ± 1 D) 

 

The initial concentration of molinate in soil microcosms is an average value of all the samples ± 

standard deviation (n=12); all the other values are means ± standard deviation (n=3). Significantly 

different values of molinate depletion are indicated by letters A, B, C or D for distinct treatments (P < 

0.01) or by italics for different sampling dates (28/42 days) (P < 0.05). N.D. not determined 

 

Fig. 4.1 a) Total heterotroph counts (log CFU g
−1

dry soil) in M, Mi, CsMi, C and Ci 

microcosms over the incubation period. Results are mean values (n=3) and the error bars 

represent the standard deviation. b) Detection of molA gene in DNA extracted from M, Mi, 

CsMi and Ci soil microcosms from days 0 and 42.  

Significantly different values of total heterotrophs are indicated by A, B or C for distinct treatments 

(P < 0.01) or by an asterisk for different sampling dates (0/28/42 days) (P < 0.05). molA + gene was 

amplified, molA − gene was not amplified, N.D.a not determined since it was not possible to extract 

DNA from that sample, N.D. not determined. 
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4.4.2 Bacterial community structure in soil microcosms  

The structure of soil bacterial communities from M, Mi, C and Ci microcosms and 

their temporal variations were analysed by 16S rDNA-DGGE. On average, DGGE 

patterns comprised 14 and 16 well-resolved bands at days 0 and 42, respectively. 

Variations in the structure of the bacterial communities based on the DGGE 

patterns of the four microcosms were characterized both by cluster analysis (data 

not shown) and canonical correspondence analysis (Fig. 4.2). Axis 1 explained 

27.1 % of the observed variance and presented a high species–environment 

correlation value (0.94) (P<0.02). As indicated by the CCA biplot, the structure of 

the bacterial communities varied over the incubation period (days 0 and 42) in all 

of the analysed microcosms. At the end of the incubation period (day 42), the 

bacterial communities of non-inoculated and inoculated non-spiked controls (C and 

Ci) were closer to M and Mi microcosms than at the beginning of the experiment 

(day 0) (Fig. 4.2). The number of total heterotrophs was associated with the 

temporal variations in the bacterial communities, showing an intraset correlation of 

-0.98 with axis 1 and explaining 76.7 % of the variance of the species–environment 

relation. Axis 2 explained 8.2 % of the variance in the bacterial communities. At 

the start of the experiment (day 0), the bacterial communities of the non-spiked 

controls (C and Ci) differed from those of M and Mi microcosms as indicated by 

their separation along axis 2. Indeed axis 2, which explained 23.3 % of the variance 

of species–environment relation, was related to soil molinate content (intraset 

correlation of -0.84). 

When the same communities (M, Mi, C and Ci) were compared based on the 

diversity (H) and the evenness (E) indices, no significant differences were 

observed, either at the beginning or at the end of the experiment (0 or 42 days; 

Table 4.2). 
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Fig. 4.2 CCA biplot of DGGE patterns of soil microcosms M, Mi, C and Ci over the 

incubation period (0 and 42 days). The total heterotrophic count and molinate 

concentration, which are the explanatory variables, are represented by arrows indicating the 

direction of increase for each variable. 

 

Table 4.2 Diversity indices of bacterial communities over the incubation period. 

Time (days) Shannon index (H) 

  M Mi C Ci 

0 1.03 ± 0.02 0.96 ± 0.01 0.99 ± 0.02 0.92 ± 0.07  

42 1.08 ± 0.04 1.09 ± 0.03 1.05 ± 0.04 1.08 ± 0.05 

 

Table 4.2 Continued 

Time (days) Evenness index (E) 

  M Mi C Ci 

0 0.89 ± 0.01 0.83 ± 0.02 0.89 ± 0.02 0.83 ± 0.07 

42 0.89 ± 0.03 0.89 ± 0.04 0.90 ± 0.03 0.92 ± 0.01 

 

Values are means ± standard deviation (n=3) 
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4.4.3 Detection of molA gene in microcosm soil 

Molinate depletion in M microcosms suggested the presence of indigenous 

microbiota capable of herbicide transformation. This result leads to the screening 

of the gene molA in the microcosm assays (M, Mi, Ci and CsMi). After numerous 

attempts, this gene was only detected in microcosms inoculated with culture DC 

and never in the M microcosms. At day 0, the gene was detected in Mi and Ci 

microcosms, and at day 42 molA was detected from the inoculated and spiked 

microcosms (Mi and CsMi) (Fig. 4.1b). The nucleotide sequence of the molA 

amplicon confirmed a high similarity with the same gene of strain G. molinativorax 

ON4
T 

(Duarte et al. 2011) with identity values of 99.5–99.9 % with molA. 

 

4.4.4 Detection of G. molinativorax ON4
T

 in soil microcosms 

The effect of G. molinativorax ON4
T

 inoculation on the soil actinobacterial 

communities was assessed based on the analysis of an actinobacterial 16S rRNA 

gene library with the modified primer F243GM. Although this primer has two 

mismatches with the 16S rRNA gene sequence of G. molinativorax ON4
T
, it could 

amplify the DNA fragment of this organism and of other Actinobacteria. In fact, an 

in silico analysis (TestProbe analysis, www.arb-silva.de) (Pruesse et al. 2007), 

allowing the same number of mismatches (two), indicated that primer F243GM 

could amplify a higher number of sequences affiliated to members of families 

Streptomycetaceae, Mycobacteriaceae and Pseudonocardiaceae (79.2, 3.3 and 3.2 

%, respectively) than Microbacteriaceae (0.5 %) to which G. molinativorax ON4
T

 

belongs. In addition to members of Gulosibacter, the 16S rRNA gene sequence 

fragments of members of closely related genera as Pseudoclavibacter and 

Zimmermannella could also be amplified. 

Although in silico analysis revealed that primer F243GM was not totally specific 

for Actinobacteria, as expected the majority of the microcosm-cloned sequences 

(103/124) could be assigned to this phylum. Twenty-one sequences corresponded 

to unknown OTU showing similarity values below 90 % with known phyla. 
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Although the closest neighbors were members of the phyla Firmicutes, 

Proteobacteria and Verrucomicrobia, similarity values ranged between 85 and 90 

%, which is too low to support a reliable identification. In M, Mi, C and Ci 

microcosms, the sequences assigned to Actinobacteria represented seven OTU, 

which were affiliated to the genera Streptomyces (five OTU), Mycobacterium and 

Pseudonocardia. The overrepresentation of a single OTU was evident in these 

microcosms (M, Mi, C and Ci), with 87 out of the 119 sequences analysed being 

affiliated to Streptomyces shaanxiensis CCNWHQ 0031
T
 (> 99 % nucleotide 

sequence identity). Comparing the beginning with the end of the assays (0 and 42 

days), it is suggested that the incubation period leads to a decrease in the number of 

sequences affiliated to S. shaanxiensis CCNWHQ 0031
T
. This effect was more 

(from 12/14 to 4/10) and less (from 13/14 to 15/17) pronounced in the inoculated 

control Ci and Mi microcosms, respectively. Sequences affiliated to G. 

molinativorax ON4
T
 were only obtained from the control CsMi (Fig. 4.3). 

 

Fig. 4.3 Diversity of the actinobacterial 16S rRNA gene clones from soil microcosms. 
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4.5 Discussion 

In the present study, the indigenous microbiota of a rice field soil was capable of 

molinate degradation. These results are also in agreement with other studies that 

used paddy soil from experimental or agriculture fields: lysimeter assays, (Park et 

al. 2005), microcosm assays (Imai and Kuwatsuka 1982), soil perfusion assays 

(Imai and Kuwatsuka 1986a) and enrichment cultures (Molinari et al. 1992). The 

fact that an organically farmed soil was used presumes that the microbiota has not 

been in contact with molinate and suggests that soil microbial community in this 

study may have an intrinsic capacity to transform the herbicide without a prior 

adaptation.  

To the best of our knowledge, there is no information regarding bioaugmentation 

processes to reduce molinate contamination in soils. In fact, this is the first report 

of soil inoculation with a mixed culture able to mineralize molinate (mixed culture 

DC). Inoculation with that culture improved the extent of molinate depletion in soil 

as lower herbicide residues were found at the end of the assay in the Mi than in the 

M microcosms. Nevertheless, the highest molinate depletion was observed in the 

inoculated control in which culture DC had no competition with the indigenous 

microbiota (approximately 99 % in CsMi against 63 % in the Mi assay). This 

suggests that the ability of mixed culture DC to degrade molinate was affected by 

the presence of the indigenous microorganisms. Similar results were reported by 

Barreiros et al. (2011) in bioaugmentation microcosms using mixed culture DC to 

decontaminate rice paddy floodwater after the application of Ordram, a commercial 

molinate formulation. The result of more extensive molinate depletion in the 

absence of indigenous microbiota supports previous studies which showed that 

competition between exogenous and indigenous microbiota may compromise the 

successful implementation of bioaugmentation (Bouchez et al. 2000; Olaniran et al. 

2006). However, in the current study, the competition between exogenous and 

indigenous microbiota did not hamper molinate degradation. 
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The depletion of molinate in non-inoculated microcosm indicated that soil 

indigenous microbiota has the appropriate genetic makeup to transform molinate. 

Nevertheless, the results suggested that, in the soil from M microcosms, the 

transformation pathway(s) is different from that used by mixed culture DC. Indeed 

the key catabolic gene involved on molinate breakdown by G. molinativorax ON4
T

 

(molA) was never detected in M microcosms. In contrast, molA was detected in the 

Mi microcosms where a higher molinate removal was observed than in the M. 

Altogether these results suggest that at least part of molinate depletion in Mi was 

due to the activity of G. molinativorax ON4
T
. Nevertheless, in the inoculated 

microcosms without molinate (Ci), the molA gene was only detected at day 0 and 

not at day 42, suggesting that, in the absence of molinate, G. molinativorax ON4
T
 

is not able to proliferate in soil. 

The time course increase of total heterotrophic counts was similar in the M and Mi 

microcosms and controls (C and Ci). Therefore, in the current study, the increase in 

the heterotrophic population could not be attributed to an overgrowth of the 

organisms able to use molinate as a source of carbon as have been reported for 

other pollutants (Coppotelli et al. 2008; Wang et al. 2006). In fact, the initial 

molinate concentration in soil was negligible when compared with the amount of 

organic carbon; therefore, it could hardly be responsible for an observable increase 

in the cell number in these soils. A so called "microcosm effect" was also observed 

through the DGGE patterns and actinobacterial clone libraries as time course 

variations were observed not only in M and Mi microcosms but also in the controls 

(C and Ci). These results indicate the influence of the experimental design in the 

soil total and cultivable microbial communities. 

The analysis of the DGGE patterns of the microcosms supported some conclusions 

on the effect of molinate on the soil total bacterial communities. The structure of 

the bacterial communities at day 0 in the control microcosms without molinate (C 

and Ci) and treatment microcosms (M and Mi) was slightly different, suggesting 

that the time (~2 h) taken to prepare the microcosms (between molinate 
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homogenization in soil and sampling at day 0) was enough to induce slight 

variations in the soil bacterial community. However, after 42 days of incubation, 

all the DGGE patterns were similar (M, Mi, C and Ci), suggesting that the effect of 

molinate in the bacterial community was transient. Indeed other authors reported 

that the impact of a given pollutant on the bacterial composition may only be 

transient. For example, structural shifts in the bacterial communities of soils spiked 

with either 2,4-dichlorophenoxyacetic acid or paenimyxin occurred only in the first 

days of exposure as at the end of the experiments no significant differences were 

observed between the bacterial communities from the assays and controls (Gonod 

et al. 2006; Selim et al. 2007). The transitory effect of molinate and other 

pesticides on soil microbial processes such as substrate-induced respiration and 

nitrification was also previously reported (Saison et al. 2009). 

When bioaugmentation is used as a remediation strategy, the capacity of the 

exogenous microorganism(s) to degrade the pollutant without disturbances to the 

indigenous microbial populations is of major importance. However, inoculated 

microorganisms can overgrow and become dominant (Coppotelli et al. 2008; 

Gomes et al. 2005). Given that in the current study the exogenous microorganisms 

were able to survive and degrade the pollutant, it was important to assess possible 

disturbances in the Mi bacterial community. The analysis of the soil total bacterial 

communities (DGGE patterns) suggested that the inoculation with exogenous 

microorganisms did not affect the soil indigenous community. In fact, the DGGE 

patterns of Mi and of M microcosms clustered consistently. Additionally, none of 

the sequences retrieved from the actinobacterial libraries from the Mi and Ci 

microcosms could be affiliated to G. molinativorax ON4
T
. Although it can be 

assumed that bias related with DNA extraction may have influenced this result, 

these results suggested that G. molinativorax ON4
T
 is present in low numbers in 

microcosms and may be outcompeted as a target for the modified group specific 

F243GM PCR primer and resulted in a higher amplification of the dominant 

microorganisms. In addition, the fact that the highest heterotrophic counts were 

found in the inoculated sterile soil with molinate (CsMi) suggests that the 



Chapter 4 

84 

exogenous culture is not capable of overgrowth in the presence of the indigenous 

microbiota.  

The vast majority (87/119) of sequences from the treatment of M and Mi and 

controls (C and Ci) constructed actinobacterial libraries were affiliated to S. 

shaanxiensis CCNWHQ 0031
T
, an organism isolated from soil in a sewage 

irrigation area (Lin et al. 2012). Organisms belonging to genus Streptomyces have 

been isolated and characterized as able to co-metabolize molinate (Daffonchio et 

al. 1999; Golovleva et al. 1981; Imai and Kuwatsuka 1986a; Imai and Kuwatsuka 

1986b). The dominance of members of genus Streptomyces in the studied 

microcosms was not unexpected given that these are described as common soil 

inhabitants. Additionally, in silico analysis indicated that the highest number of 

16S rRNA gene sequences matching primer F243GM was those of members of this 

genus (7,257 out of 9,165, assuming two sequence mismatches). 

In summary, this study revealed that neither molinate nor the exogenous molinate 

mineralizing culture (mixed culture DC) induced significant perturbation of the 

total and cultivable bacterial communities in soil. Although natural attenuation may 

be used in the future to reduce molinate contamination in soil, a bioaugmentation 

strategy may be advantageous since a higher extent and/or rate of herbicide 

depletion was achieved when mixed culture DC was used as inoculum. Although 

being more extensive in the presence of mixed culture DC, molinate degradation 

also took place in non-inoculated microcosms. This observation, and the fact that 

G. molinativorax ON4
T

 or molA gene could not be detected in non-inoculated 

microcosms, suggests that other modes of biodegradation may occur in soils. 

Indeed molinate hydrolase and members of species G. molinativorax are apparently 

rare and may have emerged in heavily contaminated sites (Barreiros et al. 2003) 

(http://www.ncbi.nlm.nih.gov), without further successful dissemination in the 

environment. Nevertheless, in mixed culture DC, the pivotal role is from G. 

molinativorax ON4
T
. The auxiliary activity of the other four strains in mixed 

culture DC can, probably, be done in soils by autochthonous organisms. This 
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metabolic cooperation between G. molinativorax ON4
T
 and autochthonous 

organisms may explain the maintenance of this bacterium or of the molA gene for 

long periods of time after inoculation. 
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Chapter 5 - Bacterial community variations in an alfalfa-rice rotation 

system revealed by 16S rRNA gene 454-pyrosequencing 

 

 

 

 

 

 

 

 

 

 

  

Results included in: 

Lopes, A.R., Manaia, C.M. and Nunes, O.C. Bacterial community variations in an 

alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing. 

(submitted for publication) 
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5.1 Abstract  

Crop rotation is a practice harmonised with the sustainable rice production. 

Nevertheless, the implications of this empirical practice are not well characterized, 

mainly in relation to the bacterial community composition. This study addressed 

this topic, assessing the effect of the crop rotation stage, rice cycle and presence of 

the rice crop on the composition and structure of bacterial communities in soils in 

an alfalfa-rice rotation system. The bacterial communities of paddy fields in the 3
rd

 

and 4
th 

year of the crop rotation cycle and of a non-seeded sub-plot were 

characterized over the rice cycle, using 454-pyrosequencing of 16S rRNA gene. 

Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and 

Bacteroidetes predominated in all the samples, there were variations in the 

bacterial communities. Differences on the abundance of members of the phylum 

Bacteroidetes were observed at the successive stages of the crop rotation. Members 

of the phylum Nitrospira were more abundant after rice harvest. The presence of 

rice plants was positively correlated with members of the orders Acidobacteriales 

and "Solibacterales" and negatively with lineages such as Chloroflexi "Ellin6529". 

Studies like this represent important science-based tools to understand the 

influence of plants on soil microorganisms in sustainable rice production. 

Keywords: 454-pyrosequencing, bacterial community, crop rotation, diversity, 

PCoA, rice paddy soil. 

 

5.2 Introduction 

Soil is a privileged habitat for microorganisms and is amongst the most biodiverse 

environments on Earth (Tamames et al. 2010). It is estimated that 1 gram of soil 

contains about 1 billion of prokaryotic cells (Roesch et al. 2007). Although the vast 

majority of microbial soil species are so far uncultivable, in the last decades, the 

development and improvement of culture-independent methods (e.g., fluorescent in 

situ hybridization-FISH, phyloarrays, fingerprinting techniques and sequencing of 



- Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing 

89 

small-insert libraries of environmental DNA) (Newby et al. 2009), allowed to get 

important insights into the phylogenetic diversity of soil microbiomes. Among 

them, high throughput sequencing technologies gave a new impetus to microbial 

ecology studies (Mardis 2008; Mardis 2011; Suenaga 2012). In spite of the biases 

inherent to these technologies (Suenaga 2012; Zinger et al. 2012), the 

pyrosequencing of phylogenetic marker genes, such as the 16S rRNA gene offers 

new insights into the composition and structure of environmental microbial 

communities, allowing inferences about biogeographical or ecological patterns in 

different habitats (e.g., soil, rhizosphere, sediments) (Baldrian et al. 2012; Gomes 

et al. 2010; Zhang et al. 2012) or environmental gradients (e.g., depth, pH, N 

amendments) (Eilers et al. 2012; Lauber et al. 2009; Ramirez et al. 2012). 

Due to the increasing demand for productivity, in the beginning of the past century 

ancient agriculture practices gave way to conventional farming (Ladha and Reddy 

2003; Matson et al. 1997). Despite the benefits on productivity, the use of synthetic 

chemical compounds strongly alters soil microbial communities composition and 

biogeochemical cycles (Hussain et al. 2009; Ramirez et al. 2012) and triggers 

strong negative impacts on sustainable soil fertility and on environmental quality 

(Galloway et al. 2008; Matson et al. 1997; Quayle et al. 2006). The expansion of 

sustainable agriculture practices, which avoid or strongly reduce the use of 

pesticides and synthetic fertilizers is a priority. Often relying on empirical 

practices, sustainable agriculture production would benefit from science-based 

evidences, demonstrating the benefits of such management practices.   

Crop rotation is an important alternative to conventional farming, because it offers 

high productivity (Xuan et al., 2012) while contributes to environmental health 

(Rui and Zhang 2010). The cereal-legume rotation is a worldwide extended crop 

management, which improves the yield and quality of cereal crops by reducing 

diseases and weeds (Fenández-Aparicio et al. 2007; Liebman and Davis 2000), 

fixing atmospheric N2 (Kelner et al. 1997), and contributing to increase the soil 

organic matter content (Rosen and Allan 2007). The legumes used in these rotation 

systems depend on the world region, the water regime and the season where forage 
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is being cropped (Ladha and Reddy 2003). Alfalfa (Medicago sativa L.) is a 

legume used in different world regions and with different crops, which contributes 

to maintain soil organic carbon (SOC) and to the accumulation of N in soil (Kelner 

et al. 1997; Pietsch et al. 2007). Nevertheless information about the effect of 

alfalfa-rice rotation system on the bulk soil bacterial community is scarce. The 

current study was designed for comparing the composition and structure of the 

bacterial communities in rice fields in different stages of an alfalfa-rice rotation 

system. In order to have a thorough perspective of these communities, 16S rRNA 

metagenome analyses were conducted using 454-pyrosequencing. Specifically it 

was intended to i) characterize the bulk soil bacterial community; ii) assess the 

influence of the crop rotation stage on the bacterial community structure; iii) 

identify the bacterial lineages with the highest and lowest vulnerability to changes 

over the rice crop cycle; iv) identify the lineages affected by the presence of rice 

plants.  

 

5.3 Materials and Methods 

5.3.1 Site description and soil sampling  

The soil samples were collected in an experimental farm (“Bico da Barca”, 40 º 11’ 

N; 08 º 41’ W), in the valley of river Mondego, Montemor-o-Velho, Central 

Portugal. Samples were collected from two adjacent organically farmed paddy 

fields, both under a 4 years crop rotation system, in which alfalfa (forage crop) 

rotates with rice (cereal crop). Briefly, alfalfa is cropped for two consecutive years 

(designated 1
st
 and 2

nd
 year) followed by two consecutive years of rice cropping 

(designated 3
rd

 and 4
th
 year). During rice cropping land is under fallow in autumn 

and winter to avoid the spreading of plant diseases and weeds (Fig. 5.1). At the 

beginning of the study paddies A and B were, respectively, at the 3
rd

 and 4
th

 year of 

the crop rotation cycle. In both paddies, the organic agricultural management of 

rice crop was similar to that described before (Lopes et al. 2011) with few 

exceptions; in April, one month before rice seeding, paddy B (but not paddy A) 

was amended with a plant residue commercial compost (Fertiormont, 2 t ha
-1

) and 
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with mineral gafsa (Fertigafsa, 300 kg P ha
-1

). These amendments intend to 

overcome the usual reduction of rice yield from the first to the second year of 

production.  

Triplicate composite samples (I, II, III) each consisting of 20 individual soil cores 

pooled together were randomly collected from the upper 0-25 cm of the soil at 

paddies A (total area=3070 m
2
) and B (total area=1715 m

2
). Soils were sampled 

before seeding in early April 2010 (samples labelled AApr and BApr, respectively) 

and after harvesting in late September (ASep and BSep, respectively). To assess the 

effect of the rice plants on the microbial community of the bulk soil, in September 

composite samples were collected from a non-seeded sub-plot of paddy A (ANSSep, 

non-seeded). After removal of visible root debris and homogenization, soil aliquots 

of each replica were immediately stored at 4 ºC for soil physicochemical 

characterization and at -20 ºC for molecular characterization. 

 

Fig. 5.1 Scheme of alfalfa-rice crop rotation in the experimental farm “Bico da Barca”, 

Montemor-o-Velho, Portugal. 
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5.3.2 Soil characteristics 

The total C and N contents (wet oxidation with dichromate and Kjeldahl digestion, 

respectively), pH in water and water content were determined as described by 

Guitián and Carballas (1976) . Total available-P was extracted with 0.5 M sodium 

bicarbonate (pH 8.2) (Bowman and Cole 1978). All analyses were performed on 

triplicate soil samples. 

 

5.3.3 16S rRNA gene barcode 454-pyrosequencing  

A barcode pyrosequencing approach was used for the characterization of soil 

bacterial communities. Genomic DNA was extracted from 7 aliquots of each soil 

replica using the Power Soil
TM

 DNA Isolation Kit (MO BIO) as described before 

(Lopes et al. 2011), collecting the seven extracts in a single tube. DNA was further 

purified (Bacteria genomicPrep Mini Spin Kit, Amersham Biosciences, NJ, USA). 

The DNA concentration in the final extracts (Qubit® Fluorometer (Invitrogen) 

with Quant-iT
TM

 dsDNA HS assay kit) was approximately 20 µg ml
-1

. DNA 

extracts were used as template for the amplification by PCR of the hypervariable 

V3-V4 region (~360 bp) of the 16S rRNA gene. The PCR amplifications, 

performed in duplicate for each DNA extract, were carried out using barcoded 

fusion primers containing the Roche-454 A and B Titanium sequencing adapters, 

an eight-base barcode sequence in adaptor A, and specific sequences for the 

ribosomal region (V3F 5’-ACTCCTACGGGAGGCAG-3’ and V4R 5’-

TACNVRRGTHTCTAATYC-3’) (Wang and Qian 2009). PCR mixtures (25 μl) 

contained: 0.2 mM dNTPs (Bioron, Ludwigshafen am Rhein, Germany), 0.2 μM of 

each primer, 5 % DMSO (Roche Diagnostics GmbH, Mannheim, Germany), 1x 

Advantage 2 Polymerase Mix (Clontech, Mountain View, CA, USA), 1x 

Advantage 2 PCR Buffer, and 1-3 μL of target DNA, and cycling conditions 

consisted of a first denaturation step at 94 °C for 4 min, followed by 20 cycles at 94 

°C (30 s), 44 °C (45 s) and 68 °C (60 s), and a final 2 min extension at 68 °C. The 

amplicons were quantified by fluorimetry with PicoGreen dsDNA quantitation kit 

(Invitrogen, Life Technologies, Carlsbad, California, USA) and pooled at 
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equimolar concentrations. Pyrosequencing libraries were obtained using the 454 

Genome Sequencer FLX platform according to standard 454 protocols (Roche 454 

Life Sciences, Brandford, CT, USA) at Biocant (Cantanhede, Portugal). The raw 

reads have been deposited into the NCBI short-reads archive database (accession 

number: SAMN01908502 to SAMN01908516). 

 

5.3.4 Post-run analysis 

Data generated from pyrosequencing was processed and analysed using QIIME 

pipeline (Caporaso et al. 2010). Briefly, sequences shorter than 280 bp and with 

quality scores lower than 25 were eliminated. Sequences (> 280 bp) were assigned 

to samples by the 8-bp barcodes and grouped into operational taxonomic units 

(OTUs) using uclust (Edgar 2010) with a phylotype threshold of ≥ 97 % sequence 

similarity. Representative sequences were taxonomically assigned, using QIIME 

defaults (5-level assignment). Representative sequences were aligned using 

PyNAST (DeSantis et al. 2006) and were classified using Ribosomal Database 

Project (RDP) classifier (Wang et al. 2007). At the 97 % identity level, the final 

OTU table consisted of 67 566 sequences (average of 4504 sequences per replica) 

distributed into 9480 OTUs, of those 4444 were represented by more than one 

sequence. A phylogenetic tree containing the aligned sequences was produced 

using FastTree (Price et al. 2009). 

Both alpha and beta diversity metrics were determined using the QIIME pipeline. 

Alpha diversity was assessed calculating Chao 1, Simpson (Simpson 1949), 

Shannon (Shannon and Weaver 1963) and phylogenetic diversity (PD) (Faith 1992) 

metrics. Additionally, beta diversity patterns of rarefied samples (2700 sequences 

per replica) were assessed using the UniFrac metric (Lozupone and Knight 2005).  
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5.3.5 Statistical analysis  

The soil physicochemical properties and alpha diversity metrics among the five soil 

samples (AApr/Sep, ANSSep and BApr/Sep) were compared using the two way analysis 

of variance (ANOVA) and the post-hoc Tukey test (SPSS Statistics 19, IBM). 

Taxon and phylogenetic-based analyses were used to compare 16S rRNA gene 

sequences among the soil samples and to identify the bacterial lineages that 

significantly changed over i) crop rotation, ii) rice crop cycle and iii) that were 

affected by the presence of rice plants. For the taxon-based analyses, the 

percentage of abundance OTUs were compared using ANOVA combined with post 

hoc Tukey test. Phylogenetic-based comparisons were done using QIIME pipeline. 

Jackknifed principal coordinate analysis (PCoA) and dendrograms based on 

(un)weighted UniFrac distances were obtained. Statistical differences between 

bacterial communities from the studied samples plotted on both PCoA were tested 

using analysis of similarity (ANOSIM). A Mantel test was conducted to evaluate if 

any of the determined soil physicochemical properties were related to the 

(un)weighted UniFrac values determined for soil samples and plotted on the PCoA.  

 

5.4 Results  

5.4.1 Physicochemical properties  

The soils analyses showed similar physicochemical characteristics although some 

significant differences in pH, water content, total nitrogen and concentration of 

labile phosphorous among the five samples were found (Table 5.1). The total 

carbon content was not significantly different in the analysed samples. 
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Table 5.1 Physicochemical properties of soils AApr/sep, ANSsep, BApr and BSep. Values are 

means ± standard deviation (n=3).  

Parameter AApr ASep ANSSep BApr BSep 

pH in water 5.97 ± 0.03 C 5.88 ± 0.02 B 5.87 ± 0.02 B 5.94 ± 0.06 B,C 5.70 ± 0.02 A 

Water content (%)  

(g H2O/100 g wet soil) 
22.4 ± 0.1 B,C 21.8 ± 0.4 B 19.2 ± 0.5 A  27.1 ± 0.8 D  23.4 ± 0.2 C 

Total C (%) 1.33 ± 0.10 1.33 ± 0.13  1.38 ± 0.27 1.68  ± 0.04  1.60 ± 0.05 

Total N (%) 0.14 ± 0.00 A 0.14 ± 0.00 A 0.14 ± 0.00 A  0.15 ± 0.01 A  0.18 ± 0.00 B 

Total available-P  

(mg P kg-1) 
50.7 ± 0.4 B 35.7 ± 0.6 A 36.7 ± 0.6 A 80.3 ± 2.4 D 56.4 ± 0.6 C 

The typical texture of this soil is about 28, 50 and 21 % of sand, silt and clay, respectively (Lopes et 

al. 2011). The rice productivity was higher in paddy A than in paddy B (productivity ratio B:A = 

0.63). A-D, Homogeneous subsets among paddies (AApr/sep, ANSsep, BApr and BSep), as determined by 

the Tukey test at P<0.05. 

 

5.4.2 Bacterial diversity  

In total, 67 566 high-quality sequences from the fifteen analysed metagenomes 

(triplicate of the samples AApr/sep, ANSsep, BApr and BSep) were obtained. 

Approximately 2 % of these sequences were not affiliated to the domain Bacteria 

and were excluded from further analyses. A variable number of high-quality 

sequences was obtained for replicas and samples (lowest and highest number of 

sequences were 2754 and 7023, respectively); for this reason replicas were 

normalized by rarefaction to 2700 sequences per replica (total of 8100 sequences 

per soil sample). 

Similar values of estimator Chao1 and Simpson index were obtained for all 

samples, demonstrating, respectively, similar diversity coverage and an even 

distribution of sequences in the studied samples. The number of OTUs per rarefied 

soil sample varied between 1170 (BSep) and 1290 (ANSsep). Accordingly, sample 

ANSSep showed the highest PD and Shannon index values (P < 0.05) (Table 5.2), 

which indicates that the bacterial community in this soil was more diverse than in 

cropped soils (AApr/sep and BApr/Sep). 
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Table 5.2 Diversity of bacterial rRNA gene fragment sequences in soil samples AApr/sep, 

ANSsep, BApr and BSep. The diversity measurements (Number of OTUs, Chao1, Shannon and 

Simpson indices and Phylogenetic diversity) were determined at a rarefaction of 2700 

sequences per replica. Values are means ± standard deviation (n =3). 

 
AApr ASep ANSSep BApr BSep 

No. OTUs 1236 ± 12 A,B 1206 ± 41 A,B 1290 ± 45 B 1212 ± 40 A,B 1170 ± 29 A 

Chao1 3150 ± 114 2967 ± 148 2967 ± 184 3060 ± 163 3010 ± 36 

Shannon index 9.30 ± 0.02 B,C 9.26 ± 0.07 A,B,C 9.44 ± 0.08 C 9.25 ± 0.03 A,B 9.12 ± 0.03 A 

Simpson index 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 

Phylogenetic 

Diversity (PD) 
87.2 ± 1.2 A 89.7 ± 2.8 A 99.2 ± 4.1 B 90.5 ± 2.7 A,B 88.2 ± 1.7 A 

A-C, different letters indicate differences in alpha diversity metrics values among the bacterial 

communities of the analysed samples (one-way ANOVA followed by Tukey post-hoc test, P < 0.05). 

 

5.4.3 Taxonomic affiliation of the total rarefied sequences 

Each analysed metagenome included sequences that could not be assigned beyond 

the bacterial domain (average of 2.2 ± 0.3 %). The remaining bacterial sequences 

were affiliated to 39 phyla, although only 19 had sequence abundances above 0.1 

% (Fig. 5.2 and Table S5.1). Among these 19 phyla, sequences classified as 

Acidobacteria (32.4 %), Proteobacteria (26.3 %), Chloroflexi (8.6 %), 

Actinobacteria (7.5 %), Bacteroidetes (7.3 %), and Gemmatimonadetes (6.6 %) 

comprised about 80–90 % of all sequences. Other phyla with average abundance 

>1 % included Nitrospira (2.7 %), Elusimicrobia and Firmicutes (both averaging 

1.0 %). The phyla Chlorobi, Cyanobacteria, Verrucomicrobia, Planctomycetes and 

candidate phyla, such as TM7 and AD3, among others were less abundant 

(abundance ranging from 0.1 to 1 %) (Fig. 5.2).  

Acidobacteria, the most abundant phylum, was represented mainly by sequences 

affiliated to the classes Acidobacteria (16.0 %, out of which 99 % belonged to 

"Koribacteraceae"), and "Solibacteres" (11.0 %, all included in 

"Solibacteraceae"). Most of the Proteobacteria sequences were classified as 
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Alphaproteobacteria (23.3 %, out of which 45 % belonged to Sphingomonadaceae) 

(Table S5.2). Thus, these three were the most abundant families in the analysed 

metagenomes, representing 26–43 % of the total of sequences (Fig. S5.1 and Table 

S5.4). 

 

Fig. 5.2 Relative abundance of different phyla in each replica of samples AApr/sep, ANSsep, 

BApr and BSep. The abundance is expressed as the percentage in the total number of rarified 

bacterial sequences (2700), classified using RDP classifier at a confidence threshold of 

80%. Phyla with abundance ranging from 0.1 to 1% include Chlorobi, Cyanobacteria, 

TM7, AD3, OD1, Armatimonadetes, Verrucomicrobia, Fibrobacteres, Planctomycetes and 

OP11. Phyla with abundance < 0.1% are listed in the Table S5.1. 

 

5.4.4 OTUs distribution and taxonomic affiliation  

Considering the nucleotide sequence similarity threshold value of ≥ 97 %, a total of 

6748 OTUs were obtained from rarefied data of the five soil samples analysed. Of 

these OTUs, 470 were common to all samples, 601 were common to the cropped 
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samples (AApr/sep,BApr and BSep), and 688 were common to samples A, irrespective 

of rice plant presence (AApr/sep and ANSsep) (Figs S5.2a and b). 

Taking into account only OTUs that occurred with an abundance > 0.1 % in at least 

one sample (herein considered representative OTUs) the value of 6748 was 

reduced to 371. Of these, 276 were common to all samples, 297 were common to 

samples AApr/sep and BApr/Sep and 299 were common to samples A, irrespective of 

rice plant presence (AApr/sep and ANSsep). Thus, about 80 % of the representative 

OTUs were common to all samples and unique OTUs were, in general, rare (less 

than 0.1 % abundance). Regardless the threshold of abundance used to create Venn 

diagrams, sample ANSsep showed the highest number of unique OTUs (Fig. S5.2).  

Among the 276 OTUs common to the five samples, only 82 had abundance > 0.1 

% in all the samples, being considered core OTUs. These OTUs were affiliated to 

the most abundant phyla, except one that was assigned to the candidate phylum 

AD3 (Table 5.3). As could be expected, the majority of core OTUs were evenly 

distributed, presenting abundances between 0.1 and 1 %. Exceptions were two 

OTUs assigned to the families Sphingomonadaceae and "Koribacteraceae", which 

represented, in average, 6.9 and 1.3 % of the total recovered diversity (Table 5.3 

and Fig. S5.1).  
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Table 5.3 Number of core OTUs (abundance > 0.1 %) in the five samples AApr/sep, ANSsep, BApr and BSep. 

Domain No. OTUs Phylum  No. OTUs Class No. OTUs Order No. OTUs Family No. OTUs 

OTUs present in all the samples at abundance  > 1 % 

Bacteria 2 Acidobacteria  1 Acidobacteria  1 Acidobacteriales 1 "Koribacteraceae" 1 

Proteobacteria 1 Alphaproteobacteria 1 Sphingomonadales 1 Sphingomonadaceae 1 

OTUs present in all the samples with abundances ranging from 0.1 to 1% 

Bacteria 80 Acidobacteria  39 Acidobacteria  20 Acidobacteriales 20 "Koribacteraceae" 19 

Acidobacteriaceae 1 

"Acidobacteria - 2"  3     

"Chloroacidobacteria" 3     

"Solibacteres" 13 "Solibacterales" 13 "Solibacteraceae" 13 

Actinobacteria 3 Acidimicrobiia 1 Acidimicrobiales 1   

Actinobacteria 2 Actinomycetales 2 Intrasporangiaceae 1 

Micrococcaceae 1 

AD3 1 "ABS-6" 1     

Bacteroidetes 3 Sphingobacteriia 3 Sphingobacteriales 3 Chitinophagaceae 2 

Chloroflexi 1 "Ellin 6529" 1     

Gemmatimonadetes 10 Gemmatimonadetes 6     

"Gemm-1" 4     

Nitrospira 2 Nitrospira 2 Nitrospirales 2 Nitrospiraceae 2 
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Table 5.3 Continued 

Domain No. OTUs Phylum  No. OTUs Class No. OTUs Order No. OTUs Family No. OTUs 

OTUs present in all the samples with abundances ranging from 0.1 to 1% 

Bacteria 80 Proteobacteria 20 Alphaproteobacteria 19 Rhizobiales 7 Beijerinckiaceae 1 

Bradyrhizobiaceae 1 

Hyphomicrobiaceae 4 

Phyllobacteriaceae 1 

Caulobacterales 1 Caulobacteraceae 1 

Rhodospirillales 3 Rhodospirillaceae 3 

Sphingomonadales 6 Sphingomonadaceae 6 

Deltaproteobacteria 1 Myxococcales 1 Cystobacteriaceae 1 
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5.4.5 Relationship between bacterial communities and edaphic factors  

To compare the composition and structure of the bacterial communities of the 

analysed soil samples, the beta diversity was assessed. The unweighted and 

weighted UniFrac-based PCoA explained, respectively, 21.6 and 55.9 % of the 

total variation among the structure and composition of the bacterial communities, 

and supported the distribution of samples in distinct groups (Figs 5.3a and b). 

ANOSIM confirmed that the groups plotted in both PCoA were significantly 

different (unweighted UniFrac: R= 0.97, P = 0.001; weighted UniFrac: R= 0.89, P 

= 0.001). Bacterial lineages affiliated to abundant phyla (Fig. 5.2) contributed to 

the variations observed in the weighted UniFrac PCoA (Figs 5.3b and c). 

Correlations between UniFrac values and edaphic parameters were determined 

using Mantel tests (Table 5.4). A mild correlation between unweighted distances 

and water, total carbon and labile phosphorous contents, and C:P and N:P ratios 

was observed. On the other hand, a mild correlation between weighted distances 

and water and total carbon contents was observed. 

 

Table 5.4 Relationship of soil physicochemical properties and (un)weighted unifrac 

distance measured from soil samples (AApr/sep, ANSsep, BApr and BSep) (Mantel test). 

Soil physicochemical properties 
Unweighted Weighted 

Mantel r P value Mantel r P value 

Water content 0.527 0.001** 0.406 0.004* 

pH 0.095 0.390 0.055 0.670 

Total C 0.230 0.039* 0.271 0.036* 

Total N 0.033 0.765 0.138 0.372 

Total available-P 0.347 0.003* 0.133 0.290 

C:N 0.168 0.100 0.120 0.301 

C:P 0.242 0.022* 0.162 0.195 

N:P 0.324 0.016* 0.076 0.505 

The iterations were set to 999. *P < 0.05 and ** P ≤ 0.001 indicate significant correlations.
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Fig. 5.3 Jackknifed PCoA plots illustrating distances among bacterial communities of soil samples AApr/sep, ANSsep, BApr and BSep. a) Bacterial 

unweighted UniFrac distances. b) Bacterial weighted UniFrac distances. c) Bacterial lineages that varied most among samples.  
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5.4.6 Effect of Oriza sativa  

A strong primary clustering of AApr/sep, BApr and BSep versus ANSsep soil samples, 

represented in both UniFrac-based PCoA biplots (Figs 5.3a and b), evidenced 

differences between the bacterial communities of cropped and uncropped soil 

samples. In fact, the average UniFrac distances measured between uncropped 

(ANSsep) and cropped soils samples (AApr/sep or BApr/Sep) were the highest (Fig. 

S5.4). Several representative OTUs in cropped samples, such as those assigned to 

“Solibacteraceae", "Koriobacteraceae", Sphingomonadaceae, were absent or rare 

in the uncropped soil sample. Inversely, several representative OTUs in sample 

ANSSep, affiliated to Chloroflexi ("Ellin 6529"), "Acidobacteria-2", AD3, 

Nostocaceae, among others, were absent or rare in samples AApr/sep, BApr and BSep 

(Table S5.5). The majority of these OTUs were affiliated to bacterial lineages that 

correlated most with the different groups depicted in the weighted PCoA (Fig. 5.3b 

and c). Also the higher abundance of unclassified sequences in ANSSep than in the 

other samples contributed to distinguish its bacterial community from the others. 

 

5.4.7 Effect of crop rotation  

Differences among the bacterial communities of soil samples at different stages of 

crop rotation were plotted in both UniFrac-based PCoA (Figs 5.3a and b). These 

analyses showed that the bacterial communities from the 3
rd

 (AApr/sep) and 4
th

 year 

(BApr/sep) cropped soil samples did not cluster together (Figs 5.3a and b, and S5.3a 

and b). A gradient of variation from AApr to BSep along axis 2 is shown in the 

weighted UniFrac-based PCoA biplot (Fig. 5.3b). The highest and lowest average 

UniFrac distance between each pair of these samples was found, respectively, for 

the pairs AApr/Bsep and BApr/sep (Figs S5.4a and b). A higher similarity between the 

bacterial communities of soil B sampled in different periods of the rice cycle than 

with samples of soil A is evidenced. However, the bacterial community of sample 
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ASep was closer to samples of the 4
th

 year of crop rotation (BApr/Sep, mainly to BApr) 

than to AApr. 

Sample AApr contained a higher number of rare and representative unique OTUs 

than the other cropped soil samples (Fig. S5.2). Representative unique OTUs 

assigned to Actinobacteria (Cellulomonadaceae) and Bacteroidetes 

(Sphingobacteriales, mainly of the family Chitinophagaceae) (Table S6) present in 

AApr made this sample the most distinct amongst the cropped soil samples (Figs 

5.3b and c).  

The distinction of the bacterial communities over the crop rotation stage was 

supported by some OTUs whose abundance decreased [e.g., assigned to 

Bacteroidetes (Sphingobacteriales, Flavobacteriales), and Alphaproteobacteria 

(Caulobacteraceae)] or increased [e.g., assigned to Acidobacteria 

(Acidobacteriales, "Solibacterales"), Bacteroidetes (Bacteroidales), Chloroflexi 

(Anaerolineae) and Chlorobi ("SJA-28")] from the 3
rd 

year (AApr/Sep) to the 4
th

 year 

(BApr/Sep) of crop rotation (Table S5.6).  

 

5.4.8 Effect of rice cycle (seasonal effect) 

The average UniFrac distances obtained between cropped soil samples collected in 

April and September in the 3
rd

 (AApr/sep) or in the 4
th

 year (BApr/sep) (Figs S5.4a and 

b) indicate variations, although small, of the bacterial communities over the rice 

cycle, mainly in soil A. Unweighted, but not weighted, UniFrac clustering via 

UPGMA showed some overlapping in the composition of 4th year (B) bacterial 

communities of April and September (Fig. S5.3a). It is, thus, suggested that major 

variations in the bacterial community over this period were mainly due to 

modifications on the relative abundance of soil bacterial members. OTUs assigned 

to "Thermodesulfovibrionaceae" within the phylum Nitrospira, which were more 

abundant in September than in April in both cropped soils (A and B), may have 

contributed to the observed variation (Table S5.7).  
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5.5 Discussion 

5.5.1 Structure and composition of bulk soil bacterial community  

The predominance of Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria 

and Bacteroidetes in the paddy soils studied was expected, since these groups have 

been described as common inhabitants of agriculture soils, including rice paddy 

soils (Asakawa and Kimura 2008; Tanahashi et al. 2005; Xuan et al. 2012). Half of 

the 82 core OTUs identified in this study belonged to the classes Acidobacteria and 

Alphaproteobacteria. Alphaproteobacteria comprise organisms with distinct 

physiological properties (Rappé and Giovannoni 2003), limiting a clear prediction 

about the ecology and biochemical role of these members in that habitat. However, 

it is noted that Alphaproteobacteria related with core OTUs enclose 

chemoorganotrophs, some of which are catalase producers and may be involved in 

lignin (e.g., Caulobacter) (Steinman et al. 1997) or aromatic compounds 

degradation (e.g., Sphingomonadaceae) (Kersters et al. 2006). Nitrogen fixation is 

another relevant function found in (photo)organotrophic Alphaproteobacteria (e.g., 

Rhodospirillaceae, Hyphomicrobiaceae) (Boer et al. 2005; DeAngelis et al. 2011; 

Heising and Schink 1998; Kersters et al. 2006). In comparison to 

Alphaproteobacteria, Acidobacteria and Gemmatimonadetes are poorly 

characterized, since only a small fraction of these bacteria were cultivated (Eichorst 

et al. 2007; Kishimoto et al. 1991; Zhang et al. 2003). Nevertheless, 

Gemmatimonadetes represents a phylum with ubiquitous distribution (DeBruyn et 

al. 2011; Rappé and Giovannoni 2003). Acidobacteria are common soil 

inhabitants, which abundance has been strongly correlated with pH gradients 

(Jones et al. 2009) and low C availability (Fierer et al. 2007a). The edaphic 

characteristics of the analysed soils seem to have favoured the abundance of 

members of this phylum, mainly of the families "Koriobacteraceae" and 

"Solibacteraceae". Denitrification, iron scavenging as well as decomposition of 

complex substrates (e.g., xylan, hemicellulose) are predicted functions of 

acidobacterial members (Ward et al. 2009). Altogether, these results suggest that 
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core bacterial members may have an important role in the cycling of plant debris 

through the decomposition of complex substrates, and to sustain metabolic 

transformations in the N and Fe biogeochemical cycles, which are crucial activities 

in paddy soils (Mårtensson et al. 2009; Ratering and Schnell 2000; Rui et al. 2009).   

Verrucomicrobia have been described as abundant inhabitants of paddy soils 

(Asakawa and Kimura 2008; Kikuchi et al. 2007; Xuan et al. 2012), although 

presented low abundance in the current study. This observation may be due to the 

primers used, since in silico analysis demonstrated that these primer set may fail 

the detection of verrucomicrobial sequences (Wang and Qian 2009), explaining the 

underestimation of this phylum by culture independent methods (Bergmann et al. 

2011). 

 

5.5.2 Variations in the structure and composition of  bulk soil bacterial 

community  

The present study compared the composition and structure of the soil bacterial 

community as a function of the rice cycle, the crop rotation stage, and the presence 

of the rice crop. The presence of rice plants was the factor that affected most the 

bacterial diversity and community structure of bulk soil. In fact, alpha and beta 

diversity analyses revealed that the bacterial community of uncropped soil 

(ANSSep) was more diverse than those of cropped soil samples (AApr/sep and 

BApr/Sep). The bacterial communities of rhizosphere are known to be less diverse 

than those of bulk soil (Sørensen 1997). On the other hand, the type of plants 

influences the diversity, composition and structure of bulk soil bacterial 

communities (Xuan et al., 2012). Thus, the roots/rhizosphere effect may explain 

the differences observed in the present study. The dense root mat characteristic of 

rice cropped paddy soils (Liesack et al. 2000), combined with the usual flooding 

state of paddy fields may promote the distribution of root exudates in flooded soils. 

The presence of rice root exudates may have favoured the development of 
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organisms affiliated to "Solibacteraceae", "Koriobacteraceae" and 

Sphingobacteraceae, the most abundant bacterial lineages of the studied cropped 

soils. The proliferation of the organisms of these lineages may have contributed to 

lessen others, such as unclassified bacteria and members of "Acidobacteria-2" and 

AD3, absent or rare in cropped soils. In contrast, the absence of rice rhizosphere 

with consequent low amounts of root exudates in the uncropped soil could have 

favoured the development of bacterial lineages with slow growth and ability to 

survive under low substrate availability (e.g., Chloroflexi "Ellin6529"), as was 

described before for members of this phylum (Acosta-Martínez et al. 2010). 

Although constituting a sub-plot of paddy A, and thus, under the same flood 

regime, the water content in the uncropped soil was significantly lower than in 

cropped paddies. This difference was probably due to the ability of plants to 

increase the retention of water in soil (Chapin and Körner 1995). The fact that 

Nostoc members have been referred to be more prevalent in dry than in wet paddy 

soils (Roger et al. 1993) may explain the higher abundance of OTUs affiliated to 

Nostocaceae in uncropped than in cropped soil samples. On the other hand, the low 

plant cover of the uncropped sub-plot may have also favoured these 

photosynthesizing microorganisms. 

The stage of the crop rotation affected the bacterial diversity and community 

structure of cropped bulk soil. Through the weighted UniFrac analysis, a temporal 

gradient from AApr to BSep was observed. The high number of rare and representative 

unique OTUs (Bacteroidetes/ Sphingobacteriales and 

Actinobacteria/Cellulomonadaceae) together with the abundance of other 

presumably aerobic chemoorganotrophs (Bacteroidetes/Flavobacteriales and 

Alphaproteobacteria/Caulobacteraceae) in sample AApr, contributed to distinguish 

this sample from the others.  Given that sample AApr was collected soon after alfalfa 

harvesting, the root exudates and debris of the forage crop may have favored the 

development of these bacterial lineages. A decrease in the abundance of these 

lineages with the simultaneous increase of others assigned to the most abundant 

acidobacterial orders (Acidobacteriales and "Solibacterales") over time, i.e., from 
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AApr to BSet occurred (Table S5.3). This finding suggests that the substitution of 

alfalfa debris for rice root exudates/debris promoted the development of 

Acidobacteria members, an effect detected also when comparing the rice cropped 

and uncropped soils.  

Because "Bico da Barca" farmers observed before a sharp decrease on the rice 

productivity between the 3
rd

 and 4
th

 year of the alfalfa-rice rotation, they amended 

the soil. This was the reason for the mineral P and compost amendments made in 

paddy B, before rice seeding, which increased significantly the labile-P content of 

samples B. The increase in the abundance of presumably obligate anaerobic 

chemoorganotrophs (Chloroflexi/Anaerolineae and Bacteroidetes/Bacteroidales) 

and phototrophs (Chlorobi "SJA-28") from the 3
rd

 to the 4
th 

year of the crop 

rotation was observed. Beside the changes in the available nutrients, derived from 

the substitution of alfalfa for rice root exudates/debris and from the soil 

amendments, also the higher water content of samples BApr/sep than in AApr/sep may 

have contributed to the increased abundance of the presumably anaerobic members 

in the 4
th 

year of crop rotation. It is worth mentioning that despite the amendments 

made, the rice productivity decreased from the 3
rd

 to the 4
th
 year of the crop 

rotation.  

According to the results obtained, variations on the bulk soil bacterial communities 

over the rice cycle (seasonal variations) were mainly due to alterations in the 

abundance of some bacterial lineages rather than to presence/absence variations. 

Similar findings were reported in previous studies based on community analyses 

fingerprinting (Kikuchi et al. 2007; Lopes et al. 2011). Among the representative 

bacterial lineages occurring in the studied soils, members affiliated to 

"Thermodesulfovibrionaceae”, within Nitrospira, stood out as having higher 

abundance in cropped soils after rice harvesting (ASep and BSep) than before rice 

seeding. The increased abundance of this phylum after rice harvesting was reported 

before (Xuan et al. 2012), and may be due to the availability of inorganic 

compounds resultant from organotrophic metabolism of plant debris and root 
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exudates. Indeed, Nitrospira includes chemolithotrophs involved on the N, Fe and 

S cycles through the activity of nitrite- and ferrous iron-oxidizing and sulfate-

reducing bacteria (Ehrich et al. 1995; Henry et al. 1994; Hippe 2000). The 

development of sulfate-reducing bacteria, most probably obligate anaerobes, may 

have been also favoured by the flooding conditions prevalent during the growth of 

rice plants. If these lineages become prevalent in the late stage of the growth of rice 

plants, their predominance may become evident after rice harvesting. Indeed, the 

activity of sulfate and iron reducers is important in paddy soils (Liesack et al. 

2000), and can be observed in old rice roots, due to blackening by ferrous sulfide 

precipitation at the late stage of the growth of rice plants.  

In summary, the present study revealed that the most abundant phyla in paddy bulk 

soil from the alfalfa-rice rotation were Acidobacteria, Proteobacteria, Chloroflexi, 

Actinobacteria and Bacteroidetes. Despite these similarities, the bacterial 

community composition was affected by the crop rotation stage, the rice cycle and 

the presence of rice crop. Rice plants stand out as being the major determinants of 

community structure in bulk soil. Uncropped soil had the most diverse bacterial 

community, suggesting that the absence of rice plant allows the proliferation of 

specific lineages that may be outcompeted in cropped soils. The rice crop cycle 

may favour the proliferation of members of the phylum Nitrospira, which prevail 

in bulk soil after harvest. The differences induced by crop rotation stage may have 

been related to the attenuation of the alfalfa effect, soil exhaustion and 

amendments. Bacteria play a pivotal role on the turnover of biological materials 

and minerals in soils. Studies elucidating the variations of the bacterial 

communities in agriculture soils represent a valuable science-based approach for 

promoting a sustainable agriculture practice.  
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5.6 Supplemental Material 

 

 

 

Fig. S 5.1 Relative abundance of families affiliated to the most abundant classes of 

Acidobacteria and Proteobacteria in samples (AApr/sep, ANSsep, BApr and BSep) and rank-

abundance curves of OTUs (abundance > 0.1 %) affiliated to the most abundant family in 

each class. (a) Acidobacteria ("Koribacteraceae"). (b) "Solibacteres" ("Solibacteraceae"). 

(c) Alphaproteobacteria (Spingomonadaceae).  

a 

b 

c 
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Fig. S 5.2 Venn diagrams showing the distribution of the OTUs that were unique or 

common among samples. a) All OTUs in samples AApr/sep,BApr and BSep. b) All OTUs in 

samples AApr/sep  and ANSSep. c) OTUs with abundance > 0.1 % in at least one sample 

(AApr/sep,BApr and BSep). d) OTUs with abundance > 0.1 % in at least one sample (AApr/sep  

and ANSSep). 

a 

b 

c 

d 
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Fig. S 5.3 Dendrograms based on UPGMA clustering of rarefied data from soil samples AApr/sep, ANSsep, BApr and BSep. Generated using the a) 

unweighted and b) the weighted UniFrac distances. The colored nodes on the left indicate the confidence levels that support each node: 75-100 % 

(red), 50-75 % (yellow) and 25-50 % (green).  

a b 
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Fig. S 5.4 Variations in community structure between the studied samples as measured by the average UniFrac distance within each sample pair 

(y-axis). Error bars are the standard deviation of the UniFrac distances between pairs of replicas within each sample pair. a) unweighted. b) 

weighted. 

Note: In a phylogenetic tree built with 16S rRNA sequence data from all samples, the UniFrac distances represent the fraction of branch length that is shared by 

any two samples' communities. Smaller UniFrac distances indicate a higher fraction of shared branches between samples, i.e., phylogenetically more similar 

bacterial communities.  
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Table S 5.1 Relative abundance of rare phyla (abundance < 0.1 %) in soil samples AApr/sep, 

ANSsep, BApr and BSep.  

 

Relative abundance (% of sequences) 

 

AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 

 

mean SD mean SD Mean SD mean SD mean SD 

Spirochaetes 0.00 0.00 0.05 0.06 0.20 0.06 0.05 0.06 0.06 0.06 

WS3 0.05 0.04 0.03 0.04 0.08 0.07 0.11 0.04 0.06 0.02 

GN02 0.03 0.04 0.05 0.02 0.11 0.04 0.03 0.02 0.04 0.00 

GOUTA4 0.01 0.02 0.06 0.04 0.00 0.00 0.00 0.00 0.08 0.07 

SC4 0.00 0.00 0.00 0.00 0.01 0.02 0.06 0.06 0.06 0.06 

WS2 0.00 0.00 0.02 0.04 0.00 0.00 0.01 0.02 0.04 0.04 

GAL15 0.01 0.02 0.00 0.00 0.04 0.04 0.01 0.02 0.01 0.02 

Tenericutes 0.00 0.00 0.00 0.00 0.03 0.04 0.03 0.04 0.01 0.02 

WS4 0.00 0.00 0.03 0.04 0.03 0.04 0.01 0.02 0.00 0.00 

WPS-2 0.01 0.02 0.01 0.02 0.01 0.02 0.00 0.00 0.03 0.02 

WS6 0.03 0.02 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 

WYO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 

BRC1 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.00 

MVS-104 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.02 

OP3 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.02 

GN04 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 

OC31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 

TM6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 

WS5 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

ZB3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 

* Values are means ± standard deviation (n=3) 
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Table S 5.2 Relative abundance of bacterial classes with abundances higher than 0.1 % in at least one of the soil samples (AApr/sep, ANSsep, BApr 

and BSep).  

  

Relative abundance (% of sequences) 

  

AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Class mean SD Mean SD Mean SD mean SD mean SD 

Acidobacteria Acidobacteria 16.90 1.43 15.81 0.24 12.39 1.89 16.28 1.96 18.44 2.12 

 

"Solibacteres" 10.90 0.81 11.48 0.66 5.02 0.02 13.68 0.97 13.97 1.38 

 

"Chloracidobacteria" 3.11 0.27 2.67 0.38 1.62 0.07 3.76 0.43 3.33 0.46 

 

"Acidobacteria-2" 1.11 0.29 1.40 0.30 3.66 0.25 0.93 0.10 1.29 0.23 

 

"TM1" 0.35 0.08 0.20 0.15 0.39 0.12 0.18 0.06 0.19 0.06 

 

"MVS-40" 0.03 0.02 0.09 0.02 0.09 0.06 0.28 0.02 0.26 0.14 

 

"iii1-8" 0.08 0.08 0.03 0.02 0.06 0.06 0.15 0.11 0.10 0.02 

 

"Acidobacteria-6" 0.03 0.02 0.04 0.04 0.05 0.02 0.06 0.02 0.11 0.04 

 

"PAUC37f" 0.00 0.00 0.05 0.02 0.00 0.00 0.10 0.04 0.06 0.02 

Actinobacteria Actinobacteria 4.43 0.53 3.55 0.02 4.05 0.82 3.86 0.16 3.36 0.40 

 

Acidimicrobiia 3.18 0.28 3.25 0.18 3.15 0.52 2.60 0.42 2.26 0.37 

 

"MB-A2-108" 0.32 0.29 0.29 0.13 1.05 0.13 0.48 0.12 0.20 0.09 

 

Thermoleophilia 0.27 0.10 0.26 0.07 0.35 0.12 0.29 0.06 0.19 0.04 

AD3 "ABS-6" 0.20 0.08 0.20 0.04 1.61 0.34 0.19 0.08 0.13 0.04 

 

"JG37-AG-4" 0.01 0.02 0.00 0.00 0.16 0.12 0.00 0.00 0.01 0.02 
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Table S 5.2 Continued 

  

Relative abundance (% of sequences) 

  

AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Class mean SD mean SD Mean SD mean SD mean SD 

Armatimonadetes "Fimbriimonadetes" 0.03 0.02 0.06 0.06 0.24 0.22 0.08 0.04 0.18 0.10 

 

Chthonomonadetes 0.01 0.02 0.03 0.04 0.04 0.07 0.10 0.10 0.01 0.02 

Bacteroidetes Sphingobacteriia 8.28 1.84 5.65 0.87 5.88 0.48 4.87 0.97 3.95 0.47 

 

Bacteroidia 0.18 0.10 1.32 0.26 0.90 0.33 2.27 0.23 1.39 0.25 

 

Flavobacteriia 0.63 0.25 0.18 0.04 0.15 0.10 0.10 0.04 0.11 0.08 

Chlorobi "SJA-28" 0.27 0.07 0.46 0.19 0.78 0.24 0.66 0.15 0.62 0.26 

 

"BSV26" 0.00 0.00 0.15 0.16 0.13 0.06 0.43 0.09 0.33 0.13 

 

"OPB56" 0.01 0.02 0.10 0.04 0.05 0.04 0.16 0.04 0.14 0.06 

Chloroflexi Anaerolineae 2.01 0.70 3.30 0.38 2.80 0.85 5.21 0.55 5.87 1.35 

 

"Ellin6529" 2.33 0.22 2.88 0.45 5.40 0.67 2.27 0.54 2.07 0.29 

 

"Thermobacula" 0.44 0.02 0.33 0.04 0.53 0.14 0.40 0.15 0.33 0.14 

 

"Bljii12" 0.27 0.07 0.41 0.26 0.45 0.14 0.39 0.22 0.25 0.06 

 

"TK17" 0.15 0.11 0.28 0.11 0.39 0.13 0.16 0.13 0.15 0.08 

 

Ktedonobacteria 0.19 0.10 0.14 0.08 0.41 0.07 0.14 0.04 0.16 0.02 

 

Chloroflexi 0.13 0.06 0.08 0.07 0.43 0.18 0.15 0.10 0.25 0.06 

 

Thermomicrobia 0.22 0.08 0.11 0.04 0.11 0.07 0.13 0.06 0.09 0.06 

 

"S085" 0.14 0.06 0.04 0.04 0.14 0.02 0.08 0.08 0.05 0.04 
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Table S 5.2 Continued 

  

Relative abundance (% of sequences) 

  

AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Class mean SD Mean SD Mean SD mean SD mean SD 

Cyanobacteria Nostocophycideae 0.13 0.08 0.15 0.07 1.10 0.27 0.08 0.04 0.14 0.09 

 

Oscillatoriophycideae 0.25 0.23 0.05 0.04 0.06 0.04 0.08 0.08 0.06 0.06 

 

Synechococcophycideae 0.03 0.02 0.14 0.04 0.11 0.10 0.00 0.00 0.08 0.08 

 

"S15B-MN24" 0.03 0.04 0.02 0.04 0.11 0.04 0.05 0.06 0.06 0.08 

Elusimicrobia Elusimicrobia 0.52 0.21 0.70 0.08 1.22 0.43 0.68 0.28 1.20 0.24 

 

Endomicrobia 0.04 0.00 0.13 0.02 0.04 0.00 0.11 0.07 0.13 0.06 

Fibrobacteres Fibrobacteria 0.08 0.04 0.06 0.04 0.31 0.23 0.00 0.00 0.04 0.04 

Firmicutes Clostridia 0.43 0.14 1.18 0.21 1.38 0.21 0.64 0.13 0.53 0.17 

 

Bacilli 0.11 0.04 0.07 0.13 0.15 0.07 0.18 0.09 0.11 0.08 

Gemmatimonadetes Gemmatimonadetes 4.78 0.23 5.06 0.68 3.85 0.44 5.52 0.39 4.98 0.45 

 

"Gemm-1" 1.89 0.41 2.31 0.11 2.01 0.18 1.34 0.53 1.46 0.40 

Nitrospira Nitrospira 2.14 0.37 3.97 0.48 2.85 0.47 1.98 0.31 2.59 0.67 

OD1 "SM2F11" 0.10 0.10 0.11 0.07 0.85 0.19 0.09 0.02 0.19 0.10 

OP11 "OP11-3" 0.03 0.04 0.05 0.04 0.19 0.10 0.01 0.02 0.08 0.04 
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Table S 5.2 Continued 

  

Relative abundance (% of sequences) 

  

AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Class mean SD mean SD Mean SD mean SD mean SD 

Proteobacteria Alphaproteobacteria 26.49 1.46 24.05 0.12 23.53 1.41 21.12 1.77 21.35 1.20 

 

Deltaproteobacteria 1.09 0.22 1.33 0.20 1.88 0.55 1.49 0.12 1.35 0.25 

 

Betaproteobacteria 1.13 0.27 1.13 0.17 0.87 0.08 1.48 0.10 0.96 0.12 

 

Gammaproteobacteria 0.42 0.20 0.29 0.11 0.16 0.08 0.23 0.00 0.16 0.08 

 

Epsilonproteobacteria 0.00 0.00 0.10 0.12 0.00 0.00 0.08 0.08 0.20 0.04 

Spirochaetes "Leptospirae" 0.00 0.00 0.05 0.06 0.20 0.06 0.04 0.04 0.04 0.04 

TM7 "TM7-1" 0.65 0.07 0.23 0.22 1.20 0.14 0.26 0.20 0.18 0.06 

 

"SC3" 0.11 0.07 0.03 0.04 0.25 0.09 0.09 0.04 0.04 0.04 

WS3 "PRR-12" 0.05 0.04 0.03 0.04 0.08 0.07 0.11 0.04 0.06 0.02 

 
* Values are means ± standard deviation (n=3) 
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Table S 5.3 Relative abundance of bacterial orders with abundances higher than 0.1 % in at least one of the soil samples (AApr/sep, ANSsep, BApr 

and BSep).  

  

Relative abundance (% of sequences) 

 

  AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Order mean SD Mean SD mean SD mean SD mean SD 

Acidobacteria Acidobacteriales 16.90 1.43 15.81 0.24 12.39 1.89 16.28 1.96 18.44 2.12 

 

"Solibacterales" 10.90 0.81 11.48 0.66 5.02 0.02 13.68 0.97 13.97 1.38 

Actinobacteria Actinomycetales 4.38 0.59 3.08 0.14 3.91 0.70 3.42 0.20 3.01 0.30 

 

Acidimicrobiales 3.18 0.28 3.25 0.18 3.15 0.52 2.60 0.42 2.26 0.37 

 

Coriobacteriales 0.05 0.06 0.46 0.15 0.14 0.11 0.44 0.15 0.35 0.14 

 

Gaiellales 0.20 0.02 0.24 0.04 0.33 0.12 0.24 0.02 0.16 0.04 

Armatimonadetes Fimbriimonadales 0.03 0.02 0.06 0.06 0.24 0.22 0.08 0.04 0.18 0.10 

 

Chthonomonadales 0.01 0.02 0.03 0.04 0.04 0.07 0.10 0.10 0.01 0.02 

Bacteroidetes Bacteroidales 0.18 0.10 1.32 0.26 0.90 0.33 2.27 0.23 1.39 0.25 

 

Flavobacteriales 0.62 0.24 0.18 0.04 0.15 0.10 0.10 0.04 0.11 0.08 

 

Sphingobacteriales 8.28 1.84 5.65 0.87 5.88 0.48 4.87 0.97 3.95 0.47 

Chloroflexi "envOPS12" 0.51 0.26 0.65 0.19 0.70 0.30 1.59 0.52 1.66 0.49 

 

"SBR1031" 0.54 0.21 1.00 0.18 0.93 0.32 0.67 0.18 1.25 0.20 

 

Anaerolineales 0.20 0.10 0.50 0.34 0.30 0.10 0.91 0.20 0.76 0.33 

 

"A31" 0.18 0.08 0.38 0.06 0.43 0.28 0.42 0.13 0.49 0.21 
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Table S 5.3 Continued 

  

Relative abundance (% of sequences) 

 

  AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Order mean SD mean SD mean SD mean SD mean SD 

 

"SJA-15" 0.11 0.04 0.18 0.18 0.13 0.06 0.63 0.18 0.72 0.40 

 

"Roseiflexales" 0.13 0.06 0.08 0.07 0.41 0.17 0.15 0.10 0.25 0.06 

 

"H39" 0.11 0.07 0.18 0.06 0.11 0.07 0.26 0.06 0.30 0.10 

 

"WCHB1-50" 0.13 0.06 0.10 0.06 0.05 0.02 0.23 0.08 0.23 0.14 

 

"JG30-KF-CM45" 0.14 0.08 0.06 0.02 0.08 0.04 0.11 0.08 0.08 0.04 

 

"GCA004" 0.05 0.02 0.04 0.04 0.05 0.09 0.10 0.08 0.18 0.09 

 

"pLW-97" 0.06 0.08 0.05 0.06 0.03 0.02 0.15 0.10 0.11 0.04 

 

Thermogemmatisporales 0.05 0.02 0.10 0.04 0.15 0.10 0.03 0.02 0.05 0.04 

 

"CFB-26" 0.04 0.04 0.11 0.06 0.01 0.02 0.04 0.04 0.09 0.09 

Cyanobacteria Nostocales 0.13 0.08 0.14 0.04 1.08 0.29 0.06 0.04 0.13 0.09 

 

Oscillatoriales 0.25 0.23 0.04 0.04 0.00 0.00 0.03 0.04 0.03 0.02 

 

Pseudanabaenales 0.03 0.02 0.06 0.08 0.10 0.11 0.00 0.00 0.03 0.04 

Elusimicrobia "FAC88" 0.27 0.16 0.35 0.06 0.75 0.20 0.24 0.06 0.43 0.19 

 

"IIb" 0.14 0.08 0.14 0.11 0.16 0.19 0.18 0.17 0.42 0.14 

 

Elusimicrobiales 0.11 0.04 0.15 0.06 0.24 0.04 0.20 0.13 0.20 0.13 

 

"MVP-88" 0.00 0.00 0.03 0.02 0.04 0.04 0.04 0.04 0.11 0.10 
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Table S 5.3 Continued 

  

Relative abundance (% of sequences) 

 

  AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Order mean SD mean SD mean SD mean SD mean SD 

Fibrobacteres "258ds10" 0.08 0.04 0.06 0.04 0.31 0.23 0.00 0.00 0.04 0.04 

Firmicutes Clostridiales 0.35 0.13 1.02 0.23 1.32 0.23 0.57 0.08 0.49 0.13 

 

"OPB54" 0.08 0.00 0.15 0.04 0.04 0.00 0.06 0.06 0.04 0.04 

Gemmatimonadetes "N1423WL" 1.68 0.19 1.72 0.31 1.25 0.25 1.97 0.30 1.79 0.11 

 

Gemmatimonadales 1.42 0.17 1.43 0.20 0.68 0.17 1.41 0.30 1.13 0.13 

 

"Ellin5290" 0.56 0.15 0.63 0.13 0.48 0.24 0.97 0.02 0.78 0.12 

 

"KD8-87" 0.09 0.02 0.21 0.04 0.06 0.04 0.05 0.06 0.11 0.04 

Nitrospira Nitrospirales 2.14 0.37 3.97 0.48 2.85 0.47 1.98 0.31 2.59 0.67 

Planctomycetes "Gemmatales" 0.14 0.06 0.04 0.04 0.01 0.02 0.09 0.02 0.01 0.02 

Proteobacteria Sphingomonadales 12.61 0.87 13.17 0.76 10.09 0.54 10.38 1.73 10.86 1.49 

 

Rhizobiales 6.09 0.17 5.08 0.74 5.40 0.30 5.15 0.23 4.64 0.62 

 

Rhodospirillales 3.68 0.33 3.22 0.28 3.70 0.53 3.41 0.40 3.79 0.09 

 

Caulobacterales 1.43 0.14 1.00 0.28 1.33 0.22 0.81 0.22 0.71 0.31 

 

"Ellin329" 1.27 0.07 0.65 0.12 0.90 0.21 0.66 0.27 0.63 0.08 

 

Myxococcales 0.62 0.21 0.56 0.16 1.24 0.36 0.59 0.25 0.76 0.06 

 

Rickettsiales 0.46 0.16 0.23 0.06 1.23 0.30 0.18 0.06 0.29 0.02 
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Table S 5.3 Continued 

  

Relative abundance (% of sequences) 

 

  AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Order mean SD mean SD mean SD mean SD mean SD 

 

Rhodobacterales 0.51 0.10 0.38 0.08 0.39 0.08 0.15 0.10 0.18 0.06 

 

"SC-I-84" 0.33 0.12 0.26 0.15 0.18 0.06 0.37 0.13 0.34 0.08 

 

Burkholderiales 0.30 0.13 0.18 0.04 0.19 0.11 0.19 0.04 0.06 0.02 

 

"Ellin6067" 0.23 0.14 0.23 0.07 0.16 0.09 0.18 0.12 0.11 0.10 

 

Xanthomonadales 0.28 0.12 0.13 0.09 0.10 0.06 0.10 0.02 0.13 0.06 

 

"BD7-3" 0.13 0.06 0.08 0.00 0.08 0.04 0.14 0.08 0.14 0.04 

 

Bdellovibrionales 0.13 0.06 0.11 0.13 0.08 0.08 0.06 0.04 0.06 0.04 

 

Syntrophobacterales 0.11 0.04 0.05 0.04 0.10 0.09 0.10 0.02 0.05 0.02 

 

Campylobacterales 0.00 0.00 0.10 0.12 0.00 0.00 0.08 0.08 0.20 0.04 

 

"A21b" 0.04 0.04 0.08 0.04 0.05 0.02 0.14 0.14 0.04 0.04 

* Values are means ± standard deviation (n=3) 
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Table S 5.4 Relative abundance of bacterial families with abundances higher than 0.1 % in at least one of the soil samples (AApr/sep, ANSsep, BApr 

and BSep). 

  

Relative abundance (% of sequences) 

  

AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Family mean SD mean SD mean SD mean SD mean SD 

Acidobacteria "Koribacteraceae" 16.17 1.64 15.25 0.40 11.97 1.90 15.85 2.01 18.09 2.10 

 

"Solibacteraceae" 10.90 0.81 11.48 0.66 5.02 0.02 13.68 0.97 13.97 1.38 

 

Acidobacteriaceae 0.71 0.17 0.46 0.10 0.40 0.11 0.34 0.11 0.30 0.07 

Actinobacteria Intrasporangiaceae 0.62 0.15 0.46 0.11 0.60 0.13 0.48 0.14 0.48 0.24 

 

"C111" 0.62 0.18 0.68 0.13 0.33 0.13 0.37 0.12 0.38 0.25 

 

Micrococcaceae 0.24 0.13 0.26 0.06 0.46 0.12 0.29 0.10 0.20 0.06 

 

Coriobacteriaceae 0.05 0.06 0.46 0.15 0.14 0.11 0.44 0.15 0.35 0.14 

 

Frankiaceae 0.27 0.08 0.28 0.08 0.39 0.16 0.28 0.12 0.15 0.08 

 

Mycobacteriaceae 0.16 0.16 0.28 0.06 0.23 0.16 0.30 0.14 0.25 0.02 

 

Streptomycetaceae 0.29 0.04 0.25 0.09 0.14 0.04 0.32 0.04 0.21 0.19 

 

Gaiellaceae 0.18 0.04 0.24 0.04 0.30 0.11 0.21 0.02 0.16 0.04 

 

Micromonosporaceae 0.30 0.11 0.13 0.08 0.25 0.06 0.19 0.07 0.13 0.12 

 

Geodermatophilaceae 0.14 0.06 0.15 0.16 0.08 0.08 0.14 0.06 0.09 0.06 

 

Sporichthyaceae 0.10 0.08 0.06 0.04 0.20 0.09 0.06 0.02 0.06 0.02 

 

Cellulomonadaceae 0.14 0.06 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 
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Table S 5.4 Continued 

  

Relative abundance (% of sequences) 

  

AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Family mean SD mean SD mean SD mean SD mean SD 

Armatimonadetes Fimbriimonadaceae 0.00 0.00 0.00 0.00 0.24 0.22 0.06 0.04 0.16 0.12 

Bacteroidetes Chitinophagaceae 5.00 0.85 3.61 0.74 2.86 0.49 3.04 0.56 2.55 0.56 

 

Flammeovirgaceae 0.59 0.33 0.21 0.06 0.55 0.23 0.28 0.19 0.20 0.08 

 

Saprospiraceae 0.48 0.19 0.31 0.06 0.13 0.02 0.20 0.15 0.11 0.10 

 

Flavobacteriaceae 0.62 0.24 0.18 0.04 0.15 0.10 0.10 0.04 0.11 0.08 

 

Sphingobacteriaceae 0.33 0.08 0.10 0.02 0.24 0.09 0.09 0.09 0.04 0.04 

 

Flexibacteraceae 0.49 0.29 0.04 0.04 0.08 0.04 0.06 0.04 0.06 0.06 

Chloroflexi Anaerolinaceae 0.20 0.10 0.50 0.34 0.30 0.10 0.91 0.20 0.76 0.33 

Cyanobacteria Nostocaceae 0.13 0.08 0.14 0.04 1.07 0.30 0.06 0.04 0.13 0.09 

Firmicutes Clostridiaceae 0.33 0.17 0.80 0.32 1.10 0.22 0.39 0.09 0.38 0.11 

Gemmatimonadetes "Ellin5301" 1.33 0.11 1.34 0.19 0.66 0.17 1.41 0.30 1.10 0.17 

Nitrospira Nitrospiraceae 1.61 0.25 1.70 0.14 2.21 0.41 1.21 0.06 0.90 0.16 

 

"Thermodesulfovibrionaceae" 0.53 0.30 2.23 0.61 0.61 0.14 0.77 0.30 1.66 0.50 

Proteobacteria Sphingomonadaceae 10.87 0.43 11.97 1.09 9.29 0.37 10.03 1.61 10.52 1.45 

 

Rhodospirillaceae 2.96 0.33 2.63 0.20 3.22 0.60 2.85 0.35 3.23 0.25 

 

Hyphomicrobiaceae 2.18 0.35 2.33 0.20 2.32 0.06 2.66 0.35 2.50 0.52 

 

Caulobacteraceae 1.43 0.14 0.99 0.29 1.30 0.18 0.78 0.22 0.69 0.33 
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Table S 5.4 Continued 

  

Relative abundance (% of sequences) 

  

AApr 

 

ASep 

 

ANSSep 

 

BApr 

 

BSep 

 Phylum Family mean SD mean SD mean SD mean SD mean SD 

 

Bradyrhizobiaceae 0.80 0.14 0.40 0.18 0.92 0.19 0.42 0.11 0.44 0.13 

 

Phyllobacteriaceae 0.53 0.30 0.45 0.10 0.18 0.08 0.30 0.11 0.16 0.06 

 

Acetobacteraceae 0.22 0.10 0.14 0.06 0.21 0.04 0.23 0.08 0.25 0.12 

 

Cystobacteraceae 0.14 0.02 0.11 0.08 0.39 0.12 0.14 0.02 0.23 0.10 

 

Hyphomonadaceae 0.29 0.09 0.25 0.06 0.23 0.04 0.10 0.11 0.13 0.06 

 

"Mitochondria" 0.05 0.06 0.11 0.07 0.50 0.25 0.04 0.04 0.10 0.06 

 

Rhizobiaceae 0.30 0.17 0.08 0.00 0.21 0.09 0.13 0.12 0.00 0.00 

 

Methylocystaceae 0.15 0.04 0.15 0.16 0.13 0.06 0.16 0.08 0.15 0.00 

 

Comamonadaceae 0.23 0.20 0.13 0.06 0.15 0.08 0.15 0.04 0.05 0.02 

 

Erythrobacteraceae 0.34 0.33 0.09 0.02 0.09 0.02 0.13 0.04 0.00 0.00 

 

Beijerinckiaceae 0.11 0.10 0.16 0.10 0.15 0.08 0.15 0.08 0.11 0.00 

 

Haliangiaceae 0.15 0.07 0.11 0.04 0.21 0.09 0.11 0.04 0.05 0.04 

 

Rhodobacteraceae 0.22 0.12 0.13 0.08 0.16 0.08 0.00 0.00 0.05 0.02 

 

Myxococcaceae 0.00 0.00 0.10 0.06 0.19 0.17 0.13 0.04 0.15 0.10 

 

Rhodobiaceae 0.10 0.04 0.06 0.02 0.13 0.16 0.14 0.02 0.13 0.02 

 

Xanthomonadaceae 0.15 0.08 0.11 0.06 0.08 0.07 0.06 0.04 0.10 0.02 

* Values are means ± standard deviation (n=3)  
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Table S 5.5 Number of representative OTUs varying (P < 0.05) among cropped and uncropped soils. 

 Domain No. OTUs Phylum  No. OTUs Class No. OTUs Order No. OTUs Family No. OTUs 

 OTUs present at least in one sample at abundance > 0.1 % 

A
b

se
n
t 

in
 s

o
il

 A
N

S
S

ep
 

Bacteria 11 Acidobacteria  5 "Solibacteres" 3 "Solibacterales" 3 "Solibacteraceae" 3 

    "Chloracidobacteria" 1     

    "TM1" 1     

  Chlorobi 3 "SJA-28" 3     

  Chloroflexi 1 Anaerolineae 1 "SJA-15" 1   

  Proteobacteria 2 Alphaproteobacteria 2 Sphingomonadales 1 Sphingomonadaceae 1 

      Rhizobiales 1 Phyllobacteriaceae 1 

 

 OTUs present in all the samples at abundance > 0.1 % 

D
ec

re
as

ed
 i

n
 s

o
il

 A
N

S
S

ep
 Bacteria 11 Acidobacteria  7 "Chloracidobacteria" 1     

    "Solibacteres" 4 "Solibacterales" 4 "Solibacteraceae" 4 

    Acidobacteria 2 Acidobacteriales 2 "Koribacteraceae" 2 

  Proteobacteria 3 Alphaproteobacteria 3 Sphingomonadales 1 Sphingomonadaceae 1 

      Rhizobiales 1 Hyphomicrobiaceae 1 

      Rhodospirillales 1 Rhodospirillaceae 1 
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Table S 5.5 Continued 

 Domain No. OTUs Phylum  No. OTUs Class No. OTUs Order No. OTUs Family No. OTUs 

 OTUs present at least in one sample at abundance > 0.1 % 

D
ec

re
as

ed
 i

n
 s

o
il

 A
N

S
S

ep
 Bacteria 11 Acidobacteria  5 "Solibacteres" 2 "Solibacterales" 2 "Solibacteraceae" 2 

    Acidobacteria 3 Acidobacteriales 3 "Koribacteraceae" 3 

  Chloroflexi 2 Anaerolineae 2 "envOPS12" 2   

  Gemmatimonadetes 2 Gemmatimonadetes 2 Gemmatimonadales 1 "Ellin 5301" 1 

      "N1423WL" 1   

  Proteobacteria 2 Alphaproteobacteria 2 Sphingomonadales 1 Sphingomonadaceae 1 

      Rhizobiales 1   

 OTUs present at least in one sample at abundance > 0.1 % 

O
n

ly
 i

n
 s

o
il

 A
N

S
S

ep
 

Bacteria 5 Acidobacteria  1 Acidobacteria 1 Acidobacteriales 1 "Koribacteraceae" 1 

   1 "Acidobacteria - 2"   1     

  AD3 1       

  Chloroflexi 1 "Ellin 6529" 1     

  OD1 1       
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Table S 5.5 Continued 

 Domain No. 
OTUs 

Phylum  No. 
OTUs 

Class No. 
OTUs 

Order No. 
OTUs 

Family No. 
OTUs 

In
cr

ea
se

d
 i

n
 s

o
il

 A
N

S
S

ep
 

 OTUs present in all the samples at abundance > 0.1 % 

Bacteria 7 Acidobacteria  3 "Acidobacteria - 2  " 2     

    Acidobacteria 1 Acidobacteriales 1 "Koribacteraceae" 1 

  AD3 1 "ABS-6" 1     

  Gemmatimonadetes 1 Gemmatimonadetes 1     

  Proteobacteria 2 Deltaproteobacteria 1 Myxococcales 1 Cystobacteraceae 1 

    Alphaproteobacteria 1 Rhizobiales 1 Bradyrhizobiaceae 1 

OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 33 Acidobacteria  6 "Acidobacteria - 2  " 6     

  Actinobacteria 2 Actinobacteria 1 Actinomycetales 1 Kineosporiaceae 1 

    Acidimicrobiia 1 Acidimicrobiales 1 "EB1017" 1 

  AD3 1 "ABS-6" 1     

  Bacteroidetes 1 Sphingobacteriia 1 Sphingobacteriales 1   

  Chlorobi 1 ""SJA-28"" 1     

  Chloroflexi 7 "Ellin 6529" 7     
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Table S 5.5 Continued 

 Domain No. 
OTUs 

Phylum  No. 
OTUs 

Class No. 
OTUs 

Order No. 
OTUs 

Family No. 
OTUs 

In
cr

ea
se

d
 i

n
 s

o
il

 A
N

S
S

ep
 

  Cyanobacteria 2 Nostocophycideae 2 Nostocales 2 Nostocaceae 2 

  Fibrobacteres 1 Fibrobacteria 1     

  Gemmatimonadetes 3 "Gemm-1" 2     

    Gemmatimonadetes 1     

  Nitrospira 1 Nitrospira 1 Nitrospirales 1 Nitrospiraceae 1 

  OD1 1       

  Proteobacteria 5 Alphaproteobacteria 5 Sphingomonadales 1 Sphingomonadaceae 1 

      Caulobacterales 1 Caulobacteraceae 1 

      Rhodospirillales 1 Rhodospirillaceae 1 

      Rickettsiales 2 "Mitochondria" 1 

  TM7 1       
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Table S 5.6 Number of representative OTUs varying (P < 0.05) with crop rotation and management 

 

 

Domain No. 

OTUs 

Phylum  No. 

OTUs 

Class No. 

OTUs 

Order No. 

OTUs 

Family No. 

OTUs 

O
n

ly
 i

n
 s

o
il

 A
A

p
r OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 5 Actinobacteria 1 Actinobacteria 1 Actinomycetales 1 Cellulomonadaceae 1 

 Bacteroidetes 4 Sphingobacteriia 4 Sphingobacteriales 4 Chitinophagaceae 2 

       Flexibacteraceae 1 

       Saprospiraceae 1 

D
o

m
in

an
t 

in
 s

o
il

: 

A
ap

r 

 OTUs present in all the samples at abundance > 0.1 % 

Bacteria 1 Proteobacteri

a 

1 Alphaproteobacteria 1 Rhizobiales 1 Hyphomicrobiaceae 1 

OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 7 Bacteroidetes 4 Sphingobacteriia 3 Sphingobacteriales 3 Chitinophagaceae 2 

        Flexibacteraceae 1 

    Flavobacteriia 1 Flavobacteriales 1 Flavobacteriaceae 1 

  Proteobacteri
a 

2 Alphaproteobacteria 2 Sphingomonadales 1   

      Caulobacterales 1 Caulobacteraceae 1 

  Acidobacteria  1 "TM1" 1     
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Table S 5.6 Continued 

 

 

Domain No. 
OTUs 

Phylum  No. 
OTUs 

Class No. 
OTUs 

Order No. 
OTUs 

Family No. 
OTUs 

D
o

m
in

an
t 

in
 s

o
il

: 

A
S

ep
 

OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 3 Nitrospira 3 Nitrospira 3 Nitrospirales 3 Nitrospiraceae 2 

        "Thermodesulfovibrionaceae" 1 

A
A

p
r/
A

se
p
 OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 2 Proteobacteria 1 Alphaproteobacteria 1 Sphingomonadales 1   

  Bacteroidetes 1 Sphingobacteriia 1 Sphingobacteriales 1 Saprospiraceae 1 

D
ec

re
as

e 
fr

o
m

 S
o

il
 A

A
p
r 
to

 B
S

ep
 

OTUs present in all the samples at abundance > 0.1 % 

Bacteria 2 Acidobacteria  1 "Solibacteres" 1 "Solibacterales" 1 "Solibacteraceae" 1 

    Proteobacteria 1 Alphaproteobacteria 1 Caulobacterales 1 Caulobacteraceae 1 

OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 10 Acidobacteria  4 "Solibacteres" 2 "Solibacterales" 2 "Solibacteraceae" 2 

       Acidobacteria 1 Acidobacteriales 1 "Koribacteraceae" 1 

       "Chloracidobacteria" 1       

    Actinobacteria 1 Actinobacteria 1 Actinomycetales 1    

    Proteobacteria 4 Alphaproteobacteria 4 Sphingomonadales 2 Sphingomonadaceae 2 

          Caulobacterales 1 Caulobacteraceae 1 

          Rhizobiales 1    

  Bacteroidetes 1 Sphingobacteriia 1 Sphingobacteriales 1 Chitinophagaceae 1 
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Table S 5.6 Continued 

 

 

Domain No. 
OTUs 

Phylum  No. 
OTUs 

Class No. 
OTUs 

Order No. 
OTUs 

Family No. 
OTUs 

In
cr

ea
se

 f
ro

m
 S

o
il

 A
A

p
r 
to

 B
S

ep
 

OTUs present in all the samples at abundance > 0.1 % 

Bacteria 3 Acidobacteria  2 "Solibacteres" 1 "Solibacterales" 1 "Solibacteraceae" 1 

       Acidobacteria 1 Acidobacteriales 1 "Koribacteraceae" 1 

    Proteobacteria 1 Alphaproteobacteria 1 Sphingomonadales 1 Sphingomonadaceae 1 

OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 22 Acidobacteria  10 Acidobacteria 4 Acidobacteriales 4 "Koribacteraceae" 4 

       "Solibacteres" 6 "Solibacterales" 6 "Solibacteraceae" 6 

    Actinobacteria 1 Actinobacteria 1 Actinomycetales 1    

    Bacteroidetes 2 Bacteroidia 2 Bacteroidales 2    

    Chlorobi 2 "SJA-28" 2       

    Chloroflexi 3 Anaerolineae 3 "envOPS12" 2    

          "SJA-15" 1    

    Gemmatimonadetes 1 Gemmatimonadetes 1       

  Nitrospira 1 Nitrospira 1 Nitrospirales 1 "Thermodesulfovibrionaceae" 1 

  Proteobacteria 2 Alphaproteobacteria 1 Rhizobiales 1 Hyphomicrobiaceae 1 

      Epsilonproteobacteria 1 Campylobacterales 1 Helicobacteraceae 1 
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Table S 5.6 Continued 

 

 

Domain No. 
OTUs 

Phylum  No. 
OTUs 

Class No. 
OTUs 

Order No. 
OTUs 

Family No. 
OTUs 

D
o

m
in

an
t 

in
 s

o
il

: 

B
A

p
r/

B
S

ep
 OTUs present at least in one sample at abundance > 0.1 % 

Bacteri

a 

2 Acidobacteria  1 "Chloracidobacteria" 1         

    Chloroflexi 1 Anaerolineae 1 "envOPS12" 1     

 B
A

p
r 

OTUs present in all the samples at abundance > 0.1 % 

Bacteri

a 

3 Acidobacteria  2 "Solibacteres" 1 "Solibacterales" 1 "Solibacteraceae" 1 

       Acidobacteria 1 Acidobacteriales 1 "Koribacteraceae" 1 

    Proteobacteria 1 Alphaproteobacteria 1 Rhodospirillales 1 Rhodospirillaceae 1 

OTUs present at least in one sample at abundance > 0.1 % 

Bacteri

a 

5 Actinobacteria 1 Actinobacteria 1 Actinomycetales 1 Nocardioidaceae 1 

    Chloroflexi 1 Anaerolineae 1 "H39" 1    

    Acidobacteria  2 "Solibacteres" 2 "Solibacterales" 2 "Solibacteraceae" 2 

    Bacteroidetes 1 Bacteroidia 1 Bacteroidales 1     
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Table S 5.7 Number of representative OTUs varying (P < 0.05) over rice cycle. 

  
Domain 

No. 

OTUs 
Phylum  

No. 

OTUs 
Class 

No. 

OTUs 
Order 

No. 

OTUs 
Family 

No. 

OTUs 

D
o

m
in

an
t 

in
 s

o
il

: 

A
/B

se
p
 OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 4 Nitrospira 3 Nitrospira 3 Nitrospirales 3 "Thermodesulfovibrionaceae" 3 

    Gemmatimonadetes 1 Gemmatimonadetes 1         

A
/A

N
S

/B
S

ep
 

OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 1 Nitrospira 1 Nitrospira 1 Nitrospirales 1 "Thermodesulfovibrionaceae" 1 

A
/B

 A
p
r OTUs present at least in one sample at abundance > 0.1 % 

Bacteria 2 Gemmatimonadetes 1 Gemmatimonadetes 1 Gemmatimonadales 1 "Ellin 5301" 1 
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Chapter 6 

Chapter 6- A polyphasic assessment of the effect of an alfalfa-rice 

rotation system and crop cycle on the paddy soil bacterial 

community structure and function 

 

 

 

 

 

 

 

  

Results included in: 

Lopes, A.R., D, Prieto-Fernández, A., Trasar-Cepeda, C., Gil-Sotres, F., Leirós, M.C., 

Manaia, C.M. and Nunes, O.C. A polyphasic assessment of the effect of an alfalfa-rice 

rotation system and crop cycle on the paddy soil bacterial community structure and 

function. (submitted for publication) 
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6.1 Abstract  

The bulk soil of two adjacent paddy fields at different stages of an alfalfa-rice crop 

rotation system was characterized over the annual rice cycle (before seeding, 

maximum tillering and after harvest) using a polyphasic approach. This study 

aimed to assess the variations associated with crop rotation and/or rice cycle stages 

regarding soil microbial activity and bacterial community structure and 

composition and their relationship with different biotic and abiotic environmental 

parameters.  

The most notorious variations over the rice cycle were the organic matter 

degradation and N2 fixation, which were independent of crop rotation stage and 

were intensified, respectively, before and after flooding. Both transformations 

contributed to increase the content of NH4
+
-N in paddy soil. The N2 fixation was 

positively correlated with the abundance of cultivable diazotrophs, and with OTUs 

affiliated to presumable diazotrophs (Chloroflexi-Ellin6529, Actinobacteria-

Acidomicrobiales/Actinomycetales, Betaproteobacteria and Alphaproteobacteria-

Rhizobiales/Rhodospirilales). Both the abundance of heterotrophic populations and 

enzymatic activity contributed to the organic matter degradation.  

The stage of crop rotation imposed strong variations on the bacterial community 

structure and composition, mainly before rice seeding. Low content of water, total 

C and available inorganic-P and the presence of alfalfa debris favoured the 

proliferation of the aerobic heterotrophic population and the degradation of 

complex carbon sources. The lineages Flavobacteriales, Sphingobacteriales, 

Caulobacterales, Rhizobiales, and Actinomycetales had probably a major role in 

these activities. In opposition, high content of water, total C and available 

inorganic-P and the presence of rice debris and/or organic amendments favoured 

the proliferation of presumable anaerobic members (Bacteroidales, Chlorobi, and 

Anaerolinea) and the proteolytic activity. 

Keywords: organic farming, microbial ecology, CLPP, cultivable populations, 

DGGE, 454-pyrosequencing, multivariate analyses. 
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6.2 Introduction 

Soil bacterial communities are known to be influenced by a wide range of biotic 

and abiotic factors. Given the biological, chemical and geological complexity of 

soils, it is very difficult to know in each case which are the most critical 

parameters, and in which combination they shape the composition, structure and 

function of the microbial communities. Soil characteristics such as the parent 

material, texture, and pH have been considered those most influencing microbial 

communities (Lauber et al. 2009; Ulrich and Becker 2006; van Diepeningen et al. 

2006). Land use history (Stark et al. 2008) and the type of aboveground vegetation 

(Berg and Smalla 2009; Kowalchuk et al. 2002) are also critical parameters 

defining the soil bacterial community composition, in particular, in the rhizosphere. 

However, some authors have demonstrated that the type of aboveground vegetation 

may induce only minor changes in the soil bacterial community composition 

(Jangid et al. 2011; Kielak et al. 2008a). For these reasons, a reliable prediction of 

how microbial communities will react, for instance, which bacterial groups will be 

outcompeted or favoured, when the soil environment is altered, is really 

challenging. 

Agriculture is the oldest and still important anthropogenic activity. In the last 

decades, agricultural productivity has increased, mainly due to the use of synthetic 

chemical compounds such as pesticides and inorganic fertilizers. These compounds 

have negative impacts on the agriculture ecosystems, the surrounding environment 

and the human food-chain (Galloway et al. 2008; Hussain et al. 2009; Matson et al. 

1997; Quayle et al. 2006; Ramirez et al. 2012). Therefore, nowadays, there is an 

increasing interest in improving and implementing sustainable practices, such as 

the ancient crop rotation system. In this farming management at least two different 

types of crops are sequentially cultivated in the same area (Kelner et al. 1997; 

Ladha and Reddy 2003; Larkin and Honeycutt 2006; Sun et al. 2009; Yin et al. 

2010; Zhao et al. 2009). Without the use of synthetic compounds, this practice 

contributes to increase the agricultural productivity and soil fertility (Kundu and 
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Ladha 1995; Liebman and Davis 2000; Rui and Zhang 2010). Among the rotation 

systems well accepted and most used are those that include a legume in rotation 

with other crop (e.g. cereal, tuberous). In these systems, the efficiency of the 

legume-crop rotation will depend on the interaction established between the 

legume plant and the microbial community, and on the way both benefit and 

influence the physicochemical and biochemical properties of surrounding 

environment (Ladha and Reddy 2003; O'Hara et al. 1989; Pietsch et al. 2007). 

Rice is amongst the most cultivated crops worldwide (FAOSTAT 2010). Since this 

cereal is cultivated mainly in flooded lands, the microbiota of rice fields is 

subjected to unique environmental conditions. Indeed, rice paddies are 

characterized by an impressive compositional and functional microbial diversity 

(Ikenaga et al. 2003; Ishii et al. 2009; Noll et al. 2005; Treude et al. 2003), 

enhanced by the redox gradients created in the soil under the flooding conditions 

(Schmidt et al. 2011). Recently, it was reported that higher rice productivity could 

be obtained under crop rotation than under a continuous monoculture of rice (Chen 

et al. 2012; Xuan et al. 2012). Crop rotation also improves paddy soil quality (Chen 

et al. 2012) and biological nitrogen fixation, particularly in rice-legume rotation 

systems (Kundu and Ladha 1995; Ladha and Reddy 2003). It is described that rice 

crop rotation influences the soil microbial community structure and composition 

(Chen et al. 2012; Xuan et al. 2012). However, an improved insight of the 

influence of type of crops in rotation may be obtained from an integrated approach 

in which the microbial community composition and function are assessed 

simultaneously. Such studies would bring additional information about the short 

and long term influence of the crop in rotation on the microbial community 

composition and functions in the rice paddy soils. This type of knowledge is 

important not only to get science-based evidences of the advantages of the crop 

rotation systems, but also to improve these practices. 

The use of polyphasic approaches in which the composition of the microbial 

communities, the functional activity and the physicochemical and biochemical 
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properties of bulk soil at distinct stages of the organic rice-alfalfa rotation system 

are characterized simultaneously bring an integrated view of the system. If the 

same methodology is applied to different stages of the rotation cycle and distinct 

phases of the rice cycle (before seeding, maximum tillering and after harvesting), 

then it will be possible to have a general perspective of the transformations taking 

place. In a previous study, the bacterial communities of rice paddies in different 

stages of crop rotation were characterized before rice seeding and after harvest 

using 454-pyrosequencing (Lopes et al., submitted). The current study was 

designed to get additional inferences about the correlation between microbial 

community composition and function and different biotic and abiotic 

environmental parameters, over the rice cycle or crop rotation stage. Thus, to 

achieve this purpose multivariate analyses were used to assess the i) predominant 

microbial activities occurring at different stages of alfalfa-rice rotation system 

and/or over the rice cycle; ii) bacterial community members correlated with the 

most intense microbial activities; and iii) biotic and abiotic soil parameters most 

correlated with the microbial populations and soil biological activity variations. 

 

6.3 Material and Methods 

6.3.1 Site description and soil sampling  

Bulk soil samples were collected from two adjacent paddy fields (A and B) located 

in the experimental farm “Bico da Barca” (Montemor-o-Velho, central Portugal). 

In these paddies, rice is cropped in an alfalfa-rice rotation system as described 

elsewhere (Lopes et al., submitted). Briefly, alfalfa is cropped for two consecutive 

years (1
st
 and 2

nd
 year of crop rotation) up to the soil preparation for rice cropping, 

which occurs in April. Rice is cropped in the two following years (3
rd

 and 4
th
 year 

of crop rotation). The annual rice cycle starts in May, when rice is seeded in the 

flooded paddies, and ends in late September, when it is harvested. Between the two 

years of rice cropping, paddies lay fallow in winter. At the sampling time, in 2010, 
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paddy A and B were, respectively, at the 3
rd

 and 4
th
 year of the crop rotation cycle. 

Because of the lower rice yield of crops at the 2
nd

 year of rice cropping, in paddy B 

soil preparation included organic- and inorganic P amendments.  

Triplicate composite samples were collected to allow for within-plot variability as 

previously described (Lopes et al., submitted), at the beginning of April (before 

seeding, AApr and BApr), in the middle of July (maximum tillering, AJul and BJul) and 

in late September (after harvesting, ASep and BSep). The detailed procedures for 

processing and storage of the samples were previously described by Lopes et al. 

(2011).  

 

6.3.2 Soil physical, chemical and biochemical properties  

The total C and N contents, pH in water and water content were determined 

following the methods described by Guitián and Carballas (1976).Total inorganic-

N and NH4
+
-N contents were determined by steam distillation after extraction with 

2 M KCl (Bremner 1965). Total and inorganic available-P were determined after 

extraction with 0.5 M sodium bicarbonate following the methods described in 

Trasar-Cepeda et al. (1990). 

Microbial biomass C (Biomass C) was determined by the chloroform fumigation 

extraction method, with 0.5 M K2SO4 as extractant (Vance et al., 1987). The 

difference in C content of the fumigated and unfumigated extracts was converted to 

microbial biomass C by applying a factor (Kc) of 0.45 (Jenkinson 1988). Soil basal 

respiration (microbial respiration) was determined by static incubation (Guitián and 

Carballas 1976). The CO2 produced during a 10-day period by 25 g soil samples 

incubated at field moisture content and 25 ºC was collected in 10 ml of a 1 M 

NaOH solution, which was then titrated against HCl. The microbial coefficient 

(qCO2) was calculated as the ratio between basal respiration and microbial biomass 

C (Anderson and Domsch 1985). Total inorganic-N and NH4
+
-N produced by 

mineralization of organic N were estimated by the difference, respectively, 
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between the total inorganic-N and the NH4
+
-N contents at the end and at the 

beginning of the 10-day incubation period, as described above.  

Dehydrogenase activity was determined as described by Camina et al. (1998). The 

activities of urease and protease hydrolysing benzoylargininamide (BAA-protease) 

were determined as described by Nannipieri et al. (1980) . The activity of protease 

hydrolysing casein (casein-protease) was determined using the modified method of 

Ladd and Butler (1972), described by Nannipieri et al. (1979). 

All determinations were performed in triplicate and the average values were 

expressed on an oven-dried (105 ºC) soil basis. 

 

6.3.3 Enumeration of total cells and of cultivable microbial 

populations 

The enumeration of total cells from bulk soil was performed by the 4,6-diamidino-

2-phenylindole (DAPI) staining method as described by Brunk et al. (1979). For 

each sample, 10 g of soil were suspended in 90 ml of sterile sodium 

hexametaphosphate and sodium pyrophosphate solution (1 % and 0.18 %, 

respectively). The mixture was stirred for 30 min at 200 rpm and was allowed to 

sediment for 15 min. The suspension was diluted in 10 fold series and 100 µl 

aliquots were used for the enumeration of total cells as described by Manuel et al. 

(2007). 

The densities of cultivable microorganisms belonging to different physiological 

groups (listed in Table 6.1) were determined in bulk soil by the most probable 

number (MPN) technique, using a modified version of the protocol described by 

Kidd et al. (2008). Briefly, 20 µl aliquots of soil suspensions prepared as described 

above were used to inoculate microtiter plates containing a selective liquid medium 

(180 µl per well) and were sequentially diluted in 10-fold series in the same 

medium. The redox indicator resazurin was used (1 mg l
-1

) for cultures incubated 
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under anaerobic conditions. After the incubation periods (Table 6.1), microbial 

growth was measured (λ = 660 nm) using a microtiter reading system (SpectraMax 

M2E, Molecular Devices). The presence of nitrate and/or nitrite in the denitrifiers 

selective medium was detected using the method of Smibert and Krieg (1981). 

MPN were estimated from the appropriate tables taking into account the volume 

inoculated and the initial dilution used. All the determinations were performed in 

triplicate and the average MPN of each soil microbial population was expressed as 

log MPN g
-1

dry soil.  

 

Table 6.1 List of selective liquid media and incubation conditions used in this study to 

enumerate MPN of different cultivable microbial populations. 

Microbial populations Incubation time (week) Temperature (ºC) 
Selective media  

(references) 

Aerobic heterotrophs 1 25 Kidd et al., 2008  

Anaerobic heterotrophs 2 28 Kidd et al., 2008 

Aerobic ammonifiers 3 25 Kidd et al., 2008 

Anaerobic ammonifiers 3 28 Kidd et al., 2008 

Denitrifiers 3 30 Nogales et al., 2002 

Aerobic diazotrophs 3 30 Cote and Gherna, 1994 

Anaerobic diazotrophs* 3 28 Lin et al., 2008  

* The medium was supplemented with Na2CO3 (20 mg l-1) 

 

6.3.4 Catabolic profiling 

The catabolic profiling (CLPP) of each sample was assessed using a modification 

of the method described by Kennedy (1994). Microplates containing 28 different 

organic carbon substrates (α-cyclodextrin, glycogen, Tween 80, Tween 60, α-D-

glucose-1-phosphate, β-phenyl ethylamine, putrescine, D-(+) cellobiose, N-acetyl-D-

glucosamine, α-lactose, D-(+) xylose, β-methyl D-glucoside, maltose, i-erythritol, 

glyceraldehyde, L-phenylalanine, L-glutamic acid, L-threonine, L-asparagine, L-
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arginine, L-serine, galacturonic acid, D-galactonic acid δ-lactone, malonic acid, 

malic acid, α-keto butyric acid, o-hydroxybenzoic acid, p-hydroxybenzoic acid) 

and prepared as described by Kidd et al. (2008) were inoculated with soil 

suspensions prepared and sequentially diluted as described above. Substrate 

utilization was indicated by colour development of the tetrazolium violet redox dye 

(2,5-diphenyl-3-(α-naphthyl)tetrazolium chloride, 0.15 mM) after 7 d of aerobic 

incubation at 25 ºC. The total number of C sources utilized was recorded and the 

number (MPN) of cells grown at each substrate was estimated using tables for 3 

replicates per dilution level.  

 

6.3.5 Molecular characterization 

Total genomic DNA extraction, assessment of quality and quantity and the PCR 

amplification of the 16S rRNA gene and DGGE analyses were performed as 

previously described (Lopes et al. 2011). The comparison of DGGE profiles was 

performed using the Bionumerics software (version 6.1, Applied Maths). Pattern 

normalization, assignment of bands to classes and the construction of band-

matching tables were done as previously described (Lopes et al. 2011). The band-

matching table (band position vs. band intensity), comprising the triplicate DGGE 

profiles from both paddies, at different sampling periods (April, July and 

September), was used in further statistical analyses.  

The triplicate rarefied 16S rRNA gene 454-pyrosequencing data from samples of 

soil A and B from April and September (accession number SAMN01908502 to 

SAMN01908507 and SAMN01908511 to SAMN01908516, respectively) 

generated previously (Lopes et al., submitted) was used in the present study. This 

dataset comprised all the OTUs (1790) that were present in at least two of the three 

replicas of at least one of the samples examined, weighted according to their 

abundance (number of sequences). 
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6.3.6 Statistical analyses 

Data of physicochemical and biochemical properties, total number of cells and 

MPN of cultivable microbial populations occurring, over the rice cycle, in each 

paddy were compared using the two way analysis of variance (ANOVA) and the 

post-hoc Tukey test was applied when adequate. Comparisons between paddies at 

each sampling period were performed using the two-sample statistical test (t-test). 

The statistical analyses were done using Excel software package (Microsoft Excel, 

2007).  

Principal component analyses (PCA) were used to assess the variations in the 

physicochemical and biochemical paddy soil properties, microbial community 

composition based on culture dependent (MPN data) and culture independent data 

(DGGE and pyrosequencing data) and on the microbial catabolic activity (CLPP 

data) of both paddies, over the rice cycle. Canonical correspondence analyses 

(CCA) were carried out to elucidate which parameters were most correlated with 

the variations of the microbial community activity, based on CLPP data (log MPN 

g
-1

dry soil), and composition, based on MPN (log MPN g
-1

dry soil), DGGE (band 

intensity) and pyrosequencing data (OTU's abundance). The significance of the 

established relationships between the community data (principal matrix) and the 

environmental data (second matrix) was tested by Monte Carlo permutations test 

(n=499). The multivariate analyses (PCA and CCA) were performed with 

CANOCO (version. 4.5, Microcomputer Power, Ithaca, NY, USA). 

 

6.4 Results  

6.4.1 Variations in the physical, chemical and biochemical 

characteristics of the paddy soils 

Over the rice cycle, physical, chemical and biochemical properties varied 

significantly and differed between both paddies (Table 6.2). The parameters that 
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most contributed to explain the variation found among samples were identified 

based on a principal component analysis (PCA) (Fig. 6.1a). In both paddies, April 

samples were those with the highest values of microbial coefficient (qCO2) and 

NH4
+
-N mineralized, and the lowest values of microbial biomass-C and NH4

+
-N 

content, explaining the relevance of these parameters to distinguish AApr and BApr 

from the other samples, mainly BJul and BSep. Other factors, such as the higher 

proteolytic (casein- and BAA-protease) and urease activity observed in April, 

mainly in paddy B, than in the other periods in both paddies contributed also to this 

differentiation. On the other hand, paddies A and B could also be distinguished, 

mainly along axis 2. Comparatively, samples in the 4
th

 year of the crop rotation (B) 

presented higher values of the parameters available-P (total and inorganic), water, 

total N and C soil contents than samples in the 3
rd

 year (A). 



 

 

1
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Table 6.2 Physicochemical, biochemical and microbiological soil properties of paddies A and B. Values are means ± standard deviation (n=3). 

Parameter AApr BApr AJul BJul ASep BSep 

  Physicochemical 

pH in water ** 5.97 ± 0.03 B ** 5.94 ± 0.06 B 6.27 ± 0.02 C*   6.03 ± 0.04 B* ** 5.88 ± 0.02 A* ** 5.70 ± 0.02 A* 

Water content (%) (g H2O 100 g-1 wet soil) ** 22.4 ± 0.1 A,B*  ** 27.1 ± 0.8 B* 23.6 ± 0.9 B* 28.6  ± 1.2 B* ** 21.8 ± 0.4 A*  ** 23.4 ± 0.2 A* 

Total C (%) ** 1.33 ± 0.10 A* ** 1.68  ± 0.04 A,B* 1.39 ± 0.07 A* 1.75  ± 0.04 B* ** 1.33 ± 0.13 A* ** 1.60 ± 0.05 A* 

Total N (%) ** 0.14 ± 0.00 A* ** 0.15 ± 0.01 A*  0.14 ± 0.01 A  0.15 ± 0.00 A ** 0.14 ± 0.00 A*  ** 0.18 ± 0.00 B* 

Total available-P (mg P kg-1) ** 50.7 ± 0.4 B* ** 80.3 ± 2.4 B* 36.3 ± 0.7 A* 55.6 ± 0.2 A* ** 35.7 ± 0.6 A* ** 56.4 ± 0.6 A* 

Available inorganic-P (mg P kg-1) 35.7 ± 1.9 B* 65.2 ± 2.2 B* 31.2 ± 1.0 A* 51.1 ± 0.8 A* 28.7 ± 0.9 A* 52.4 ± 0.4 A* 

Total inorganic-N (mg N kg-1)  9.10 ± 0.70 B 9.57 ± 0.40 C 4.55 ± 0.70 A 5.13 ± 0.40 A 4.90 ± 0.70 A* 7.70 ± 0.70 B* 

NH4
+

 -N (mg NH4
+-N kg-1) 1.52 ± 0.40 A 1.28 ± 0.40 A 3.73 ± 0.40 B* 5.13 ± 0.40 B* 4.43 ± 1.07 B 5.13 ± 0.41B 

  Biochemical 

Dehydrogenase (μmol INTF g-1 h-1)             0.10 ± 0.00 0.12 ± 0.02 0.09  ± 0.02 0.11 ± 0.01 0.11 ± 0.02 0.10 ± 0.01 

Microbial biomass - C (mg C kg-1) 111 ± 13 A 112 ± 2 A 138  ± 6 A* 187 ± 4 B* 117 ± 43 A 177 ± 35 B 

qCO2 (µg CO2-C released mg-1 biomass carbon h-1) 4 ± 0 B 4 ± 2 A 3 ± 0 A 3 ± 0 A 4 ± 1B 3 ± 0 A 

Total inorganic-N min (mg N kg-110 d-1)# 0.04 ± 0.65 A 0.03 ± 0.12 A 0.49 ± 0.24 A 0.55 ± 0.69 A 2.01 ± 0.57 B 1.03 ± 0.53 A 

NH4 
+-N min (mg NH4+-N kg-1 10 d-1)# 1.09 ± 0.38 A 1.45 ± 0.37 C 0.70 ± 0.48 A* -0.91 ± 0.69 B*  0.22 ± 0.74 A* -2.51 ± 0.12 A* 

Urease (μmol NH3 g
-1 h-1) 3.05 ± 0.27 B 3.23 ± 0.35 C 1.68 ± 0.25 A* 2.30 ± 0.08 B* 1.18 ± 0.14 A* 1.69 ± 0.04 A* 

Casein-protease (μmol tyrosine g-1h-1) 0.58 ± 0.02 B 0.55 ± 0.02 B 0.33 ± 0.05 A 0.23 ± 0.03 A 0.28 ± 0.06 A 0.23 ± 0.03 A 

BAA-protease (μmol NH3 g
-1 h-1) 5.98 ± 0.56 C* 10.56 ± 1.53 B* 3.89 ± 0.25 B* 5.98 ± 0.45 A* 2.71 ± 0.11 A* 5.29 ± 0.07 A* 
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Table 6.2 Continued 

Parameter AApr BApr AJul BJul ASep BSep 

 Microbiological 

Total cells (log Cells g-1dry soil) 11.8  ± 0.1 A 11.4 ± 0.4 A  11.9 ± 0.1 A 11.8 ± 0.1 A 11.8 ± 0.0 A 11.8 ± 0.0 A  

Aerobic heterotrophs (log MPN g-1dry soil) 7.3 ± 0.2 B* 6.5 ± 0.1 B* 6.4 ± 0.2 A* 6.0  ± 0.1A*  6.6 ± 0.3 A 6.5 ± 0.1 B 

Aerobic ammonifiers (log MPN g-1dry soil) 6.6 ± 0.2 B 6.3 ± 0.1 A 6.2 ± 0.1A,B 5.8  ± 0.3 A 6.0 ± 0.2 A 6.0 ± 0.1 A 

Aerobic diazotrophs (log MPN g-1dry soil) 1.8  ± 0.5 A  2.4  ± 0.2 A 4.5  ± 0.5 B 4.2 ± 0.1 B 5.8  ± 0.5 C 5.5 ± 0.2 C 

Anaerobic heterotrophs (log MPN g-1dry soil) 5.2 ± 0.1 A 5.3 ± 0.1 A,B 5.2 ± 0.2 A 5.2 ± 0.1 A 6.0 ± 0.3 B 5.6 ± 0.3 B 

Anaerobic ammonifiers (log MPN g-1dry soil) 5.8 ± 0.3 A 5.5 ± 0.2 A 5.7 ± 0.8 A 5.3 ± 0.4 A 6.2 ± 0.2 A* 5.8 ± 0.2 A* 

Anaerobic diazotrophs (log MPN g-1dry soil) 2.4 ± 0.2 A 2.9 ± 0.2 A 3.9 ± 0.1 B* 3.5 ± 0.1 B* 4.1 ± 0.1 B* 3.7 ± 0.1 B* 

Denitrifiers (log MPN g-1dry soil) 5.4 ± 0.6 A 5.2 ± 0.1 A 5.8 ± 0.6 A 5.9 ± 0.1 B 5.5 ± 0.3 A 5.6 ± 0.2 A,B 

A-C, Homogeneous subsets within each paddy (A or B), as determined by the Tukey test at P<0.05; *, Significant differences between paddies A and B on 

basis of the two-sample t-test at P<0.05; **, Values from Lopes et al., submitted; #, Positive values indicate transformation of organic N forms into inorganic 

forms (total inorganic-N or NH4
+-N) and negative values indicate total inorganic-N or NH4

+-N immobilization. 
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Fig. 6.1 a) PCA biplot of distribution of physicochemical and biochemical soil properties in paddy A and B, over the rice cycle. b) PCA biplot of 

distribution of abundance of different microbial populations in paddy A and B, over the rice cycle. 

pH (pH in water); Wt, water content (%); % C, Total C (%); % N, Total N (%); Nit, total inorganic-N (mg N kg-1); NH4
+, NH4

+-N (mg NH4
+-N kg-1); Pt, total available-P (mg P kg-1); 

Pi, available inorganic-P (mg P kg-1); DEH, dehydrogenase activity (μmol INTF g-1 h-1); qCO2, microbial coefficient (µg CO2-C released mg-1 biomass carbon h-1); URE, urease 

activity ( μmol NH3 g
-1 h-1); BAA, BAA-protease activity (μmol NH3 g

-1 h-1); CAS, casein-protease activity (μmol tyrosine g-1h-1); NH4-Min, NH4
+-N mineralized (mg NH4

+-N kg-

110d-1); N-Min, total inorganic-N mineralized (mg inorganic-N kg-110d-1); aer Het, aerobic heterotrophs (log MPN g-1dry soil); anae Het, anaerobic heterotrophs (log MPN g-1dry 

soil); aer N2, aerobic diazotrophs (log MPN g-1dry soil); anae N2, anaerobic diazotrophs (log MPN g-1dry soil); aer Amo, aerobic ammonifiers (log MPN g-1dry soil); anae Amo, 

anaerobic ammonifiers (log MPN g-1dry soil) and Denit, Denitrifiers (log MPN g-1dry soil).  
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6.4.2 Variations in the microbial cultivable populations from paddy 

soils  

The cultivable populations constituted a small fraction of the total cells (< 0.002 

%). Based on a PCA it was possible to conclude that the composition of the 

cultivable microbial community was most distinct in April, in both paddies (Fig. 

6.1b and Table 6.2). Compared with the other samples, in April both paddies 

presented a higher abundance of aerobic heterotrophs and aerobic ammonifiers and 

less aerobic and anaerobic diazotrophs, explaining the variations found (Fig. 6.1b). 

On the other hand, compared with samples taken in April, the abundance of 

denitrifiers was higher in July, while that of anaerobic heterotrophs and 

ammonifiers was higher in September. These differences contributed to distinguish 

the cultivable populations according to the period of the annual rice cycle. 

 

6.4.3 Physicochemical and biochemical parameters correlated with the 

variations in the cultivable microbial populations 

Since the cultivable microbial populations varied over time, a CCA was performed 

with the objective of identifying the parameters that might be correlated with those 

variations (Fig. 6.2). The parameters analysed could explain 87.1 % of the variation 

of the cultivable populations, 83.3 % of which along axis 1. The abundance of 

aerobic heterotrophs and ammonifiers was strongly correlated with the activity of 

casein-protease and urease (0.921 and 0.895 inter-set correlations with axis 1, 

respectively) (Fig. 6.2a), and contributed to the differentiation of the April samples 

(Fig. 6.2b). In contrast, the abundance of aerobic and anaerobic diazotrophs, high 

in July and September, was negatively correlated with the activity of these 

enzymes. 
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Fig. 6.2 CCA biplot of the variation in the cultivable microbial population (MPN data) in paddy A and B (total inertia 0.018), over the rice cycle, 

with arrows indicating the corresponding explanatory variables (urease and casein-protease activity, pH and total C content). The species-

environmental correlation was 0.975 and 0.896 for axis 1 and 2 respectively. a) Representation of the microbial populations distribution. b) 

Representation of samples distribution. 
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6.4.4 Catabolic profiling of cultivable microbial populations and 

parameters correlated with its variation 

The CLPP analysis aimed to find out phenotypic variations of the microbial 

communities useful for a temporal and inter-paddy comparison. All the substrates 

tested supported the aerobic microbial growth in all the samples (Fig. 6.3). In spite 

of this, it was possible to observe some variations. The abundance of 

microorganisms growing aerobically at expenses of each substrate was slightly 

higher in AApr, which was reflected in the separation of these samples in the 

corresponding PCA biplot (Fig. 6.4). In contrast, the lowest abundance of 

microorganisms growing aerobically on most of the substrates occurred in the 

samples AJul and BJul, particularly in sample BJul. 

The biotic and abiotic parameters correlated with the variation of the CLPP profiles 

were identified using a CCA (Fig. 6.5). The parameters tested could explain 39.1 % 

of the variance found among the samples, 27.7 % of which over axis 1. The 

abundance of aerobic heterotrophs and soil water content (-0.766 and 0.838 inter-

set correlations with axis 1, respectively) were the parameters that contributed most 

to the separation of AApr from BApr,, AJul and BJul samples. The abundance of aerobic 

heterotrophs correlated positively with the abundance of microorganisms growing 

aerobically on organic acids and polymers, such as o-hydroxybenzoic acid, tween 

60, α-cyclodextrin, and glycogen, predominant in samples collected in September 

(ASep and BSep) and mainly in AApr. On the other hand, the comparatively higher 

values of water content in samples collected in BApr, AJul and mainly BJul, was 

negatively correlated with the abundance of aerobic heterotrophs (Table 6.2). 

According to the CCA, the most abundant aerobic microorganisms, gaining 

advantage in the periods of highest water content, used amines, aminoacids and 

carbohydrates, such as putrescine, L-asparagine, and cellobiose, in particular in 

paddy B. 
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Fig. 6.3 Catabolic profiling data. Density of microorganisms in soil from paddy A and B 

growing in the tested substrates, over rice cycle, all the values are means ± standard 

deviation (n=3). 

Cyclod: α-cyclodextrin; Glycog: glycogen; Tw80: Tween 80; Tw60: Tween 60; Gluc: α-D-glucose-1-phosphate; 

PheEthAm: β-phenyl ethylamine; Put: putrescine. Cellob: D-(+) cellobiose; GluAm: N-acetyl-D-glucosamine; Lac: 

α-lactose; Xyl: D-(+) xylose; MetGlu: β-methyl D-glucoside; Malt: maltose; Eryth: i-erythritol; Gly: 

glyceraldehyde. Phe: L-phenylalanine; Glu: L-glutamic acid; Thr: L-threonine; Asn: L-asparagine; Arg: L-arginine; 

Ser: L-serine. Galactur: galacturonic acid; GalLact: D-galactonic acid δ-lactone; Malon: malonic acid; Mal: malic 

acid; Ketobut: α-keto butyric acid; o-OHBenz: o-hydroxybenzoic acid; p-OHBenz: p-hydroxybenzoic acid. 
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Fig. 6.4 PCA biplot of the catabolic profiling data, density of microorganisms in soil from 

paddy A and B growing in the tested substrates, over rice cycle. 
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Fig. 6.5 CCA biplot of the variation in catabolic microbial activity (CLPP data) in paddy A and B (total inertia 0.016), over the rice cycle, with 

arrows indicating the corresponding explanatory variables (water content, abundance of aerobic heterotrophs, pH and total inorganic-N). The 

species-environmental correlation was 0.946 and 0.876 for axis 1 and 2 respectively. a) Representation of samples distribution. b) Representation 

of the C substrates distribution.  
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6.4.5 Bacterial community structure and composition and parameters 

correlated with its variation 

The pattern of variation of the bacterial community was assessed based on PCA of 

DGGE patterning (all samples) and 454-pyrosequencing (April and September) 

(Figs 6.6a and b). These analyses showed consistently the distinction of the 

structure and composition of the bacterial communities of both paddies, at each 

stage of the crop rotation.  

CCA were performed to assess which were the biotic and abiotic soil parameters 

most related with the observed variation of the bacterial community structure and 

composition. Regarding the DGGE analysis, the parameters tested explained 33.4 

% of the total variation (Fig. 6.7a). The higher content of available inorganic-P 

observed in April in paddy B than in paddy A (Table 6.2) was strongly correlated (-

0.884 inter-set correlation with axis 1) with the distinction of the bacterial 

communities of both paddies. On the other hand, the higher abundance of 

anaerobic diazotrophs in July and September than in April, and of NH4
+
-N 

produced by mineralization and urease activity in April (-0.670, 0.789, and 0.808 

inter-set correlations with axis 2, respectively) contributed to the separation of the 

samples over the rice cycle. 

A similar multivariate analysis based on the 454-pyrosequencing data, explaining a 

total variation of 29.3%, identified different soil parameters correlated with the 

variation among the samples (Fig. 6.7b). This may have been due to the fact that 

the July communities were not included in this analysis. In this case, the higher 

total C content in paddy B than in paddy A and the highest abundance of aerobic 

heterotrophs in April, mainly in paddy A, were the parameters that most 

contributed to the separation of the samples from both paddies (-0.826 and 0.818 

inter-set correlations with axis 1, respectively). The aerobic heterotrophs were 

positively correlated with OTUs affiliated to Bacteroidetes (Flavobacteriales and 

Sphingobacteriales), Alphaproteobacteria (Caulobacterales, Rhizobiales, 
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Rhodospirillales and Sphingomonadales), and Actinobacteria (Acidimicrobiales 

and Actynomicetales) (Table 6.2). In contrast, the total C soil content was 

negatively correlated with these OTUs, and positively with OTUs affiliated to 

Bacteroidetes (Bacteroidales), Chlorobi and Chloroflexi (in particular, 

Anaerolineae) (Table 6.2). On the other hand, the highest abundance of anaerobic 

diazotrophs in September, and the highest activity of BAA-protease (Table 6.2) in 

April (-0.914 and 0.898 inter-set correlations with axis 2, respectively) contributed 

also to distinguish the samples collected in these sampling periods (rice cycle). The 

abundance of anaerobic diazotrophs was positively related to the OTUs affiliated to 

Chloroflexi (Ellin6529), Actinobacteria (Acidomicrobiales and Actinomycetales), 

Alphaproteobacteria (Rhizobiales and Rhodospirilales) and Betaproteobacteria 

(Table 6.2). The potential activity of BAA-protease was positively related to OTUs 

affiliated to Alphaproteobacteria (Rhizobiales), Actinobacteria (Actinomycetales) 

Bacteroidetes (Sphingobacteriales and Bacteroidales), and Chloroflexi (in 

particular, Anaerolineae). Interestingly, these discriminatory parameters were also 

positively correlated with variations of OTUs affiliated to Gemmatimonadetes and 

Acidobacteria, mainly “Solibactereales”, observed to represent “core” populations, 

i.e., always present although in variable proportions (Lopes et al., submitted). 
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Fig. 6.6 a) PCA biplot of variation in the bacterial community structure and composition (DGGE profiling data) in paddy A and B, over rice 

cycle. b) PCA biplot of variation in the bacterial community structure and composition (pyrosequencing data) in paddy A and B, in April and 

September. 
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Fig.6.7 CCA biplot of the variation in the structure and composition of bacterial communities of paddy A and B over the rice cycle, with arrows 

indicating the corresponding explanatory variables. a) DGGE profiling data (total inertia 1.504; explanatory variables were available inorganic- 

P, urease activity, NH4
+
-N mineralization and abundance of anaerobic diazotrophs). The species-environmental correlation was 0.959 and 0.922 

for axis 1 and 2, respectively. b) pyrosequencing data (samples of April and September; total inertia 0.88; explanatory variables were total C, 

abundance of aerobic heterotrophs and anaerobic diazotrophs, and BAA-protease activity) The species-environmental correlation was 0.992 and 

0.993 for axis 1 and 2 respectively. 
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Table 6.3  Affiliation number and abundance of OTUs with correlations above 0.4 with axis 1, i.e., with abundance positively correlated with 

total carbon content (% C) or abundance of aerobic heterotrophs (aer Het) and with axis 2, i.e., with abundance positively correlated with BAA-

protease activity (BAA) or abundance of anaerobic diazotrophs (anaer N2) of the CCA analysis of the 16S rRNA gene pyrosequencing data. 

    Number and abundance (%) of OTUs   

Domain Phylum Class Order AApr ASep  BApr BSep Correlated parameter  

Total number 

of OTUs 

Bacteria       1 0 1 0 BAA 1 

 Acidobacteria   0 1 3 3 % C 3 

  Acidobacteria Acidobacteriales 11 10 8 6 aer Het 11 

    6 7 8 8 % C 8 

    5 0 5 3 BAA 5 

      2 4 3 4 anaer N2 4 

  "Solibacteres" "Solibacterales" 10 6 1 2 aer Het 10 

    6 11 11 11 % C 11 

    4 2 8 3 BAA 8 

      3 9 3 7 anaer N2 9 

 Actinobacteria     1 0 0 0 aer Het 1 

  Acidimicrobiia Acidimicrobiales 9 4 2 4 aer Het 9 

    1 1 1 1 % C 1 
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Table 6.3 Continued 

    Number and abundance (%) of OTUs   

Domain Phylum Class Order AApr ASep  BApr BSep Correlated parameter  

Total number 

of OTUs 

Bacteria Actinobacteria Acidimicrobiia Acidimicrobiales 0 0 1 0 BAA 1 

      1 6 1 4 anaer N2 6 

  Actinobacteria Actinomycetales 11 2 2 1 aer Het 11 

    0 1 1 1 % C 1 

    1 1 2 1 BAA 2 

    1 4 2 3 anaer N2 4 

 Bacteroidetes Flavobacteriia Flavobacteriales 4 3 1 2 aer Het 4 

       0 0 1 0 BAA 1 

  Sphingobacteriia Sphingobacteriales 47 17 10 5 aer Het 47 

    1 1 1 1 % C 1 

    3 1 5 2 BAA 5 

      0 4 0 2 anaer N2 4 

  Bacteroidia Bacteroidales 2 2 2 2 % C 2 

    2 0 4 0 BAA 4 

    0 1 0 1 anaer N2 1 

 Chlorobi   2 3 5 5 % C 5 
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Table 6.3 Continued 

    Number and abundance (%) of OTUs   

Domain Phylum Class Order AApr ASep  BApr BSep Correlated parameter  
Total number 

of OTUs 

Bacteria Chlorobi     0 0 2 0 BAA 2 

 Chloroflexi   1 0 0 0 aer Het 1 

    1 0 1 0 BAA 1 

    1 4 0 2 anaer N2 4 

  Anaerolineae   2 0 0 0 aer Het 2 

    2 5 8 8 % C 8 

    0 0 2 0 BAA 2 

    0 2 0 0 anaer N2 2 

   Anaerolineales 0 1 2 2 % C 2 

    0 0 2 0 BAA 2 

    0 1 0 0 anaer N2 1 

  "Ellin6529"   10 5 3 3 aer Het 11 

    0 1 1 1 % C 1 

      1 6 1 3 anaer N2 6 

 Firmicutes Clostridia  1 1 0 0 aer Het 1 

   Clostridiales 0 3 0 0 anaer N2 3 
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Table 6.3 Continued 

    Number and abundance (%) of OTUs   

Domain Phylum Class Order AApr ASep  BApr BSep Correlated parameter  

Total number 

of OTUs 

Bacteria Gemmatimonadetes "Gemm-1"   4 2 1 1 aer Het 4 

    2 2 1 2 anaer N2 2 

  Gemmatimonadetes   3 1 1 0 aer Het 3 

    0 1 1 1 % C 1 

    2 1 2 2 BAA 2 

    1 2 1 1 anaer N2 2 

 Proteobacteria Alphaproteobacteria  10 3 2 2 aer Het 10 

    1 1 1 1 BAA 1 

    1 1 1 1 anaer N2 1 

   Caulobacterales 5 3 1 2 aer Het 5 

    1 1 1 1 BAA 1 

   Rhizobiales 10 7 4 5 aer Het 10 

    2 2 3 3 % C 3 

    6 1 6 3 BAA 6 

     1 2 1 2 anaer N2 2 

   Rhodobacterales 2 1 1 1 aer Het 2 
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Table 6.3 Continued 

    Number and abundance (%) of OTUs   

Domain Phylum Class Order AApr ASep  BApr BSep Correlated parameter  

Total number 

of OTUs 

Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales 8 5 3 2 aer Het 8 

    0 1 1 1 % C 1 

    1 0 1 0 BAA 1 

     0 3 1 1 anaer N2 3 

   Rickettsiales 1 0 0 0 aer Het 1 

     1 3 1 1 anaer N2 3 

   Sphingomonadales 16 9 5 6 aer Het 16 

    1 0 1 0 BAA 1 

  Betaproteobacteria  1 0 0 0 aer Het 1 

     0 3 0 1 anaer N2 3 

   Burkholderiales 1 0 0 0 aer Het 1 

    1 0 1 0 BAA 1 

    0 1 0 0 anaer N2 1 

  Deltaproteobacteria   1 2 0 0 anaer N2 2 

   Bdellovibrionales 0 1 0 0 anaer N2 1 

   Desulfuromonadales 0 1 0 0 anaer N2 1 
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Table 6.3 Continued 

    Number and abundance (%) of OTUs   

Domain Phylum Class Order AApr ASep  BApr BSep Correlated parameter  

Total number 

of OTUs 

Bacteria Proteobacteria Deltaproteobacteria Myxococcales 2 0 0 0 aer Het 2 

     0 1 0 0 anaer N2 1 

  Gammaproteobacteria Methylococcales 0 1 0 0 anaer N2 1 

  Verrucomicrobia Opitutae "Cerasicoccales" 0 0 1 0 BAA 1 

 

  abundance  (sum  the % of individual OTUs)= 0   

  abundance (sum the % of individual OTUs) > 0 and < 0.1  

  abundance (sum the % of individual OTUs) > 0.1 and < 0.5  

  abundance (sum the % of individual OTUs) > 0.5 and < 1  

  abundance (sum the % of individual OTUs) >  1   
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6.5 Discussion 

In a previous study based on 16S rRNA gene 454-pyrosequencing analysis, it was 

observed that the stage of alfalfa-rice crop rotation and the rice cropping cycle 

influenced the structure and composition of the bacterial community (Lopes et al., 

submitted). The current study aimed to get further insights into the factors that may 

be responsible for/or resultant of such community variations, regarding microbial 

activity and external factors, over the rice cycle or crop rotation stage. The 

combination of 454-pyrosequencing, DGGE and cultivation based methods seemed 

the best approach to fulfil the proposed objectives. The 454-pyrosequencing and 

DGGE community analyses based on the 16S rRNA gene sequence were in good 

agreement and the measurement of the functional activities of the communities 

gave an important input for the interpretation of the culture-independent methods. 

As expected, bacterial community variations could be correlated with the catabolic 

profiles, enzymatic activity and abiotic parameters. Different factors seem to be 

determinant in shaping the microbial communities over the rice cycle or when the 

paddies are under different stages of crop rotation. Correlations between the 

availability of nutrients and oxygen, physiological microbial groups and bacterial 

diversity were clear and well sustained. 

 

6.5.1 Variations over the rice cycle 

Culture dependent and culture independent methods allowed the distinction of the 

structure and composition of the bacterial communities of April from those of the 

other periods, in samples A and B (Figs 6.1b and 6.6). At this sampling period, 

significant positive correlation between the aerobic heterotrophic population and 

proteolytic activity and the 16S rRNA gene-based bacterial community structure 

and composition were observed (Figs 6.7 a or b). According to the multivariate 

analysis, members related with Bacteroidetes-Sphingobacteriales/Bacteroidales, 

Alphaproteobacteria-Rhizobiales, Actinobacteria (Actinomycetales) and 
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Chloroflexi-Anaerolineae could have been involved in the soil proteolytic activity. 

Excepting the members of the last group, which were only present in BApr, all the 

other, although present in both paddies, were, in general, in higher number in BApr 

than in AApr. These differences may explain the higher proteolytic activity 

determined in paddy B than in paddy A. The activities of both proteases (casein 

and BAA) and urease were associated with the microbial coefficient (qCO2), 

probably due to the intense microbial activity occurring in April, eventually 

contributing to the transformation of complex into simpler organic N-compounds 

before flooding.  

In addition, in the subsequent periods fixed atmospheric N2 was likely incorporated 

in the soil N pool. Indeed, the soils NH4
+
-N content in July and September was 

higher than in April (Table 6.2). On the other hand, in July and September, strong 

positive correlations between the cultivable diazotrophic populations and OTUs 

affiliated to taxonomic groups described as comprising N2 fixing members 

(Chloroflexi-Ellin6529, Actinobacteria-Acidomicrobiales/Actinomycetales, 

Betaproteobacteria and Alphaproteobacteria-Rhizobiales /Rhodospirilales) (Dos 

Santos et al. 2012; Gaby and Buckley 2011) (Figs 6.1b and 7), suggest the 

enrichment of paddy soils in NH4
+
 from N2. Indeed, this transformation represents 

the most important source of N for rice plants (Arima 1978; Arima and Kumazawa 

1977), explaining its intensification only when rice plants were present. This 

hypothesis is supported by other studies which report the increase of diazotrophic 

populations over the rice plants growth towards maturation, in particular in rice 

rhizosphere (Ikenaga et al. 2003; Knief et al. 2012; Watanabe et al. 1979). Thus, as 

suggested before (Kundu and Ladha, 1995), diazotrophs may have contributed to 

replenish the total N content of rice paddies and consequently improved the NH4
+
 

bioavailability. On the other hand, the flooding conditions maintained over rice 

growth (in particular in July), could have decreased the loss of ammonia via 

volatilization (Overrein and Moe 1967), maintaining high levels of NH4
+
-N

 
in 

paddy fields. 
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These kind of seasonal variations find good support on the rice crop management, 

since in April the paddies were still under upland conditions, and thus, with a 

higher degree of oxygenation than in the later sampling periods. Indeed, it is well 

described that the rapid oxygen depletion caused by flooding induces changes on 

the soil microbial populations of rice paddies (Kikuchi et al. 2007; Noll et al. 2005; 

Shrestha et al. 2009), which are probably correlated with functional adjustments of 

the communities. For instance, Shrestha et al. (2009) observed a higher abundance 

of transcripts related to carbohydrates, amino-acids and lipids metabolism under 

oxic than under anoxic conditions in paddy soils. 

 

6.5.2 Variations related with the crop rotation stage 

The crop rotation stage imposed significant alterations in the structure and 

composition of the bulk soil communities, which were mainly related with 

differences in the total C- and available inorganic-P contents (Fig. 6.7). Phosphorus 

availability has been described as a major driver of differences on bacterial 

community structure and composition among soils with similar pH (Kuramae et al. 

2011). In addition, soil C content and availability have been described as important 

factors shaping soil bacterial communities (Ausec et al. 2009; Fierer et al. 2007a). 

In spite of the differences in the bacterial community revealed by culture 

independent techniques, cultivation methods showed mild variations associated 

with the crop rotation stage. Indeed, although the bulk soil cultivable populations 

corresponding to the samples of 3
rd

 and 4
th

 years of the rotation cycle were 

distinguishable, clustered mainly by sampling period (Fig. 6.1b).  

In general, it was in April that the effect of the crop rotation stage was more 

notorious. It is important to remember that in April both paddies were being 

prepared for rice cultivation, but whereas paddy A (3
rd

 year of the rotation) had 

been cultivated with alfalfa for two years, paddy B (4
th

 year of the rotation) was 

planted with rice in the previous year, and was organically and inorganically 

amended during field preparation. At this period, not only 16S rRNA gene 
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community patterning but also the catabolic profiling allowed a clear distinction of 

the microbial populations of both paddies. Paddy A contained the highest number 

of organisms growing aerobically on the tested single C sources (Fig. 6.4). The use 

of complex substrates (o-hydroxybenzoic acid, tween 60, α-cyclodextrin, and 

glycogen) was positively correlated with the highest number of aerobic 

heterotrophs in AApr (Fig. 6.5). Consistent with this observation, was the strong 

correlation between the aerobic populations and the bacterial community structure 

and composition of paddy A in April (Fig. 6.7b). Indeed, the high abundance of 

aerobic heterotrophs in this paddy and period was correlated with different OTUs 

affiliated to groups comprising presumable aerobic organotrophs, such as 

Bacteroidetes (Flavobacteriales and Sphingobacteriales), Alphaproteobacteria 

(Caulobacterales) and Actinobacteria (Actinomycetales). Such organisms, which 

have been described as being involved in the degradation of complex organic 

matter (e.g., cellulose, hemicellulose and lignin) (Berg and McClaugherty 2008; 

DeAngelis et al. 2011), may have contributed to the degradation of alfalfa debris 

(in particular, roots) present in aerated bulk soil in April, in paddy A. 

Compared to paddy A, in April, paddy B presented higher water content and a 

lower number of aerobes using single C substrates (Fig. 6.4). On the other hand, 

OTUs of presumably anaerobic organotrophic members (Bacteroidetes-

Bacteroidales, Chlorobi and Chloroflexi-Anaerolineae) were strongly positively 

correlated with the soil total C content and were determinant for distinguishing the 

bacterial community structure and composition of paddy B. These coincidences 

may suggest that the higher water content in paddy B was associated with a lower 

oxygenation of the soil. Thus, it could be hypothesized that the effectiveness in 

restoring the soil oxygenation may be limited in the last year (4
th

) of the crop 

rotation. 

Interestingly, not only the number, but also the type of single C sources 

preferentially used (amino acids, amines and carbohydrates) was different in 

samples BApr and AApr, with the catabolic profile of BApr closer to those of AJul and 



-  A polyphasic assessment of the effect of an alfalfa-rice rotation system and crop cycle on the paddy soil bacterial community structure 

and function 

169 

BJul (Fig. 6.5). Therefore, it can be hypothesized that the higher water content in 

paddy B may have been unfavourable for the degradation of more recalcitrant 

carbon sources, such as lignin (enriched in phenolic compounds), which 

biodegradation is particularly dependent on the oxygen availability (Berg and 

McClaugherty 2008). An additional interpretation is that the available organic 

compounds in April in paddy A were distinct from those in paddy B. Considering 

such hypothesis, the organic compounds available in April in paddy B, would be 

similar to those found in July in both paddies, i.e., those probably resultant from 

rice root exudates, which highest production occurs near the maximum tillering 

stage (July) (Ikenaga et al. 2003). In fact, in April, paddy B, but not in paddy A, 

could have rice residues resultant from the incorporation in soil of rice stubble after 

harvesting in the previous year, and contained an organic amendment. The 

abundance of organic compounds, derived from both sources, may have stimulated 

the intense proteolytic activity in paddy B, explaining the availability of N-

containing organic compounds, such as amino acids and/or amines supporting the 

growth of aerobic populations in BApr samples.  

In paddy B in April, probably due to the low oxygen availability referred to above, 

the anaerobic degradation of N-containing organic compounds was also relevant. 

Therefore, not only presumable aerobic (Alphaproteobacteria-Rhizobiales, 

Bacteroidetes-Sphingobacteriales, Actinobacteria-Actinomycetales), but also 

anaerobic (Bacteroidetes-Bacteroidales, Chloroflexi-Anaerolineae) bacteria may 

have been involved in the degradation of N-containing organic compounds. Indeed, 

BAA-protease activity was strongly positively correlated with those lineages. The 

anaerobic decomposition of organic matter in paddy soils may be disadvantageous 

since can lead to the accumulation of reduced compounds, capable of hampering 

rice plants N-uptake (Kundu and Ladha, 1995). Such a phenomenon may have 

contributed for the lower rice yield of paddy B compared to A. Therefore, rice-

farming techniques favouring the maintenance of catabolic active aerobic 

populations are advisable.  
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The development and application of culture-independent methods (e.g., 16S rRNA 

gene clone libraries), in the 1980's, showed that the bacterial diversity is far beyond 

what, so far, is identified and available in the culture collections (Janssen 2006; 

Keller and Zengler 2004; Rappé and Giovannoni 2003). Indeed, while in 1987, 

Woese proposed 11 major groups or bacterial lineages, nowadays 30 phyla are 

known and more than 23 candidate phyla have been proposed based on 16S rRNA 

gene sequences analysis (e.g., TM7, OP3, OP11) (Keller and Zengler 2004; Rappé 

and Giovannoni 2003). Culture-independent methods not only revealed that only a 

very small fraction of the bacterial diversity is known, but also demonstrated that 

some organisms, which were frequently recovered using cultivation methods, are 

not the most representative in the environment. Regarding soil microbiota, 

cultivable bacteria, such as members of the genera Agrobacterium, Alcaligenes, 

Bacillus, Flavobacterium, Pseudomonas, Streptomyces, considered very important 

community members, were, after all, not representative of the total soil diversity 

(Janssen 2006). In the last decade, the high throughput sequencing techniques (e.g., 

454-pyrosequencing) (Mardis 2008) strengthen the idea that much of the bacterial 

diversity is still unknown, not only at the phylum level, but also beneath. Indeed, 

even phyla well represented in bacterial diversity studies, such as Proteobacteria, 

still contain numerous unknown lineages. Moreover, given the capability of these 

techniques to analyse simultaneously a large number of samples, some phyla, 

considered rare few years ago, such as Acidobacteria and Gemmatimonadetes, are 

now considered phylogenetically diverse and ubiquitous in soils (in particular, 

Acidobacteria) (DeBruyn et al. 2011; Jones et al. 2009; Kielak et al. 2008b). Thus, 

currently, despite the known heterogeneity and diversity of soil matrices, the phyla 

Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, Bacteroidetes, 

Chloroflexi, Planctomycetes, Gemmatimonadetes and Firmicutes are considered 

the most abundant in soil habitats (Eilers et al. 2012; Janssen 2006; Roesch et al. 

2007). Nevertheless, the ecology of soil microbiota is rather complex and the 

occurrence of other groups as well as the abundance of each of those lineages vary 

with the biotic and abiotic conditions prevailing in each soil ecosystem (Ausec et 
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al. 2009; Kuramae et al. 2011; Kuramae et al. 2012; Lauber et al. 2009; Ulrich and 

Becker 2006) (Chapters 5 and 6). 

The agriculture activity has been reported to induce changes in, for example, the 

physicochemical soil properties (e.g., lower organic matter content when compared 

with uncropped soils) (Haynes and Tregurtha 1999; Jangid et al. 2011; Trasar-

Cepeda et al. 2008), on the structure and composition of bacterial communities 

(Crecchio et al. 2004; Jangid et al. 2011; Roesch et al. 2007; Stark et al. 2008; van 

Diepeningen et al. 2006), and also on the activity of bacterial communities (Degens 

et al. 2001; Nsabimana et al. 2004). The influence of agriculture management on 

the soil bacterial communities was explored at different levels and using different 

tools in Chapters 3, 5 and 6. It was observed that the continuous application of 

synthetic plant protectors and fertilizers in rice cultivation under conventional 

farming induced changes on the bacterial community structure and composition of 

paddy soils (Chapter 3). On the other hand, the presence of rice plants 

(cropped/uncropped), the type of plant debris (stage of rotation), and growth phase 

of the rice plants (annual rice cycle) were correlated with variations on the 

structure and composition of the bacterial communities of paddy soils and their 

biochemical activities (Chapters 5 and 6). Arguably, other factors may be involved 

in the observed changes. Indeed, seasonal changes on the bacterial community 

composition of soils under organic farming, irrespectively of rice monoculture 

(Chapter 3) or rice rotation with alfalfa (Chapters 5 and 6), were observed in the 

present study, and were also described by other authors (Chen et al. 2012; Kikuchi 

et al. 2007; Lüdemann et al. 2000; Noll et al. 2005). However, curiously, such 

changes were not observed under conventional management (Chapter 3). This may 

suggest that this pesticide attenuated possible variations on the type and/or 

abundance of the organisms otherwise observed over the annual rice cycle. 

Among the variables studied in soils under organic farming, the presence of rice 

plants stood out as the major factor contributing to shape the structure and 

composition of bulk soil bacterial communities. The absence of rice crop promoted 
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an increase of the bacterial diversity. Similar conclusions were previously retrieved 

from studies performed in lysimeters with unplanted and planted (grass and forb 

species) upland soils (Zul et al. 2007). These studies demonstrate that plants 

growth shapes the structure and composition of bacterial communities not only on 

the rhizosphere, as previously reported (Berg and Smalla 2009; Ikenaga et al. 2003; 

Lu et al. 2006) but also on the bulk soil.  

The bacterial community is extremely important to the maintenance of soil 

functional activity due to the role of the organisms on soil biogeochemical cycles 

(Emerson et al. 2010; Falkowski et al. 2008; Gaby and Buckley 2011; Ghosh and 

Dam 2009; Hanson and Hanson 1996; Hohmann-Marriott and Blankenship 2011; 

Zumft 1997), soil architecture (Maier and Pepper 2009), interaction with plants 

(Gomes et al. 2010; Little et al. 2008) and capacity to respond to induced stresses 

(Degens et al. 2001). Studies on the soil bacterial community composition and 

structure are, thus, important. Studies based on the 16S rRNA gene sequence 

analyses are very popular in this respect. This phylogenetic marker gives an 

indication of the diversity in the soil, and since activity is not inferred using this 

tool, the relative abundance offers a perspective of the most relevant lineages under 

specific conditions or at a given time. Therefore, even if part of the identified 

organisms is not active at a given period, they can be stimulated and become active 

under particular (yet, important) situations. This rationale explains the successional 

variations in paddy soils bacterial communities, reported in the rhizosphere 

(Ikenaga et al. 2003; Lu et al. 2006), associated with plant debris degradation 

(Akasaka et al. 2003; Asari et al. 2007; Rui et al. 2009), or under oxygenation 

gradients (Lüdemann et al. 2000; Noll et al. 2005; Shrestha et al. 2007). It is not 

mandatory that these transitions involve closely related bacteria, since important 

metabolic activities (e.g. nitrogen fixation or polymer degradation) are 

phylogenetically widespread (Berg and McClaugherty 2008; Buckley et al. 2007; 

Dos Santos et al. 2012; Eichorst and Kuske 2012), or can be acquired by horizontal 

gene transfer (Dröge et al. 1999; Ma et al. 2006). Indeed, the same function can be 

conducted by different lineages, depending on the environmental conditions (e.g., 
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temperature, availability of a particular nutrient) (Liu and Conrad 2011; Rui et al. 

2009; Scheid et al. 2004; Shi et al. 2011). This observation clearly emphasizes the 

importance of environmental conditions in ecological succession of bacterial 

communities. In the present study, bacterial community succession and functional 

redundancy were demonstrated in different occasions. The first evidence of 

functional redundancy was given by the similar functional microbial activity 

observed over the annual rice cycle under both agriculture managements 

(conventional and organic, respectively), despite the differences on the bacterial 

community structure and composition (Chapter 3). The ability of autochthonous 

microbial communities from non contaminated soil to degrade the herbicide 

molinate (Chapter 4) is also an example. Although molinate hydrolysis in soil was 

not via molinate hydrolase (MolA) activity (Duarte et al. 2011), suggesting the 

absence of indigenous bacteria related to Gulosibacter molinativorax, other 

organisms were capable of molinate degradation. These results suggest the 

existence of a diverse metabolic pool, which allows the soil bacterial communities 

to respond to different environmental stimuli.  

The effect of different pesticides on the microbial community structure and 

activities may be transient (Chen et al. 2009; Das and Mukherjee 2000; El-Ghamry 

et al. 2001; Saison et al. 2009) (Chapter 4). However, the continuous application of 

these compounds may induce long-lasting changes in the bacterial community 

composition of paddy soils, though microbial functional activity is not affected, as 

was revealed in the present study (Chapter 3). The effect of the rotation stage 

(different upland crops in rotation with rice) has been described to shape the 

bacterial communities in paddy fields (Chen et al. 2012; Xuan et al. 2012), 

although no detailed characterization of the bacterial communities was available. 

To the best of our knowledge this study is the first reporting a thorough 

characterization of the bacterial communities under an alfalfa-rice rotation system. 

Furthermore, the present study goes further demonstrating that the change in the 

ratio and composition of aerobic and anaerobic heterotrophs may be important in 

shaping the paddy microbial responses to specific nutrients (changing its catabolic 
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profiling) (Chapters 5 and 6). These changes may be related to the decrease in rice 

productivity observed from the 1
st
 to the 2

nd
 year of rice production (respectively 

3
rd

 and 4
th
 years of the crop rotation). The higher water content (in paddy B in the 

4
th

 year of the crop rotation) and low efficiency in soil aeration between rice crops, 

under fallow period, may have induced less oxidative conditions in the 2
nd

 year of 

rice production than in the 1
st
. This condition could have been associated with the 

accumulation of reduced compounds which strongly inhibit the N-uptake by plants 

(Berg and McClaugherty 2008; Kundu and Ladha 1995). These findings support 

the recommendation of rice-farming techniques that favour the maintenance of the 

catabolic active of aerobic populations. 
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The main conclusions of this work can be summarized as follows: 

 Under organic farming, including under alfalfa-rice crop rotation, were 

observed changes of the bacterial community structure, composition and function 

over the annual rice cycle. However, under conventional farming, only changes on 

the functional activity were observed. These results demonstrate soil microbial 

functional redundancy; 

 The presence (growth) of rice crop, more than the crop rotation stage or the 

period of the rice cycle, influenced the structure and composition of the bulk soil 

bacterial community. In comparison with cropped soils, the uncropped area 

presented higher bacterial diversity, with the raise of lineages such as Chloroflexi 

("Ellin 6529"), Acidobacteria-2, AD3, and Nostocaceae, outcompeted in cropped 

soils; 

 Over the rice cycle, the major microbial functions of the bulk paddy soil 

were i) the organic matter degradation (microbial coefficient and proteolytic 

activity), intense before rice seeding, i.e., under upland conditions, and ii) N2 

fixing, strongly associated with rice plants growth, i.e., under flooded conditions. 

The former was associated with Sphingobacteriales, Rhizobiales, Actinomycetales, 

Bacteroidales and Anaerolineae, whereas the later was related with high 

abundance of cultivable diazothrophs and Chloroflexi-Ellin6529, Actinobacteria-

Acidomicrobiales/Actinomycetales, Betaproteobacteria and Alphaproteobacteria-

Rhizobiales/Rhodospirilales lineages. OTUs affiliated to Gemmatimonadetes and 

Acidobacteria, in particular "Solibacteres", were probably involved in both 

functions;  

 In addition, over the rice cycle there was an increase of members affiliated 

to Nitrospira;  

 Crop rotation stage affected the ratio of aerobic:anaerobic heterotrophic 

cultivable populations, mainly before rice seeding, presumably favouring the 

development of lineages such as Caulobacterales, Sphingobacteriales, 
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Flavobacteriales and Actinomycetales, more notorious in the first year of rice 

cultivation. In the 2
nd

 year of rice cropping was observed a higher content of water, 

total C and available inorganic-P, which in combination of the organic amendments 

and/or rice debris, may have supported the proliferation of presumable anaerobic 

members Bacteroidales, Chlorobi and Anaerolinea, but not of cultivable aerobic 

heterotrophs; 

 Different aerobic catabolic profiles of soils were observed at the 1
st
 and the 

2
nd

 year of rice cultivation, presumably due to the dynamics of the microbial 

communities. The high abundance of aerobic heterotrophs was correlated with the 

degradation of complex nutrients, while low levels of aerobic heterotrophs were 

correlated with the degradation of amino acids, amines and sugars; 

 The most abundant phyla in organically farmed paddy bulk soil under 

alfalfa-rice crop rotation system were Acidobacteria, Proteobacteria, Chloroflexi, 

Actinobacteria and Bacteroidetes; and the most abundant families were 

Sphingomonadaceae, "Solibacteraceae" and "Koriobacteraceae"; 

 Molinate was removed from contaminated rice paddy soils using both 

natural attenuation and bio-augmentation methods; 

 A bioaugmentation process involving mixed culture DC was demonstrated 

as a feasible solution to remediate soils contaminated with molinate, since the 

autochthonous bacterial community was not disturbed and the removal of the 

contaminant was faster/more extensive than that obtained with the autochthonous 

community. 
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Fig. 8.1 Scheme of the major conclusions of the present study. 
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The present study gave important clues about the effect of different rice production 

managements on the bacterial structure and composition and microbial functional 

activity, in paddy soils. In particular, brought some glimpses about the bacterial 

lineages inhabiting paddy soils under alfalfa-rice rotation system, the changes in 

the bacterial community and structure and the correlation of some lineages with 

biological activities occurring before and after flooding. Yet, some other questions 

that should be addressed in further studies have emerged in parallel with the 

conclusions: 

 An increase in the abundance of the diazotrophic population over the rice 

cycle independently of the stage of the alfalfa-rice rotation stage was observed in 

the present study. Additional research is necessary to conclude if the stage of the 

alfalfa-rice rotation influenced the diversity and abundance of the diazotrophic 

populations. This study is undergoing. 

 The present study demonstrated that rice cropping induces significant 

changes in the diversity of bacterial communities. However, it remains unclear if 

such changes were accompanied by alterations of the microbial activities in the 

uncropped soils. This study is undergoing.  

 Given the important role of some microbial lineages, such as Archaea or 

anammox, on the biogeochemical cycles (e.g., ammonia oxidation and 

methanogenesis), the assessment of the abundance and activity of these organisms 

using targeted approaches (e.g. qPCR) would bring additional information on the 

influence of the agriculture management on these soil activities. 

 In spite of the comprehensive snapshot of the major activities occurring in 

paddy soils under alfalfa rice rotation system and over the annual rice cycle, many 

other soil functions were not studied. A transcriptomic approach assessing the 

major metabolic activities occurring over rice cycle and at the different stages of 

the crop rotation would be helpful to have a thorough characterization of the role of 

some members in the soil functional activity. Such science based data would be 

crucial for a sustainable rice production. 
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