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SYNOPSIS

This paper concerns the finite element (FE) modeling of anisotropic laminated shells. A dis-
crete layer approach is employed in this work and a single layer is first considered and iso-
lated from the multilayer shell structure. The weak form of the governing equations of the
anisotropic single layer of the multilayer shell is derived with Hamilton’s principle using a
”mixed” (stresses/displacements) definition of the displacement field, which is obtained through
a semi-inverse (stresses/strains-displacements) approach. Results from 3-D elasticity solutions
are used to postulate adequate definitions of the out-of-plane shear stress components, which,
in conjunction with the Reissner-Mindlin theory (or first order shear deformation theory) de-
finitions of the shell in-plane stresses, are utilized to derive the ”mixed” displacement field.
Afterward, the single layer shell FE is ”regenerated” to a 3-D form, which allows interlayer
displacements and out-of-plane stresses continuity between adjacent interfaces of different lay-
ers to be imposed, and a multilayer shell FE is obtained by assembling, at an elemental FE
level, all the ”regenerated” single layer FE contributions. A fully refined shell theory, where
displacement and full out-of-plane stresses continuity and homogeneous stress conditions on
the top and bottom surfaces are assured, is conceptually proposed, and a partially refined shell
theory, where the out-of-plane normal stress continuity is relaxed and a plane stress state is con-
sidered, is developed and used to derive a FE solution for segmented multilayer doubly-curved
anisotropic shells.

INTRODUCTION

In the last decades composite laminated structures have been vastly used in high-tech applica-
tions for the aerospace, aeronautical and automotive (among others) industries. In the mean
time, a relative maturity in the adequate modeling and design of those complex structures has
been achieved. However, with the ever increasing strong demands of lighter, stiffer, lower cost
and more efficient and reliable structural composite components, the structural designers are
faced nowadays with the requirement of having at their disposal refined and more accurate
multiphysics models of those complex layered structures. That problem pushes the underlying
complexity of these models to higher levels. Thus, allied with the ever increasing processing
capabilities of modern computers, the 21st century has emerged with a ”new” challenge for sci-
ence, which demands the development of new, refined, more accurate and fully representative
theories to solve the ”classical” structural problems that have been tackled by scientists and
engineers for a long time.
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It is well known that modeling laminated shell structures is a very complicated subject involving
a lot of thinking concerning kinematic assumptions, displacement-strain-stress relationships,
different variational principles, constitutive relations, consistency of the resultant governing
equations, etc., with the extra complication of having the problem formulated in curvilinear
coordinates.

The finite element (FE) method is usually the preferable way of obtaining solutions for struc-
tures with more complicated geometries, boundary conditions and applied loads types. ”Per-
fect” FEs of general shell structures without any numerical pathologies are still an issue to be
solved by the scientific community and a challenge to deal with. However, many models have
been developed to design and simulate the structural system’s response and to assess their nu-
merical stability, reliability, representativeness and performance. However, further refinement
of these models and coming up with some new approaches should be the main emerging ten-
dencies of this complex research issue which is far from being fully understood.

The derivation of shell theories has been one of the most prominent challenges in solid me-
chanics for many years. The idea is to develop appropriate models that can accurately simulate
the effects of shear deformations and transverse normal strains in laminated shells with good
trade-off between accuracy and complexity, which is a big mathematical difficulty. Physical 3-D
shells are usually modeled recurring to approximated mathematical 2-D models. They are ob-
tained by imposing some chosen kinematic and mechanical assumptions to the 3-D continuum,
e.g., by explicitly assuming a through-the-thickness axiomatic displacement field definition and
assuming a plane-stress state. When compared to 3-D solid FEs, 2-D shell FEs allow a sig-
nificant reduction of the computational cost without losing much accuracy. However, to make
matters worse, this sort of approximations lead to so-called locking effects (e.g., shear and mem-
brane locking), which produces an overstiffening of the FE model which in turn yields erroneous
results. Furthermore, for shell-type structures, with a more complex shear-membrane-bending
coupling behavior, the locking effects are not yet fully understood yet, making these numerical
pathologies difficult to remedy completely.

Over the years many authors have developed models for this type of problem. It’s very diffi-
cult to comprehensively review all the contributions because the literature is very vast and the
technical developments and improvements appear dispersed in technical journals of different
areas, being some of them very difficult of obtaining. However, the major works, considered
relevant for this work, are shortly reviewed here. That will allow to introduce the subject of
this paper and to justify the options and assumptions taken for developing the present modeling
approaches. Furthermore, it will allow to identify the aspects of the work that are new and
significant in a more founded way.

In the development of structural mathematical models, different theories have been considered
to axiomatically define the kinematics of laminated structural systems, where the planar di-
mensions are one to two orders of magnitude larger than their thickness (e.g., beams, plates or
shells). Usually, these structural systems are formed by stacking layers of different isotropic
or orthotropic composite materials with arbitrary fiber orientation or then, in the case of vi-
bration damping treatments, by arbitrary stacking sequences of active piezoelectric or passive
viscoelastic damping layers. These theories, following Kraus (1967), were originally developed
for single layer ”monocoque” thin structures made of traditional isotropic materials. Generally
speaking, they can be grouped into two classes of alternate theories: one in which all of the
Love’s original assumptions (see Love, 1944) are preserved, and other, following higher-order
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linear theories in which one or another of Love’s assumptions are suspended. Many additional
theories of thin and thick elastic shells have been proposed and the chronicle of these efforts are
presented for example by Naghdi (1956) and Leissa (1993).

Two different approaches are often used. The first one, the so-called Equivalent Single Layer
(ESL) theories, where the number of independent generalized variables doesn’t depend of the
number of layers, are derived from 3-D elasticity by making suitable assumptions concerning
the kinematics of deformation or the stress state through the thickness of the laminate, allowing
the reduction of a 3-D problem to a 2-D one. The second one, the so-called Layerwise Theo-
ries (LWT), where the number of generalized variables depends on the number of physical (or
nonphysical) layers, rely on the basis that the kinematic assumptions are established for each
individual layer, which might be modeled (or not) as a 3-D solid. The problem is then reduced
to a 2-D problem, however, retaining the 3-D intralaminar and interlaminar effects.

As reported by Yang et al. (2000), plate and shell structures made of laminated composite ma-
terials have often been modeled as an ESL using the Classical Laminate Theory (CLT) [see
for example the textbook of Reddy (2004)], in which the out-of-plane stress components are
ignored. The CLT is a direct extension of the well-known Kirchhoff-Love kinematic hypoth-
esis, i.e., plane sections before deformation remain plane and normal to the mid-plane after
deformation and that normals to the middle surface suffer no extension (Kirchhoff contribution)
and others (cf. Leissa, 1993), however applied to laminate composite structures. This theory is
adequate when the ratio of the thickness to length (or other similar dimension) is small, the dy-
namic excitations are within the low-frequency range and the material anisotropy is not severe.
The application of such theories to layered anisotropic composite shells could lead to 30% or
more errors in deflections, stresses and frequencies (Reddy, 2004). In order to overcome the
deficiencies in the CLT, new refined laminate theories have been proposed relaxing some of
the Love’s postulates according to Koiter’s recommendations (Koiter, 1960), where it is stated
that ”... a refinement of Love’s approximation theory is indeed meaningless, in general, unless
the effects of transverse shear and normal stresses are taken into account at the same time.”
However, as stated by Carrera (1999), for 2-D modelings of multilayered structures (such as
laminated constructions, sandwich panels, layered structures used as thermal protection, intelli-
gent structural systems embedding piezoelectric and/or viscoelastic layers) require amendments
to Koiter’s recommendation. Among these, the inclusion of continuity of displacements, zig-
zag effects, and of transverse shear and normal stresses interlaminar continuity at the interface
between two adjacent layers, are some of the amendments necessary. The role played by zig-
zag effects and interlaminar continuity has been confirmed by many 3-D analysis of layered
plates and shells (Srinivas et al., 1970; Srinivas, 1974; Pagano and Reddy, 1994; Ren, 1987;
Varadan and Bhaskar, 1991; Bhaskar and Varadan, 1994; Soldatos, 1994). These amendments
become more significant when complicating effects such as high in-plane and/or out-of-plane
transverse anisotropy are present. Hence, as referred by Carrera (1999), Koiter’s recommen-
dation concerning isotropic shells could be re-written for the case of multilayered shells as ”...
a refinement of ... unless the effects of interlaminar continuous transverse shear and normal
stresses are taken into account at the same time.” This enforces the need of also assuring the
interlaminar continuity of the out-of-plane stresses, alternatively denoted by Carrera (1997) as
the C0

z requirements.

A refinement of the CLT, in which the transverse shear stresses are taken into account, was
achieved with the extension to laminates of the so-called Reissner-Mindlin theory, or First-order
transverse Shear Deformation Theory (FSDT). It provides improved global response estimates

Chapter VIII: Composite & Functionally Graded Materials in Design 3



Porto-Portugal, 24-26 July 2006

for deflections, vibration frequencies and buckling loads of moderately thick composites when
compared to the CLT (see Reddy, 2004). Both approaches (CLT and FSDT) consider all lay-
ers as one anisotropic ESL and, as a consequence, they cannot model the warping effect of
cross-sections. Furthermore, the assumption of a non-deformable normal results in incompati-
ble shearing stresses between adjacent layers. The latter approach, because it assumes constant
transverse shear stress, also requires the introduction of an arbitrary shear correction factor
which depends on the lamination parameters for obtaining accurate results. Such a theory is
adequate to predict only the gross behavior of laminates. Higher-Order Theories (HOTs), over-
coming some of these limitations, were presented for example by Reddy and Liu (1985) and
Reddy (1990) for laminated plates and shells. However, because of the material mismatch at the
intersection of the layers, the HOT also lead to transverse shear and normal stress mismatch at
the intersection. In conclusion, ESL theories are found to be inadequate for detailed, accurate,
local stress analysis of laminated structures.

If detailed response of individual layers is required, as is the case for example for piezoelectric
layers, and if significant variations in displacements gradients between layers exist, as is the case
of local phenomena usually in viscoelastic layers or sandwich structures with soft cores, LWT
(discrete layer) become more suitable to model the intralaminar and interlaminar effects and the
warping of the cross section. The LWT corresponds to the implementation of CLT, FSDT or
HOT at a layer level. That is, each layer is seen as an individual plate or shell and compatibility
(continuity) of displacement (and eventually out-of-plane stress) components with correspon-
dence to each interface is imposed as a constraint. As can be seen in Garção et al. (2004) and
Lage et al. (2004), high-order displacement-based or mixed LWT have been successfully used
to accurately model the behavior of laminates taking into account the interlaminar and intralam-
inar effects.

Another alternative, with a reduced computational effort, in the framework of ESL theories, is
the use of the so-called Zig-Zag Theories (ZZTs), which have their origins and most significant
contributions coming from the Russian school. Refined ZZTs have therefore been motivated to
fulfill a priori (in a complete or partial form) the C0

z requirements. The fundamental ideas in
developing ZZTs consists to assume a certain displacement and/or stress model in each layer
and then to use compatibility and equilibrium conditions at the interface to reduce the number
of the unknown variables and keep the number of variables independent of the number of layers.

As stated by Carrera (2003b), the first contribution to the ZZTs was supposedly given by
Lekhnitskii in the 1930s [see the brief treatment concerning a layered beam in the English
translation of his book (Lekhnitskii, 1968, Section 18)]. Apart from the method proposed by
Lekhnitskii, which was almost ignored, two other independent contributions, which received
much more attention from the scientific community, have been proposed in the literature in
the second half of last century. The first of these was originally given by Ambartsumian in
the 1950s, motivated by the attempt to refine the CLT to include partially or completely the
C0

z requirements, and was applied to anisotropic single and multilayer plates and shells [see
his textbooks: Ambartsumyan (1991); Ambartsumian (1991)]. Several variations have been
presented which consisted in direct or particular applications of the original Ambartsumian’s
idea. Whitney (see Ashton and Whitney, 1970, Chapter 7) introduced the theory in the Western
community and applied it to non-symmetrical plates, whereas the extension to multilayer shells
and dynamic problems was made by Rath and Das (1973). However, several useless works
concerning particular applications of Ambartsumian’s original theory were developed present-
ing progressive refinements towards the original idea. It was only in the 1990s that the original
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theory was re-obtained as can be found, among others, in the works of Cho and Parmerter
(1993), Beakou and Touratier (1993) and Soldatos and Timarci (1993). Regarding the second
independent contribution, it was given in the 1980s by Reissner (1984), who proposed a mixed
variational theorem that allows both displacements and stress assumptions to be made. Sig-
nificant contributions to the theory proposed by Reissner were made by Murakami (1986) that
introduced a zig-zag form of displacement field and Carrera (2004) that presented a systematic
generalized manner of using the Reissner mixed variational principle to develop FE applications
of ESL theories and LWT of plates and shells. For further details, an historical review of ZZT
was performed by Carrera (2003a,b). A discussion on the theories and FEs for multilayered
structures, with numerical assessment and a benchmarks for plate and shell structures can also
be found in the literature (Noor and Burton, 1989; Noor et al., 1996; Ghugal and Shimpi, 2001,
2002; Carrera, 2002, 2003a; Reddy and Arciniega, 2004).

This paper concerns the FE modeling of anisotropic laminated (or multilayer) shells. A dis-
crete layer approach is employed in this work and a single layer is first considered and iso-
lated from the multilayer shell structure. The weak form of the governing equations of the
anisotropic single layer of the multilayer shell is derived with Hamilton’s principle using a
”mixed” (stresses/displacements) definition of the displacement field. A semi-inverse iterative
procedure (stresses/strains-displacements) is used to derive the layer ”mixed” non-linear dis-
placement field, in terms of a blend of the generalized displacements of the Love-Kirchhoff and
Reissner-Mindlin shell theories and the stress components at the generic layer interfaces, with-
out any simplifying assumptions regarding the thinness of the shell being considered. Results
from 3-D elasticity solutions are used to postulate adequate definitions of the out-of-plane shear
stress components, which, in conjunction with the Reissner-Mindlin theory definitions of the
shell in-plane stresses, are utilized to derive the ”mixed” displacement field.

First, a fully refined shell theory, where displacement and full out-of-plane stresses continuity
and homogeneous stress conditions on the top and bottom surfaces of the whole laminate might
be considered, is conceptually proposed. Then, due the dramatic complexity of the fully refined
shell theory, which for the physical problem to be treated in this work does not present an ap-
pellative trade-off between accuracy and complexity, its underlying refinements are not pursued
here. Hence, some restrictions and simplifications are introduced and a partially refined shell
theory, where the out-of-plane normal stress continuity is relaxed and a plane stress state is
considered, is established and used to develop a FE solution for segmented multilayer doubly-
curved orthotropic shells. Based on the weak forms a a partially refined shell FE solution is
developed for the generic single shell layer. Afterward, the single layer 2-D four-noded shell
FE is ”regenerated” to an equivalent 3-D form, which allows interlayer displacements and out-
of-plane stresses continuity between adjacent interfaces of different layers to be imposed, and
a multilayer shell FE is obtained by assembling, at an elemental FE level, all the ”regenerated”
single layer FE contributions. A dynamic condensation technique is employed to eliminate the
stress DoFs and to cast the problem in an equivalent displacement-based FE model form.

Regarding the deformation theory developed in this work, it is inspired in Ambartsumian’s
contributions for the deformation theory of single layer anisotropic plates and shells (Ambart-
sumian, 1958; Ambartsumyan, 1991; Ambartsumian, 1991). Ambartsumian basically used a
semi-inverse method to develop refined shear deformation theories. They are based on assum-
ing a refined distribution of the transverse shear stresses and in the use of the the equilibrium
and constitutive equations to derive expressions for the in-plane displacements, which in turn
become non-linear in the thickness coordinate. Improvements including the effect of transverse
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normal strain were also considered for plates and shells. In some of these refined theories trans-
verse shear stress distributions are assumed to follow a parabolic law and to satisfy zero shear
stress conditions at the top and bottom surfaces of the plate or shell. However, if out-of-plane
stresses continuity is required, a ”mixed” formulation should consider also the stresses on the in-
terfaces of the single layer, which, for the sake of simplicity, were, in general, assumed to be nil
in the single layer theories developed by Ambartsumian. That puts some limitations in the gen-
eralization of the theory to multilayer structures since neither the displacement nor the normal
stresses are available on the interfaces and interlayer continuity can not be imposed. Further-
more, his multilayer approach doesn’t allow to consider segmented layers, which is something
usually required, for example, in the study of segmented hybrid damping treatments. When that
is the case, individual refined theories must be considered for each individual discrete-layer.

When compared with Ambartsumian’s first and second improved theories of anisotropic shells
(cf. Ambartsumian, 1991), the proposed fully and partially refined shell theories, similar to
Ambartsumian’s first and second improved theories, respectively, assume as a first approxima-
tion of the in-plane stresses the ones obtained with the FSDT instead of the CLT. Additionally,
all the surface shear stresses are retained in the formulation since they will be used afterward
with the ”regenerated” 3-D element to generalize the theory to segmented multilayered shells.
Furthermore, the theory is extended to elastic multilayered shells and a FE solution is devel-
oped. Thus, however strongly inspired in Ambartsumian’s work, the deformation theories of
the present work have some important differences and novelties which represent a further step
towards the demanded refinement of multilayer structural models. It is worthy to mention that
it would be very complicated and cumbersome to fulfill a priori all the C0

z requirements for a
multilayer anisotropic shell. Instead, a discrete layer approach is used, which allows interlayer
displacement and out-of-plane stresses continuity to be imposed a posteriori in a more straight-
forward manner, by means of a through-the-thickness assemblage of the ”regenerated” single
layer FE.

Regarding the variational approach used to get the governing equations, similar analytical
works, using theories denoted as partial mixed theories, where the displacement field is de-
fined in terms of generalized displacements and generalized surface and transverse stresses, can
be found for beams and plates in the open literature (Rao et al., 2001; Rao and Desai, 2004; Rao
et al., 2004). In contrast to other fully mixed methods, as the ZZT based on Reissner’s contribu-
tion, where mixed variational principles are used, Hamilton’s principle has also been employed
to derive the governing equations (i.e., no mixed-enhanced variational principles are consid-
ered). The present work extends a similar concept to multilayered shells and a FE solution is
developed.

Despite the fact that this work is devoted to multilayer elastic composite laminated shells, one of
the ultimate aims of the developed theories is to apply them to study multiphysics problems, as
is the case when designing hybrid active-passive (piezoelectric and viscoelastic) damping treat-
ments. Usually these damping treatments are discontinuous and composed of segmented damp-
ing layers which motivates the type of discrete layer approach presented in this work. Thus,
works available in the open literature concerning structures with damping treatments are wor-
thy to refer and to discuss with some detail since they have tackled a similar problem and dealt
with the physical constraints that the present approaches, when extended for instance to cou-
pled segmented multiphysics piezo-visco-elastic shell structures (Vasques and Dias Rodrigues,
2006), try to circumvent. A work regarding a three-layered coupled piezo-visco-elastic plate
FE was developed by Chattopadhyay et al. (2001), where a HOT was used for the definition of
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the displacement field of each individual layer and the displacement and shear stress continu-
ity were assured. However, the formulation is limited to the study of active constrained layer
damping (ACLD) treatments on three-layered plates and doesn’t allow the study of multilayer
structures (arbitrary damping treatments).

As far as the ”regeneration” concept is concerned, the concept has been employed also by Cho
and Averill (2000) in the the framework of the ZZTs, where a plate FE, avoiding the short-
comings of requiring C1 continuity of the transverse displacement, has been developed using
a first-order zig-zag sublaminate theory for laminated composite and sandwich panels. How-
ever, the formulation is based on the decomposition of the whole structure in sublaminates, a
linear piecewise function is assumed for the displacement of each sublaminate and the inter-
laminar displacement and normal shear stress continuity is imposed between the layers of the
same sublaminate but not between the sublaminates. In comparison, the present work uses a
similar ”regeneration” concept to shell-type structures with a more refined deformation theory
being employed which allows displacement and interlayer continuity between all layers to be
imposed.

FULLY REFINED MATHEMATICAL MODEL OF GENERAL SHELLS

Physical Problem and Modeling Approach

The physical problem of this work concerns a general anisotropic multilayer shell composed
of arbitrary stacking sequences of layers of different materials (e.g, elastic, piezoelectric or
viscoelastic materials) which might represent either a composite laminated shell or an host
shell-type structure to which damping layers are attached (Fig. 1). It is assumed that all the
layers have constant thickness and that they might be continuous or segmented across the shell
surface curvilinear directions.

A mathematical theory is established by treating the shell as a multilayer shell of arbitrary
materials. First, a generic layer is isolated from the global laminate, and the week form of the
governing equations is derived for the individual layer. Interlaminar (or interlayer) continuity
conditions of displacements and stresses (surface stresses) and homogeneous (or not) stress
boundary conditions at inner and outer boundary surfaces of the global multilayer shell are
imposed later, at the multilayer FE level, by assembling the contributions of all the individual
layers to be considered.

Shell Differential Geometry

Consider a generic anisotropic layer (Fig. 2) extracted from the multilayer shell in Fig. 1. The
generic anisotropic (or rotated orthotropic) layer has a constant thickness of 2h and a plane of
elastic symmetry parallel to the middle surface Ω0. The latter surface is used as a reference
surface, referred to a set of curvilinear orthogonal coordinates α and β which coincide with the
lines of principal curvature of the middle surface. Let z denote the distance, comprised in the
interval [−h, h], measured along the normal of a point (α, β) of the middle surface Ω0 and a
point (α, β, z) of the shell layer and Ω denote a surface at a distance z and parallel to Ω0. The
square of an arbitrary differential element of arc length ds, the infinitesimal area of a rectangle
in Ω and the infinitesimal volume dV of the shell layer are given by

ds2 = Hα
2dα2 +Hβ

2dβ2 +Hz
2dz2, dΩ = HαHβ dα dβ, dV = HαHβHz dα dβ dz,

(1)
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Figure 1: Multilayer shell with arbitrary stacking sequences of layers of different materials.

where Hα = Hα(α, β, z), Hβ = Hβ(α, β, z) and Hz are the so-called Lamé parameters given
by

Hα = Aα

(
1 +

z

Rα

)
, Hβ = Aβ

(
1 +

z

Rβ

)
, Hz = 1. (2)

Aα = Aα (α, β) and Aβ = Aβ (α, β) are the square root of the coefficients of the first funda-
mental form and Rα = Rα (α, β) and Rβ = Rβ (α, β) the principal radii of curvature of the
middle surface Ω0 (see, for example, Kraus, 1967).

�

��
��

�

�

Figure 2: Generic anisotropic shell layer.

General Assumptions and Relationships

Different assumptions are made regarding the mechanical behavior of the generic shell layer:

(a) Strains and displacements are sufficiently small so that the quantities of the second- and
higher-order magnitude in the strain-displacement relationships may be neglected in com-
parison with the first-order terms (i.e., infinitesimal strains and linear geometric elasticity
conditions are assumed);
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(b) The shear stresses σzα(α, β, z) and σβz(α, β, z), or the corresponding strains εzα(α, β, z)
and εβz(α, β, z), vary in the generic shell layer thickness according to a specified law,
which is defined by a ”refining” even function f(z) (e.g., parabolic, trigonometric), and
the shear angle rotations ψα(α, β) and ψβ(α, β) of a normal to the reference middle sur-
face obtained from the FSDT;

(c) The normal stresses σzz(α, β, z) at areas parallel to the middle surface are not negligible
and are obtained through the out-of-plane equilibrium equation in orthogonal curvilinear
coordinates;

(d) Non-homogeneous shear and normal stress conditions are assumed at the top and bottom
surfaces of the generic shell layer;

(e) The strain εzz(α, β, z) is determined through the constitutive equation assuming as first
approximations of the in-plane stresses the ones obtained with the FSDT for shells (de-
fined in Appendix), σ∗αα(α, β, z), σ∗ββ(α, β, z) and σ∗αβ(α, β, z), without any simplifi-
cation regarding the thinness of the shell being made (i.e., the terms z/Rα (α, β) and
z/Rβ (α, β) are fully retained).

According to assumption (b) the out-of-plane shear stress components are postulated as

σzα(α, β, z) =
1

Hα

[
τ̄ zα(α, β) +

z

2h
τ̃ zα(α, β) + f(z)ψα(α, β)

]
,

σβz(α, β, z) =
1

Hβ

[
τ̄βz(α, β) +

z

2h
τ̃βz(α, β) + f(z)ψβ(α, β)

]
,

(3)

where ψα = ψα(α, β) and ψβ = ψβ(α, β) are the shear angles obtained with the FSDT (defined
in Appendix) and the bar and tilde above τ zα and τβz are used to denote mean surface shear
stresses, given by

τ̄ zα(α, β) =
1

2

[
σt

zα(α, β)− σb
zα(α, β)

]
, τ̄βz(α, β) =

1

2

[
σt

βz(α, β)− σb
βz(α, β)

]
, (4)

and relative ones, given by

τ̃ zα(α, β) = σt
zα(α, β) + σb

zα(α, β), τ̃βz(α, β) = σt
βz(α, β) + σb

βz(α, β), (5)

where (·)t and (·)b denote the shear stresses at the top and bottom surfaces (i.e., at z = ±h) of
the generic shell layer (see Fig. 3).

Substituting the values of the postulated out-of-plane shear stresses σzα(α, β, z) and σβz(α, β, z)
in Eqs. (3) into the static transverse equilibrium equation in orthogonal curvilinear coordinates
in the third of Eqs. (A2) of the Appendix, in the absence of body forces, taking into account
the definitions in (4) and (5) and integrating with respect to z, after some algebra, the normal
stress component σzz(α, β, z) is expressed in terms of coefficients of powers of z (for the sake
of simplicity, since they are at this point they are not important their detailed definitions will be
given latter) as,

σzz(α, β, z) = σ(0)
zz (α, β) + σ(1)

zz (α, β, z) + σ(2)
zz (α, β, z) + σ(f)

zz (α, β, z), (6)
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Figure 3: Postulated out-of-plane shear stress distributions of the refined and FSDT theories.

where σ(0)
zz (α, β) is an integration function independent of z that is determined from the bound-

ary conditions on the top and bottom surfaces of the shell layer, σt
zz(α, β) and σb

zz(α, β), respec-
tively. Regarding the definitions of the higher order terms, the first-order one, σ(1)

zz (α, β, z), de-
pends of the mean shear stresses τ̄ zα(α, β) and τ̄βz(α, β), the second-order term, σ(2)

zz (α, β, z),
depends of the relative shear stresses τ̃ zα(α, β) and τ̃βz(α, β), and the term depending of f(z),
σ

(f)
zz (α, β, z), is related with the shear angles ψα(α, β) and ψβ(α, β).

By satisfying the stress boundary conditions σt
zz(α, β) and σb

zz(α, β) at the top and bottom
surfaces, after some algebra, the function dependent only of (α, β) (independent of z) that
results from the integration is given as

σ(0)
zz (α, β) = τ̄ zz(α, β)− h2σ(2)

zz (α, β)− [F (h) + F (−h)]
2F (z)

σ(f)
zz (α, β, z)

= τ̄ zz(α, β)− h2σ(2)
zz (α, β), (7)

where
F (z) =

∫
f(z)dz. (8)

Since σ(0)
zz (α, β) can’t depend on z, Eq. (7) is simplified, which is confirmed since F (z) is and

odd function, i.e., F (h) = −F (−h). Additionally, an extra equation is obtained by imposing
the top and bottom boundary conditions, which yields the term σ

(f)
zz (α, β, z) given as

σ(f)
zz (α, β, z) =

F (z)

F (h)− F (−h)
[
τ̃ zz(α, β)− 2hσ(1)

zz (α, β, z)
]

, (9)

where similarly to Eqs. (4) and (5), the bar and tilde have been used to denote mean and relative
transverse stresses,

τ̄ zz(α, β) =
1

2

[
σt

zz(α, β)− σb
zz(α, β)

]
, τ̃ zz(α, β) = σt

zz(α, β) + σb
zz(α, β). (10)

After some algebra, the remaining undefined terms of Eq. (6) are given by

σ(1)
zz (α, β, z) =

z

HαHβ

[
Hβ

Aα

Rα

σ∗(0)
αα (α, β, z)

+Hα
Aβ

Rβ

σ
∗(0)
ββ (α, β, z)− ∂τ̄ zα(α, β)

∂α
− ∂τ̄βz(α, β)

∂β

]
, (11)
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σ(2)
zz (α, β, z) =

z2

HαHβ

[
Hβ

Aα

2Rα

σ∗(1)
αα (α, β, z)

+Hα
Aβ

2Rβ

σ
∗(1)
ββ (α, β, z)− 1

4h

∂τ̃ zα(α, β)

∂α
− 1

4h

∂τ̃βz(α, β)

∂β

]
. (12)

At this point, it is worthy to mention that in order to keep the formulation of the transverse
stress σzz(α, β, z) in Eq. (6) general, its last term depends of the integral of the shear ”refining”
function, F (z). Depending of the type and/or order in z of the shear function f(z), (e.g.,
polynomial, trigonometric function), different expansions in z can be obtained and different
deformation theories can be considered.

Considering the strain-stress constitutive behavior of the out-of-plane shear strains εzα and εβz

expressed in Eq. (A13) of Appendix and the postulated shear stresses in Eqs. 3, the shear strains
are given as

εzα(α, β, z) =
1

Hα

[
Σ̄zα(α, β) + z

2h
Σ̃zα(α, β) + f(z)Ψα(α, β)

]
,

εβz(α, β, z) =
1

Hβ

[
Σ̄βz(α, β) + z

2h
Σ̃βz(α, β) + f(z)Ψβ(α, β)

]
,

(13)

where the following notations regarding the mean surface stresses

Σ̄zα(α, β) = s̄45τ̄βz(α, β) + s̄55τ̄ zα(α, β), Σ̄βz(α, β) = s̄44τ̄βz(α, β) + s̄45τ̄ zα(α, β), (14)

relative surface stresses

Σ̃zα(α, β) = s̄45τ̃βz(α, β) + s̄55τ̃ zα(α, β), Σ̃βz(α, β) = s̄44τ̃βz(α, β) + s̄45τ̃ zα(α, β), (15)

and shear angles

Ψα(α, β) = s̄45ψβ(α, β) + s̄55ψα(α, β), Ψβ(α, β) = s̄44ψβ(α, β) + s̄45ψα(α, β), (16)

are used. Alternatively, for simplicity, the shear strains in Eqs. (13) can still be expressed in
terms of coefficients of increasing powers and functions of z as

εzα(α, β, z) =
1

Hα

[
ε
(0)
zα (α, β) + zε

(1)
zα (α, β) + ε

(f)
zα (α, β, z)

]
,

εβz(α, β, z) =
1

Hβ

[
ε
(0)
βz (α, β) + zε

(1)
βz (α, β) + ε

(f)
βz (α, β, z)

]
,

(17)

where the definitions of the terms in the previous equations are obvious from the analysis of
Eqs. (13).

In a similar way, considering the transverse strain-stress constitutive behavior of εzz(α, β, z)
expressed in Eq. (A13) of Appendix and taking as first approximations of the in-plane stress
components the ones obtained with the FSDT for shells described in Eqs. (A7) of Appendix,
i.e., σ∗αα(α, β, z), σ∗ββ(α, β, z) and σ∗αβ(α, β, z), and considering σzz(α, β, z) as defined in (6),
the transverse strain component is given by

εzz(α, β, z) ≈ s̄13σ
∗
αα(α, β, z) + s̄23σ

∗
ββ(α, β, z) + s̄33σzz(α, β, z) + s̄36σ

∗
αβ(α, β, z). (18)

Chapter VIII: Composite & Functionally Graded Materials in Design 11



Porto-Portugal, 24-26 July 2006

Mixed Displacement Field and Strains

In this section the displacement field of the shell layer is derived by considering the out-of-plane
strains εβz, εzα and εzz presented in the previous section in Eqs. (17) and (18), respectively, and
the correspondent out-of-plane strain-displacement relations in Eqs. (A1) of the Appendix. By
virtue of the assumptions previously considered,

εzz =
∂w

∂z
≈ s̄13

[
σ∗(0)

αα (α, β, z) + σ∗(1)
αα (α, β, z)

]
+ s̄23

[
σ
∗(0)
ββ (α, β, z) + σ

∗(1)
ββ (α, β, z)

]
+ s̄33

[
σ(0)

zz (α, β, z) + σ(1)
zz (α, β, z) + σ(2)

zz (α, β, z) + σ(f)
zz (α, β, z)

]
+ s̄36

[
σ
∗(0)
αβ (α, β, z) + σ

∗(1)
αβ (α, β, z)

]
. (19)

Thus, integrating the previous equation with respect to z over the limits from 0 to z, considering
that when z = 0 we have w(α, β, z) = w0 (α, β), and taking into account the time dependence
of the strains and stresses definitions, the transverse displacement w = w(α, β, z, t) is given by

w(α, β, z, t) = w(0)(α, β, t)+w(1)(α, β, z, t)+w(2)(α, β, z, t)+w(3)(α, β, z, t)+w(f)(α, β, z, t),
(20)

where

w(0)(α, β, t) = w0(α, β, t),

w(1)(α, β, z, t) =

∫ z

0

[
s̄13σ

∗(0)
αα (α, β, z, t) + s̄23σ

∗(0)
ββ (α, β, z, t)

+s̄33σ
(0)
zz (α, β, z, t) + s̄36σ

∗(0)
αβ (α, β, z, t)

]
dz,

w(2)(α, β, z, t) =

∫ z

0

[
s̄13σ

∗(1)
αα (α, β, z, t) + s̄23σ

∗(1)
ββ (α, β, z, t) (21)

+s̄33σ
(1)
zz (α, β, z, t) + s̄36σ

∗(1)
αβ (α, β, z, t)

]
dz,

w(3)(α, β, z, t) =

∫ z

0

s̄33σ
(2)
zz (α, β, z, t)dz,

w(f)(α, β, z, t) =

∫ z

0

s̄33σ
(f)
zz (α, β, z, t)dz.

In a similar way, using the relations

εβz(α, β, z) = Hβ
∂

∂z

(
v(α, β, z)

Hβ

)
+

1

Hβ

∂w(α, β, z)

∂β

≈ 1

Hβ

[
ε
(0)
βz (α, β) + zε

(1)
βz (α, β) + ε

(f)
βz (α, β, z)

]
,

εzα(α, β, z) = Hα
∂

∂z

(
u(α, β, z)

Hα

)
+

1

Hα

∂w(α, β, z)

∂α
(22)

≈ 1

Hα

[
ε(0)

zα (α, β) + zε(1)
zα (α, β) + ε(f)

zα (α, β, z)
]

,

integrating in order to z over the limits from 0 to z and considering that for z = 0, the displace-
ments on the middle surface are given by u(α, β, z) = u0(α, β) and v(α, β, z) = v0(α, β), the
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time dependent tangential displacements of any point of the shell are given by

u(α, β, z, t) = −Hα

∫ z

0

1

Hα
2

∂w(α, β, z, t)

∂α
dz

+Hα

∫ z

0

1

Hα
2

[
ε(0)

zα (α, β, t) + zε(1)
zα (α, β, t) + ε(f)

zα (α, β, z, t)
]
dz

= u(0)(α, β, z, t) + u(1)(α, β, z, t) + u(2)(α, β, z, t) + u(3)(α, β, z, t)

+ u(4)(α, β, z, t) + u(f)(α, β, z, t), (23)

v(α, β, z, t) = −Hβ

∫ z

0

1

Hβ
2

∂w(α, β, z, t)

∂β
dz

+Hβ

∫ z

0

1

Hβ
2

[
ε
(0)
βz (α, β, t) + zε

(1)
βz (α, β, t) + ε

(f)
βz (α, β, z, t)

]
dz

= v(0)(α, β, z, t) + v(1)(α, β, z, t) + v(2)(α, β, z, t) + v(3)(α, β, z, t)

+ v(4)(α, β, z, t) + v(f)(α, β, z, t), (24)

where

u(0)(α, β, z, t) =
Hα

Aα

u0(α, β, t),

u(1)(α, β, z, t) = −Hα

∫ z

0

1

Hα
2

[
∂w(0)(α, β, t)

∂α
− ε

(0)
zα (α, β, t)

]
dz,

u(2)(α, β, z, t) = −Hα

∫ z

0

1

Hα
2

[
∂w(1)(α, β, z, t)

∂α
− zε

(1)
zα (α, β, t)

]
dz,

u(3)(α, β, z, t) = −Hα

∫ z

0

1

Hα
2

∂w(2)(α, β, z, t)

∂α
dz,

u(4)(α, β, z, t) = −Hα

∫ z

0

1

Hα
2

∂w(3)(α, β, z, t)

∂α
dz,

u(f)(α, β, z, t) = −Hα

∫ z

0

1

Hα
2

[
∂w(f)(α, β, z, t)

∂α
− ε

(f)
zα (α, β, z, t)

]
dz,

(25)

v(0)(α, β, z, t) =
Hβ

Aβ

v0(α, β, t),

v(1)(α, β, z, t) = −Hβ

∫ z

0

1

Hβ
2

[
∂w(0)(α, β, t)

∂β
− ε

(0)
βz (α, β, t)

]
dz,

v(2)(α, β, z, t) = −Hβ

∫ z

0

1

Hβ
2

[
∂w(1)(α, β, z, t)

∂β
− zε

(1)
βz (α, β, t)

]
dz,

v(3)(α, β, z, t) = −Hβ

∫ z

0

1

Hβ
2

∂w(2)(α, β, z, t)

∂β
dz,

v(4)(α, β, z, t) = −Hβ

∫ z

0

1

Hβ
2

∂w(3)(α, β, z, t)

∂β
dz,

v(f)(α, β, z, t) = −Hβ

∫ z

0

1

Hβ
2

[
∂w(f)(α, β, z, t)

∂β
− ε

(f)
βz (α, β, z, t)

]
dz,

(26)

In Eqs. (20), (23) and (24) it is shown that in comparison with the CLT of shells, following
Love’s first approximation, and the FSDT of shells discussed in Appendix, the in-plane and
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transverse displacements of any point of the shell are nonlinearly dependent on z. Additionally,
the same 5 generalized displacements of the FSDT (see Appendix), u0 = u0 (α, β, t), v0 =
v0 (α, β, t) and w0 = w0 (α, β, t), which are are the tangential and transverse displacements
referred to a point on the middle surface, respectively, and the shear angle rotations of a normal
to the reference middle surface,

ψα (α, β, t) =
∂w0 (α, β, t)

∂α
+ Aα (α, β) θα (α, β, t)− Aα (α, β)

Rα (α, β)
u0 (α, β, t) ,

ψβ (α, β, t) =
∂w0 (α, β, t)

∂β
+ Aβ (α, β) θβ (α, β, t)− Aβ (α, β)

Rβ (α, β)
v0 (α, β, t) ,

(27)

are used to define the ”generalized” displacements of the proposed refined theory which rep-
resent non-linear functions in z of the generalized displacements of FSDT. Thus, based on the
assumptions (b)-(e) the 3-D problem of the theory of elasticity has been fully brought to a 2-D
problem of the theory of the shell, with Eqs. (20), (23) and (24) establishing the geometrical
model of the deformed state of the fully refined theory of the generic shell layer.

On the basis of the refined displacement field defined by Eqs. (20), (23) and (24) and the gen-
eral strain-displacement relations in Eqs. (A1) in Appendix, the not yet defined in-plane strain
components of the proposed theory may be determined. For the sake of brevity their definitions
will not be given here since they are quite long equations, in terms of high-order derivatives of
the generalized displacements of the FSDT, which can be derived from the previous definitions.

PARTIALLY REFINED MATHEMATICAL MODEL OF DOUBLY-CURVED SHELLS

Restrictions and Simplifications

The definitions of the displacement field presented in Eqs. (20), (23) and (24) are quite gen-
eral and applicable to anisotropic shells of arbitrary curvature. They result from a fully refined
interactive shell theory based, as a first approximation, on the in-plane stresses of the FSDT.
Furthermore, all the terms regarding the thickness coordinate to radii or curvature ratios were
retained and no simplifications were made regarding thin shell assumptions. Additionally, trans-
verse shear strains and stresses were not considered negligible and as a result a non-linearly
dependent on z transverse displacement was obtained by the iterative procedure. That theory
was denoted as fully refined since all the strain and stress components of the 3-D elasticity are
obtained directly from the ”mixed” (in terms of surface stresses and generalized displacements)
displacement field by using the strain-displacement relations and an anisotropic constitutive
law. It can also be seen from the definitions of the terms of the in-plane displacements in Eqs.
(25) and (26) that they involve high-order derivatives (which become even higher for the strain
and stress components) of the generalized displacements of the FSDT, which complicates the
formulation and FE solution dramatically. Additionally, the fully refined mathematical model
allows full out-of-plane interlayer (or interlaminar) stress continuity (and, as obvious, displace-
ments too) to be imposed when assembling all the layers contributions at the ”regenerated” FE
level (further details will be discussed later). This renders a 2-D theory representative of the full
3-D behavior of a shell with arbitrary geometry (curvature).

However, the fully refined mixed displacement definitions are quite tedious and, for the sake
of making the calculations less cumbersome, the general ”mixed” displacement field defini-
tions will be restricted to orthotropic shells with constant curvatures, i.e., doubly-curved shells
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(cylindrical, spherical, toroidal geometries) for which

Aα = Aβ = 1,
∂Aα

∂β
=
∂Aβ

∂α
= 0, Rα(α, β) = Rα, Rβ(α, β) = Rβ . (28)

Additionally, the non-linear transverse displacement field definition will be discarded and only
the zero-order term, i.e., w(α, β, z, t) = w(0)(α, β, t), will be retained. This simplification
makes the theory less complicated and more suitable to be implemented, since it avoids the
higher-order derivatives of the generalized variables, and is denoted as partial refined theory.
It is well known, however, that in the major part of the problems, the transverse normal stress
effects are small when compared with the other stress components (see Robbins and Chopra,
2006). An exception is, for example, in thermo-mechanical analysis where the transverse stress
σzz plays an important role (see Carrera, 1999, 2005), which is not the case here. This simpli-
fication implies also the need to make the usual plane-stress assumption, which doesn’t allow
to impose interlayer transverse normal stress continuity. Regarding the shear stress ”refining”
function f(z), several functions can be used. However, as stated by Ambartsumyan (1991, p.
37), some arbitrariness in the reasonable selection of f(z) will not introduce inadmissible er-
rors into the refined theory, which in this work will be assumed to follow the law of a quadratic
parabola as

f(z) = 1− z2

h2
. (29)

Displacements and Strains

For the sake of simplicity and compactness when writing the mathematical definitions, from this
point henceforth, the spatial (α, β, z) and time t dependencies will be omitted from the equa-
tions when convenient and only written when necessary for the comprehension of the equations.
Thus, under the doubly-curved shell restrictions to the general problem, and following the pre-
viously defined partial refined theory, the displacement definitions in Eqs. (20), (23) and (24),
for an orthotropic shell layer, taking into account the definitions in (A5) in the Appendix, are
given as

u(α, β, z, t) =
1

z
(0)
α

[
u0 + z

∗(f)
α s̄∗55ψα − z

∗(0)
α

∂w0

∂α
+ z

∗(0)
α s̄∗55τ̄ zα + z

∗(1)
α

s̄∗55
2h
τ̃ zα

]
,

v(α, β, z, t) =
1

z
(0)
β

[
v0 + z

∗(f)
β s̄∗44ψβ − z

∗(0)
β

∂w0

∂β
+ z

∗(0)
β s̄∗44τ̄βz + z

∗(1)
β

s̄∗44
2h
τ̃βz

]
,

w(α, β, z, t) = w0,

(30)

where z(0)
α and z(0)

β are defined in Eqs. (A5) of the Appendix and

z
∗(i)
α =

∫ z

0

zi

(1 + z/Rα)2dz, z
∗(i)
β =

∫ z

0

zi

(1 + z/Rβ)2dz,

z
∗(f)
α =

∫ z

0

f(z)

(1 + z/Rα)2dz, z
∗(f)
β =

∫ z

0

f(z)

(1 + z/Rβ)2dz,
(31)

with i = 0, 1. As can be seen in the ”mixed” displacement field definition in Eqs. (30), the
displacement field is defined in terms of the generalized displacements of the FSDT and mean
and relative surface shear stresses. Additionally, as would be expected, if f(z) is assumed equal
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to unity, which corresponds to case where no correction to the FSDT constant through-the-
thickness shear stresses/strains is made, the displacement is the same as the one obtained with
the FSDT, with the extra surface shear stress terms. In the limit case where Rα = Rβ = ∞,
which corresponds to the case of planar structures such as plates, and considering the parabolic
definition of f(z), the displacements are consistent and are expanded in a power series of z up
to z3. In the present case, since the terms z/Rα and z/Rβ were fully retained, the displacements
are defined with more complex coefficients in terms of powers of z and ln(Rα +z) and ln(Rβ +
z). For convenience, the ”mixed” displacement field in Eqs. (30) can be expressed in matrix
form as

u(α, β, z, t) = zu(z)u0(α, β, t) + zτ (z)τ (α, β, t), (32)

or, alternatively,


u
v
w

 =

zu
11 0 zu

13∂α zu
14 0

0 zu
22 zu

23∂β 0 zu
25

0 0 1 0 0



u0

v0

w0

θα

θβ

 +

zτ
11 zτ

12 0 0
0 0 zτ

23 zτ
24

0 0 0 0



τ̄ zα

τ̃ zα

τ̄βz

τ̃βz

 , (33)

where the coefficients of matrices zu(z) and zτ (z) are derived from the displacements as ex-
plained in the Appendix. In the specific case of zu

13(z) and zu
23(z), which are related with

∂w0/∂α and ∂w0/∂β, the partial derivative operators ∂α and ∂β in order to α and β, respec-
tively, were also included.

From the definition of the displacement field in Eq. (32), the out-of-plane shear strains are given
by Eqs. (17), taking into account the restrictions in (28) and the transverse strain εzz = 0 [due
to the fact that w(α, β, z, t) was assumed independent of z]. The in-plane strain components
are obtained according to the displacement-strain relations in the first two and last equations of
Eqs. (A1) by taking into account (28). Thus, the strains vector without the null component εzz

may be expressed in matrix form as

ε(α, β, z, t) = ∂ε(z)z
u(z)u0(α, β, t) + ∂ε(z)z

τ (z)τ (α, β, t)

= zεu(z)u0(α, β, t) + zετ (z)τ (α, β, t), (34)

where ∂ε(z) is a matrix differential operator given by

∂ε(z) =


∂αz

(0)
α 0 z

(0)
α /Rα

0 ∂βz
(0)
β z

(0)
β /Rβ

0 ∂z − z
(0)
β /Rβ ∂βz

(0)
β

∂z − z
(0)
α /Rα 0 ∂αz

(0)
α

∂βz
(0)
β ∂αz

(0)
α 0

 , (35)

and ∂z is an other partial differential operator, this time in order to z. Considering the previous
operator matrix in Eq. (34), the strains vector is defined in terms of the matrices zεu(z) and
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zετ (z) as 
εαα

εββ

εβz

εzα

εαβ

 =


zεu
11∂α 0 zεu1

13 + zεu2
13 ∂αα zεu

14∂α 0
0 zεu

22∂β zεu1
23 + zεu2

23 ∂ββ 0 zεu
25∂β

0 zεu
32 zεu

33∂β 0 zεu
35

zεu
41 0 zεu

43∂α zεu
44 0

zεu
51∂β zεu

52∂α zεu
53∂αβ zεu

54∂β zεu
55∂α



u0

v0

w0

θα

θβ


+


zετ
11∂α zετ

12∂α 0 0
0 0 zετ

23∂β zετ
24∂β

0 0 zετ
33 zετ

34

zετ
41 zετ

42 0 0
zετ
51∂β zετ

52∂β zετ
53∂α zετ

54∂α



τ̄ zα

τ̃ zα

τ̄βz

τ̃βz

 (36)

where ∂αα, ∂ββ and ∂αβ are double and crossed partial differential operators. The coefficients of
zεu(z) and zετ (z) are given in Appendix. It is worthy to mention that the strain field is defined in
terms of zero- and/or first-order derivatives of the generalized in-plane displacements, rotations
and surface stresses, and cross derivatives and zero-, first- and second-order derivatives of the
generalized transverse displacement w0.

Variational Formulation

In order to derive the weak form of the equations governing the motion of the single layer shell,
Hamilton’s principle is used so that

δ

∫ t1

t0

(T − U +W )dt = 0, (37)

where t0 and t1 define the time interval, δ denotes the variation, T is the kinetic energy, U is the
potential strain energy and W denotes the work of the external non-conservative forces.

Since the stresses have been replaced and considered by means of internal forces and moments
due to the thickness integration it is appropriate to alter the definition of the fundamental el-
ement of the shell. Accordingly, it will be assumed henceforth that the element which was
formerly defined to be dz thick, is replaced, on account of the integrations with respect to z,
with an element of thickness h. Such an element is acted upon by the internal forces (stress re-
sultants) and moments per unit arc length and by external effects such as the mechanical forces.
The internal forces act upon the edges of the element while the mechanical forces act upon the
inner and outer surfaces.

According to Eq. (32), the kinetic energy is given by

T =
1

2

∫
V

ρu̇Tu̇ dV , (38)

where u̇ = u̇(α, β, z, t) is the vector of generalized velocities taking into account the time dif-
ferentiation of the three components of the displacement field expressed in the tri-orthogonal
curvilinear coordinate system. The first variation of the kinetic energy yields the virtual work
of the inertial forces, given by

δT = −
∫

Ω0

[∫ +h

−h

ρδuTü HαHβ Hz dz

]
dα dβ, (39)
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which is expanded with more detail in terms of the variations of the generalized displacements
and stresses in Appendix .

The potential strain energy of the elastic medium is expressed in terms of mechanical stresses
and strains by

U =
1

2

∫
V

σTε dV . (40)

Taking into account the plane-stress constitutive behavior in Eq. (A14) in the Appendix, the first
variation of the previous equation yields

δU =

∫
Ω0

[∫ +h

−h

σTδεHαHβHz dz

]
dα dβ, (41)

which is expanded with more detail in terms of the variations of the generalized displacements
and internal forces and moments in Appendix .

The last term of Eq. (37) considers the work done by the applied mechanical forces which are
applied on the inner and outer surfaces and lateral edges of the shell. To write the expressions
for the net external forces work recall that Ω denotes a surface at a distance z and parallel to
the middle-surface, where Ωt and Ωb denote the top and bottom surfaces for which z = ±h,
and that Γ denotes the boundary of the shell element, with Γα and Γβ being the boundary edges
of constant β and α coordinates, respectively (with the circle on the integral implying that it
includes the total boundary of the shell). Thus, the work of the non-conservative forces is given
by

W =

∫
Ωt

F t
zw dΩ

t +

∫
Ωb

F b
zw dΩ

b +

∮
Γα

[∫ +h

−h

(σ̂ββv + σ̂βαu+ σ̂βzw)
1

z
(0)
α

dz

]
dα

+

∮
Γβ

[∫ +h

−h

(σ̂ααu+ σ̂αβv + σ̂zαw)
1

z
(0)
β

dz

]
dβ, (42)

where F t
z = F t

z(α, β, t) and F b
z = F b

z (α, β, t) are transverse normal forces applied on the top
and bottom surfaces, and the hat over the stresses, σ̂αα = σ̂αα(β, z, t), σ̂αβ = σ̂αβ(β, z, t) and
σ̂zα = σ̂zα(β, z, t), for the edges normal to α, and σ̂ββ = σ̂ββ(α, z, t), σ̂βα = σ̂βα(α, z, t)
and σ̂βz = σ̂βz(α, z, t), for the edges normal to β, denotes prescribed stresses on the boundary
edges. Retaining only the normal mechanical load on the top surface F t

z , the first variation of
Eq. (42) yields the virtual work of the non-conservative external forces given by

δW =

∫
Ω0

Zδw0 dα dβ +

∮
Γα

[∫ +h

−h

(σ̂ββδv + σ̂βαδu+ σ̂βzδw)
1

z
(0)
α

dz

]
dα

+

∮
Γβ

[∫ +h

−h

(σ̂ααδu+ σ̂αβδv + σ̂zαδw)
1

z
(0)
β

dz

]
dβ, (43)

where Z = F t
z (1 + h/Rα) (1 + h/Rβ). The virtual work of the non-conservative forces δW

is expressed with more detail in terms of the variations of the generalized displacements and
prescribed forces and moments in the Appendix.
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Weak Forms of the Governing Equations in Terms of Internal Forces and Moments

The weak form of the governing mechanical equations in terms of internal forces and moments
are obtained by substituting the variational terms in Eqs. (39), (41) and (43) into the Hamilton’s
principle in Eq. (37). The virtual generalized displacements and surface stresses are zero where
the corresponding variables are specified. For time-dependent problems, the admissible virtual
generalized variables must also vanish at time t = t0 and t = t1. Thus, using the fundamental
lemma of variational calculus and collecting the coefficients of each variation of the different
generalized variables (displacements and surface stresses) into independent equations yields for
the generalized displacements δu0, δv0, δw0, δθα and δθβ:∫

Ω0

[
δu0(I

uu
11 ü0 + Iuu

13

∂ẅ0

∂α
+ Iuu

14 θ̈α + Iτu
11

¨̄τ zα + Iτu
21

¨̃τ zα) + δ
∂u0

∂α
(N?11

αα +N?21
ββ )

+ δ
∂u0

∂β
(N51

αβ) + δu0(Q
41
zα)

]
dα dβ −

∮
Γα

δu0(N̂
11
αβ)dα−

∮
Γβ

δu0(N̂
11
αα)dβ = 0, (44)

∫
Ω0

[
δv0(I

uu
22 v̈0 + Iuu

23

∂ẅ0

∂β
+ Iuu

25 θ̈β + Iτu
32

¨̄τβz + Iτu
42

¨̃τβz) + δ
∂v0

∂β
(N?12

αα +N?22
ββ )

+ δ
∂v0

∂α
(N52

αβ) + δv0(Q
32
βz)

]
dα dβ −

∮
Γα

δv0(N̂
22
ββ)dα−

∮
Γβ

δv0(N̂
22
αβ)dβ = 0, (45)

∫
Ω0

[
δw0(I

uu
33 ẅ)+δ

∂w0

∂α
(Iuu

13 ü0+I
uα
33

∂ẅ0

∂α
+Iuu

34 θ̈α+Iτu
13

¨̄τ zα+Iτu
23

¨̃τ zα)+δ
∂w0

∂β
(Iuu

23 v̈0+I
uβ
33

∂ẅ0

∂β

+ Iuu
35 θ̈β + Iτu

33
¨̄τβz + Iτu

43
¨̃τβz) + δw0(M

?131
αα +M?231

ββ ) + δ
∂2w0

∂α2
(M?132

αα ) + δ
∂2w0

∂β2 (M?232
ββ )

+ δ
∂2w0

∂α∂β
(M53

αβ) + δ
∂w0

∂α
(Q43

zα) + δ
∂w0

∂β
(Q33

βz)− δw0Z
]
dα dβ −

∮
Γα

[
δ
∂w0

∂β
(M̂23

ββ)

+ δ
∂w0

∂α
(M̂13

αβ) + δw0(Q̂
33
βz)

]
dα−

∮
Γβ

[
δ
∂w0

∂α
(M̂13

αα) + δ
∂w0

∂β
(M̂23

αα) + δw0(Q̂
33
zα)

]
dβ = 0,

(46)

∫
Ω0

[
δθα

0 (Iuu
14 ü0 + Iuu

43

∂ẅ0

∂α
+ Iuu

44 θ̈
α

0 + Iτu
14

¨̄τ zα + Iτu
24

¨̃τ zα) + δ
∂θα

∂α
(M?14

αα +M?24
ββ )

+ δ
∂θα

∂β
(M54

αβ) + δθα(Q44
zα)

]
dα dβ −

∮
Γα

δθα(M̂14
αβ)dα−

∮
Γβ

δθα(M̂14
αα)dβ = 0, (47)

∫
Ω0

[
δθβ

0 (Iuu
25 v̈0 + Iuu

35

∂ẅ0

∂β
+ Iuu

55 θ̈
β

0 + Iτu
35

¨̄τβz + Iτu
45

¨̃τβz) + δ
∂θβ

∂β
(M?15

αα +M?25
ββ )

+ δ
∂θβ

∂α
(M55

αβ) + δθβ(Q35
βz)

]
dα dβ −

∮
Γα

δθβ(M̂25
ββ)dα−

∮
Γβ

δθβ(M̂25
αβ)dβ = 0. (48)
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In a similar way, for the generalized surface stress variables, δτ̄ zα, δτ̃ zα, δτ̄βz and δτ̃βz, one
gets∫

Ω0

[
δτ̄ zα(Iτu

11 ü0 + Iτu
13

∂ẅ0

∂α
+ Iτu

14 θ̈α + Iττ
11

¨̄τ zα + Iττ
12

¨̃τ zα) + δ
∂τ̄ zα

∂α
(T ?11

αα + T ?21
ββ )

+ δτ̄ zα(T 41
zα) + δ

∂τ̄ zα

∂β
(T 51

αβ)
]
dα dβ −

∮
Γα

δτ̄ zα(T̂ 11
βα)dα−

∮
Γβ

δτ̄ zα(T̂ 11
αα)dβ = 0, (49)

∫
Ω0

[
δτ̃ zα(Iτu

21 ü0 + Iτu
23

∂ẅ0

∂α
+ Iτu

24 θ̈α + Iττ
12

¨̄τ zα + Iττ
22

¨̃τ zα) + δ
∂τ̃ zα

∂α
(T ?12

αα + T ?22
ββ )

+ δτ̃ zα(T 42
zα) + δ

∂τ̃ zα

∂β
(T 52

αβ)
]
dα dβ −

∮
Γα

δτ̃ zα(T̂ 12
βα)dα−

∮
Γβ

δτ̃ zα(T̂ 12
αα)dβ = 0, (50)

∫
Ω0

[
δτ̄βz(I

τu
32 v̈0 + Iτu

33

∂ẅ0

∂β
+ Iτu

35 θ̈β + Iττ
33

¨̄τβz + Iττ
34

¨̃τβz) + δ
∂τ̄βz

∂β
(T ?13

αα + T ?23
ββ )

+ δτ̄βz(T
33
βz ) + δ

∂τ̄βz

∂α
(T 53

αβ)
]
dα dβ −

∮
Γα

δτ̄βz(T̂
23
ββ)dα−

∮
Γβ

δτ̄βz(T̂
23
αβ)dβ = 0, (51)

∫
Ω0

[
δτ̃βz(I

τu
42 v̈0 + Iτu

43

∂ẅ0

∂β
+ Iτu

45 θ̈β + Iττ
34

¨̄τβz + Iττ
44

¨̃τ zα) + δ
∂τ̃βz

∂β
(T ?14

αα + T ?24
ββ )

+ δτ̃βz(T
34
βz ) + δ

∂τ̃βz

∂α
(T 54

αβ)
]
dα dβ −

∮
Γα

δτ̃βz(T̂
24
ββ)dα−

∮
Γβ

δτ̃βz(T̂
24
αβ)dβ = 0. (52)

The previous equations are the weak forms of the governing equations of the doubly-curved
orthotropic generic elastic shell layer. As can be seen, the 3-D problem has been brought to a
2-D form in function of the reference surface curvilinear coordinates α and β. Hence, the FE
solution of the shell problem can be derived in a manner similar to that of plates with some ad-
ditional terms regarding the curvatures. It is worthy to mention that in the present refined shell
theory no assumptions regarding the thinness of the shell were considered and as a consequence
the formulation fully accounts for the effects of the z/Rα and z/Rβ terms. Additionally, the
”mixed” partially refined theory also considers additional generalized variables concerning the
shear stresses on the top and bottom surfaces of the shell layer which will be used at the elemen-
tal FE level to impose transverse interlaminar (interlayer) continuity of the shear stresses and
homogeneous shear stress conditions on the top and bottom global surfaces of the multilayer
shell.

Constitutive Equations of the Internal Forces and Moments

The strains, and there by the stresses, of the proposed theory where shown to be non-linearly
dependent across the thickness of a thick anisotropic elastic shell. Thus, as far as the math-
ematical model is concerned, it is convenient to integrate the stress distributions through the
thickness of the shell and to replace the usual consideration of stress by statically equivalent
internal forces and moments. By performing such integration, the variations with respect to
the thickness coordinate z are completely eliminated to yield a 2-D mathematical model of the

20 Editors: J.F. Silva Gomes and Shaker A. Meguid



5th International Conference on Mechanics and Materials in Design

3-D physical problem. These integrations were carried out in Appendix, and the virtual work
quantities of Hamilton’s principle in Eq. (37) were expressed in terms of internal forces and
moments.

Contrarily to what is often presented in the literature, and since the thickness terms z/Rα and
z/Rβ were fully retained in the formulation, in the definitions of force and moment resultants
given in Eqs. (A26) and (A28) of the Appendix one may notice that the symmetry of the stress
tensor (that is, σαβ = σβα) doesn’t necessarily implies that the correspondent force resultants
or the moment resultants are equal, even if we consider the restriction of dealing with a doubly-
curved shell as stated in Eqs. (28). That relation holds only for a spherical shell, flat plate or
a thin shell of any type where the assumptions 1 + z/Rα ≈ 1 and 1 + z/Rβ ≈ 1 are taken
into account. Vanishing of the moments about the normal to the differential element yields an
additional relation among the twisting moments and twisting shear forces (cf. Reddy, 2004). In
order to avoid inconsistency associated with rigid body rotations (i.e., rigid body rotation gives
a nonvanishing torsion except for flat plates or spherical shells) the additional relation must be
accounted for in the formulation [see the treatment of Sanders which is described for example
by Kraus (1967, Sec. 3.2), Leissa (1993, Sec. 1.4.5) or Reddy (2004, Sec. 8.2.4)]. However,
if the rotation is of the same order of magnitude as the strain components, which is actually
the case in most problems, then, as noted by Koiter (1960), the torsion is negligible. Thus, for
general engineering purposes the foregoing inconsistencies can generally be overlooked which
will be the case in this work.

Next the constitutive equations that relate the internal forces and moments in Eqs. (A26) of
Appendix with the strains of the layer and/or generalized displacements are derived. To this
end it is recalled that an orthotropic elastic material is considered for the generic shell layer and
that it obeys Hooke’s law under plane-stress assumption as defined in Eq. (A14) of Appendix.
Thus, the internal in-plane forces are collected as

(N?11
αα , N

?12
αα )

(N?21
ββ , N

?22
ββ )

(N51
αβ, N

52
αβ)

 =

〈
σαα(z?εu

11 , z
?εu
12 )

σββ(z?εu
21 , z

?εu
22 )

σαβ(zεu
51 , z

εu
52 )


〉

, (53)

where for convenience 〈. . .〉 denotes thickness integration defined as

〈. . .〉 =

∫ +h

−h

(. . .)
1

z
(0)
α z

(0)
β

dz. (54)

Considering the constitutive behavior in Eq. (A14) yields
(N?11

αα , N
?12
αα )

(N?21
ββ , N

?22
ββ )

(N51
αβ, N

52
αβ)

 =

〈c̄∗11 c̄∗12 0
c̄∗12 c̄∗22 0
0 0 c̄∗66


εαα(z?εu

11 , z
?εu
12 )

εββ(z?εu
21 , z

?εu
22 )

εαβ(zεu
51 , z

εu
52 )


〉

. (55)

Similarly, the out-of-plane forces are collected as{(
Q32

βz, Q
33
βz, Q

35
βz

)
(Q41

zα, Q
43
zα, Q

44
zα)

}
=

〈{
σβz(z

εu
32 , z

εu
33 , z

εu
35 )

σzα(zεu
41 , z

εu
43 , z

εu
44 )

}〉
, (56)

which are expressed in terms of the shear strains as{(
Q32

βz, Q
33
βz, Q

35
βz

)
(Q41

zα, Q
43
zα, Q

44
zα)

}
=

〈[
c̄44 0
0 c̄55

]{
εβz(z

εu
32 , z

εu
33 , z

εu
35 )

εzα(zεu
41 , z

εu
43 , z

εu
44 )

}〉
. (57)
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The moment resultants of the in-plane stresses are collected and expressed by
(M?131

αα ,M?132
αα ,M?14

αα ,M
?15
αα )

(M?231
ββ ,M?232

ββ ,M?24
ββ ,M

?25
ββ )

(M53
αβ,M

54
αβ,M

55
αβ)

 =

〈
σαα(z?εu1

13 , z?εu2
13 , z?εu

14 , z
?εu
15 )

σββ(z?εu1
23 , z?εu2

23 , z?εu
24 , z

?εu
25 )

σαβ(zεu
53 , z

εu
54 , z

εu
55 )


〉

. (58)

Similarly to what has been considered for the in-plane forces in Eq. (55), the internal moments
are re-written as

(M?131
αα ,M?132

αα ,M?14
αα ,M

?15
αα )

(M?231
ββ ,M?232

ββ ,M?24
ββ ,M

?25
ββ )

(M53
αβ,M

54
αβ,M

55
αβ)

 =

〈c̄∗11 c̄∗12 0
c̄∗12 c̄∗22 0
0 0 c̄∗66


εαα(z?εu1

13 , z?εu2
13 , z?εu

14 , z
?εu
15 )

εββ(z?εu1
23 , z?εu2

23 , z?εu
24 , z

?εu
25 )

εαβ(zεu
53 , z

εu
54 , z

εu
55 )


〉

.

(59)
By last, in a similar way to what has been done in Eqs. (55) and (57), the resultants of the
stresses related with the interlayer surface stresses are expressed by

(T ?11
αα , T

?12
αα , T

?13
αα , T

?14
αα )(

T ?21
ββ , T

?22
ββ , T

?23
ββ , T

?24
ββ

)(
T 51

αβ, T
52
αβ, T

53
αβ, T

54
αβ

)
 =

〈c̄∗11 c̄∗12 0
c̄∗12 c̄∗22 0
0 0 c̄∗66


εαα(z?ετ

11 , z
?ετ
12 , z

?ετ
13 , z

?ετ
14 )

εββ(z?ετ
21 , z

?ετ
22 , z

?ετ
23 , z

?ετ
24 )

εαβ(zετ
51 , z

ετ
52 , z

ετ
53 , z

ετ
54)


〉

, (60)

and {(
T 33

βz , T
34
βz

)
(T 41

zα, T
42
zα)

}
=

〈[
c̄44 0
0 c̄55

]{
εβz(z

ετ
33 , z

ετ
34)

εzα(zετ
41 , z

ετ
42)

}〉
. (61)

For the sake of simplicity and easiness of reading of the internal forces and moments, the pre-
vious equations are not developed here in terms of the generalized displacements. The reader is
referred to the Appendix for a more detailed derivation of these formulae.

FINITE ELEMENT SOLUTION

Preliminary Comments on the FE Solution of the Fully and Partially Refined Models

In this section the FE solution of the weak form of the governing equations of the partially
refined mathematical model of doubly curved shells in Eqs. (44)-(52) is developed. Regarding
the FE solution of the fully refined model, it will not be derived here for reasons related with the
complexity of the formulation. As can be seen from the fully refined definitions of the displace-
ment field presented in Eqs. (20), (23) and (24), the fully refined weak forms would involve
high-order derivatives of the generalized displacements which would complicate the formula-
tion and FE solution dramatically. That would require higher order continuity of the variables,
which would be cumbersome for FE solutions, with the outcome of considering an equivalent
2-D theory fully representative of the 3-D elasticity problem. It is well known, however, that
in the major part of the problems, the transverse stress is small when compared with the other
stress components (see Robbins and Chopra, 2006). An exception is, for example, in thermo-
mechanical analysis where the transverse stress σzz plays an important role (see Carrera, 1999,
2005), which is not the case here. That refinement is not pursued here since the trade-off be-
tween accuracy and complexity is not appellative for the physical problem to be treated in this
work.

Spatial Approximation

For the sake of brevity the weak forms of the partially refined model in Eqs. (44)-(52) are
expressed in terms of the internal forces and moments (stress resultants). However, if the con-
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stitutive equations of the internal forces and moments (detailed in the Appendix) are taken into
account, the weak forms can still be expressed in terms of the generalized variables. That will
not be made here explicitly, but those relations will be implicitly taken into account to derive
the elemental matrices and vectors.

Thus, from the analysis of the weak forms in (44)-(52) and/or the internal forces and moments
detailed in the Appendix, it can be seen that they contain at the most first-order derivatives of
the generalized displacements, u0, v0, θα and θβ , and surface stresses, τ̄ zα, τ̃ zα, τ̄βz and τ̃βz,
requiring C0 continuity. Furthermore, and in contrast to what is traditionally obtained with the
FSDT, the present partial refined model contain also at the most second-order derivatives of
the transverse displacement w0, requiring C1 continuity, which is something that is typically
obtained with the CLT. Thus, the partially refined model, at first sight, yields something that
resembles a blend of the CLT and FSDT. Therefore, the displacement variables, u0, v0, θα, θβ ,
w0, ∂w0/∂α, ∂w0/∂β and (or not) ∂2w0/∂α∂β (nonconforming or conforming elemental ap-
proaches), and shear stress variables, τ̄ zα, τ̃ zα, τ̄βz and τ̃βz, must be carried as nodal variables
in order to enforce their interelement continuity.

For the FE solution, linear Lagrange C0 continuity rectangular interpolation functions might be
used to approximate all the displacement and stress variables whereas the generalized transverse
displacement w0 should be approximated using Hermite C1 continuity rectangular interpolation
functions over a four-noded element Ωe

0. The combined conforming or nonconforming elements
have a total of 12 or 11 degrees of freedom (DoFs) per node, respectively. Therefore, let

u0(α, β, t) ≈
n∑

j=1

ūj
0(t)L

e
j(α, β), v0(α, β, t) ≈

n∑
j=1

v̄j
0(t)L

e
j(α, β),

θα(α, β, t) ≈
n∑

j=1

θ̄
j
α(t)Le

j(α, β), θβ(α, β, t) ≈
n∑

j=1

θ̄
j
β(t)Le

j(α, β),

τ̄ zα(α, β, t) ≈
n∑

j=1

¯̄τ j
zα(t)Le

j(α, β), τ̃ zα(α, β, t) ≈
n∑

j=1

¯̃τ j
zα(t)Le

j(α, β), (62)

τ̄βz(α, β, t) ≈
n∑

j=1

¯̄τ j
βz(t)L

e
j(α, β), τ̃βz(α, β, t) ≈

n∑
j=1

¯̃τ j
βz(t)L

e
j(α, β),

w0(α, β, t) ≈
m∑

r=1

w̄r
0(t)H

e
r (α, β),

where (ūj
0, v̄

j
0, θ̄

j
α, θ̄

j
β) and (¯̄τ j

zα, ¯̃τ
j
zα, ¯̄τ

j
βz,

¯̃τ j
βz) denote the values of the generalized in-plane dis-

placements, rotations and surface shear stresses at the jth node of the Lagrange elements, w̄r
0

denote the values of w0 and its derivatives with respect to α and β at the nodes of the Hermite
elements, and Le

j and He
r are the Lagrange and Hermite elemental interpolation functions, re-

spectively. For the conforming four-noded rectangular element (n = 4 and m = 12) the total
number of DoFs per element is 48 and for the nonconforming is 44.

Discrete Finite Element Equations of the Shell Layer

Substituting the spatial approximations of the generalized displacements and surface stresses
in Eqs. (62) into the weak forms in Eqs. (44)-(52), the ith equation associated with each weak
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form is given as

n∑
j=1

(M11
ij

¨̄uj
0 +M14

ij
¨̄θj

α +M16
ij

¨̄̄τ j
zα +M17

ij
¨̃̄τ j

zα +K11
ij ū

j
0 +K12

ij v̄
j
0 +K14

ij θ̄
j
α +K15

ij θ̄
j
β

+K16
ij

¯̄τ j
zα +K17

ij
¯̃τ j

zα +K18
ij

¯̄τ j
βz +K19

ij
¯̃τ j

βz) +
m∑

r=1

(M13
ir

¨̄wr
0 +K13

ir w̄
r
0)− F 1

i = 0, (63)

n∑
j=1

(M22
ij

¨̄vj
0 +M25

ij
¨̄θj

β +M28
ij

¨̄̄τ j
βz +M29

ij
¨̃̄τ j

βz +K21
ij ū

j
0 +K22

ij v̄
j
0 +K24

ij θ̄
j
α +K25

ij θ̄
j
β

+K26
ij

¯̄τ j
zα +K27

ij
¯̃τ j

zα +K28
ij

¯̄τ j
βz +K29

ij
¯̃τ j

βz) +
m∑

r=1

(M23
ir

¨̄wr
0 +K23

ir w̄
r
0)− F 2

i = 0, (64)

n∑
j=1

(M31
rj

¨̄uj
0+M

32
rj

¨̄vj
0+M

34
rj

¨̄θj
α+M35

rj
¨̄θj

β+M36
rj

¨̄̄τ j
zα+M37

rj
¨̃̄τ j

zα+M38
rj

¨̄̄τ j
βz+M

39
rj

¨̃̄τ j
βz+K

31
rj ū

j
0+K

32
rj v̄

j
0

+K34
rj θ̄

j
α+K35

rj θ̄
j
β +K36

rj
¯̄τ j

zα+K37
rj

¯̃τ j
zα+K38

rj
¯̄τ j

βz+K
39
rj

¯̃τ j
βz)+

m∑
s=1

(M33
rs

¨̄ws
0+K

33
rs w̄

s
0)−F 3

r = 0,

(65)

n∑
j=1

(M41
ij

¨̄uj
0 +M44

ij
¨̄θj

α +M46
ij

¨̄̄τ j
zα +M47

ij
¨̃̄τ j

zα +K41
ij ū

j
0 +K42

ij v̄
j
0 +K44

ij θ̄
j
α +K45

ij θ̄
j
β

+K46
ij

¯̄τ j
zα +K47

ij
¯̃τ j

zα +K48
ij

¯̄τ j
βz +K49

ij
¯̃τ j

βz) +
m∑

r=1

(M43
ir

¨̄wr
0 +K43

ir w̄
r
0)− F 4

i = 0, (66)

n∑
j=1

(M52
ij

¨̄vj
0 +M55

ij
¨̄θj

β +M58
ij

¨̄̄τ j
βz +M59

ij
¨̃̄τ j

βz +K51
ij ū

j
0 +K52

ij v̄
j
0 +K54

ij θ̄
j
α +K55

ij θ̄
j
β

+K56
ij

¯̄τ j
zα +K57

ij
¯̃τ j

zα +K58
ij

¯̄τ j
βz +K59

ij
¯̃τ j

βz) +
m∑

r=1

(M53
ir

¨̄wr
0 +K53

ir w̄
r
0)− F 5

i = 0, (67)

n∑
j=1

(M61
ij

¨̄uj
0 +M64

ij
¨̄θj

α +M66
ij

¨̄̄τ j
zα +M67

ij
¨̃̄τ j

zα +K61
ij ū

j
0 +K62

ij v̄
j
0 +K64

ij θ̄
j
α +K65

ij θ̄
j
β

+K66
ij

¯̄τ j
zα +K67

ij
¯̃τ j

zα +K68
ij

¯̄τ j
βz +K69

ij
¯̃τ j

βz) +
m∑

r=1

(M63
ir

¨̄wr
0 +K63

ir w̄
r
0)− F 6

i = 0, (68)

n∑
j=1

(M71
ij

¨̄uj
0 +M74

ij
¨̄θj

α +M76
ij

¨̄̄τ j
zα +M77

ij
¨̃̄τ j

zα +K71
ij ū

j
0 +K72

ij v̄
j
0 +K74

ij θ̄
j
α +K75

ij θ̄
j
β

+K76
ij

¯̄τ j
zα +K77

ij
¯̃τ j

zα +K78
ij

¯̄τ j
βz +K79

ij
¯̃τ j

βz) +
m∑

r=1

(M73
ir

¨̄wr
0 +K73

ir w̄
r
0)− F 7

i = 0, (69)
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n∑
j=1

(M82
ij

¨̄vj
0 +M85

ij
¨̄θj

β +M88
ij

¨̄̄τ j
βz +M89

ij
¨̃̄τ j

βz +K81
ij ū

j
0 +K82

ij v̄
j
0 +K84

ij θ̄
j
α +K85

ij θ̄
j
β

+K86
ij

¯̄τ j
zα +K87

ij
¯̃τ j

zα +K88
ij

¯̄τ j
βz +K89

ij
¯̃τ j

βz) +
m∑

r=1

(M83
ir

¨̄wr
0 +K83

ir w̄
r
0)− F 8

i = 0, (70)

n∑
j=1

(M92
ij

¨̄vj
0 +M95

ij
¨̄θj

β +M98
ij

¨̄̄τ j
βz +M99

ij
¨̃̄τ j

βz +K91
ij ū

j
0 +K92

ij v̄
j
0 +K94

ij θ̄
j
α +K95

ij θ̄
j
β

+K96
ij

¯̄τ j
zα +K97

ij
¯̃τ j

zα +K98
ij

¯̄τ j
βz +K99

ij
¯̃τ j

βz) +
m∑

r=1

(M93
ir

¨̄wr
0 +K93

ir w̄
r
0)− F 9

i = 0, (71)

where i = 1, . . . , n, and r = 1, . . . ,m. The coefficients of the mass matrix Mxy
ij = Myx

ji ,
stiffness matrix Kxy

ij = Kyx
ji and force vectors F x

i are given in the Appendix.

In matrix notation Eqs. (63)-(71) can be expressed in terms of the elemental matrices and vectors
of the generic layer l as[

Ml
uu Ml

uτ

Ml
τu Ml

ττ

]{
¨̄u

l
(t)

¨̄τ
l
(t)

}
+

[
Kl

uu Kl
uτ

Kl
τu Kl

ττ

]{
ūl(t)
τ̄ l(t)

}
=

{
Fl

u(t)
Fl

τ (t)

}
, (72)

where, since Kyx = (Kxy)T and Myx = (Mxy)T one gets Ml
τu = (Ml

uτ )
T and Kl

τu = (Kl
uτ )

T,
and the matrices and vectors are defined by

Ml
uu =


M11 0 M13 M14 0
0 M22 M23 0 M25

M31 M32 M33 M34 M35

M41 0 M43 M44 0
0 M52 M53 0 M55

 , Kl
uu =


K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

 ,

(73)

Ml
uτ =


M16 M17 0 0
0 0 M28 M29

M36 M37 M38 M39

M46 M47 0 0
0 0 M58 M59

 , Kl
uτ =


M16 M17 0 0
0 0 M28 M29

M36 M37 M38 M39

M46 M47 0 0
0 0 M58 M59

 , (74)

Ml
ττ =


M66 M67 0 0
M76 M77 0 0
0 0 M88 M89

0 0 M98 M99

 , Kl
ττ =


K66 K67 K68 K69

K76 K77 K78 K79

K86 K87 K88 K89

K96 K97 K98 K99

 , (75)

ūl(t) =


ū0

v̄0

w̄0

θ̄α

θ̄β

 , τ̄ l(t) =


¯̄τ zα
¯̃τ zα

¯̄τ βz
¯̃τ βz

 , Fl
u(t) =


F1

F2

F3

F4

F5

 , Fl
τ (t) =


F6

F7

F8

F9

 . (76)
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The coupled ”mixed” FE model in Eq. (72) is based on the weak forms of the equations of
motion which where obtained through Hamilton’s principle, and is expressed in terms of a
coupled set of displacement (and the derivatives of the transverse displacement) and surface
shear stresses DoFs. It should be noted that the contributions of the internal forces defined in
vectors Fl

u and Fl
τ to the force vector will cancel when element equations are assembled. They

will remain in the force vector only when the element boundary coincides with the boundary
of the domain being modeled. However, as is well known, the contributions of the distributed
applied loads Z(α, β) to a node will add up from elements connected at the node and remain as
a part of the force vector (see Reddy, 1993, pp. 313-318).

Assemblage of Matrices from Layer to Multilayer Level

In this section the elemental equations derived for the generic single shell layer are adapted in
order to allow the generalization of the present theory to a multilayer, or discrete layer, type
formulation. To that end, since the displacements DoFs of the elemental equations of the shell
layer are defined in terms of in-plane generalized displacements in the middle surface and rota-
tions of the normals to the middle surface, first the DoFs are transformed to equivalent in-plane
displacements on the top and bottom surfaces of the generic shell layer element. Additionally,
since the effects of the surface top and bottom shear stresses have been represented in terms of
mean and relative quantities, another transformation is required to the stress DoFs to dispose
of top and bottom shear stresses DoFs. The transverse displacement is assumed constant in the
multilayer shell (i.e., is constant, and the same, for all layers). These transformations allow the
displacement and stress DoFs of different layers to be assembled imposing not only displace-
ment continuity but also shear stress continuity across the interfaces of the multilayer shell FE.
Thus, the FE is ”regenerated” (in opposition to the well-known ”degeneration” approach) in the
form of an equivalent eight-noded 3-D element with 2 in-plane displacement and 2 shear stress
DoFs per node, and one transverse displacement (and its derivatives) per element. Therefore,
the ”regenerated” formulation is suitable for assemblage of elemental matrices from single layer
to multilayer level.

The effects of the pairs of generalized variables (u0, θα) and (v0, θβ) in the global displacement
field are taken into account through new equivalent pairs of generalized variables (ut, ub) and
(vt, vb), with each pair containing the in-plane translations at the top and bottom surfaces, re-
spectively. Thus, rather than describing the in-plane displacement field by a translation and a
rotation at one point, it can more conveniently be described here by the translation at two points
on the top and bottom surfaces.

According to Eq. (33), and using the adequate coefficients of matrices zu(z = h) and zτ (z = h),
the displacement field u(α, β, z) on the top surface is given as

ut = zu
11(h)u0 + zu

13(h)
∂w0

∂α
+ zu

14(h)θα + zτ
11(h)τ̄ zα + zτ

12(h)τ̃ zα. (77)

Then, from the previous equation u0 = u0(α, β) is written as

u0 =
1

zu
11(h)

ut −
zu
13(h)

zu
11(h)

∂w0

∂α
− zu

14(h)

zu
11(h)

θα −
zτ
11(h)

zu
11(h)

τ̄ zα −
zτ
12(h)

zu
11(h)

τ̃ zα. (78)
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Substituting the definition of u0 = u0(α, β, z = 0) in terms of ut = ut(α, β, z = h) yields

u =
zu
11

zu
11(h)

ut +

[
zu
13 − zu

11

zu
13(h)

zu
11(h)

]
∂w0

∂α
+

[
zu
14 − zu

11

zu
14(h)

zu
11(h)

]
θα

+

[
zτ
11 − zu

11

zτ
11(h)

zu
11(h)

]
τ̄ zα +

[
zτ
12 − zu

11

zτ
12(h)

zu
11(h)

]
τ̃ zα. (79)

From the previous equation it can be seen that some transformations to the first line of matrices
zu(z) and zτ (z) were performed in order to make a transformation of the generalized in-plane
displacement u0 on the middle surface to the translation on the top surface ut. Performing a
similar process to eliminate the rotation θα of Eq. (79) and express the displacement u also in
terms of the translation on the bottom surface ub, another transformation is performed consid-
ering also the terms of the first line of zu(z = −h) and zτ (z = −h). Similar relations hold for
the second pair of variables (v0, θβ). For the sake of brevity the algebra of these relations will
not be be presented here but can easily be derived from the previous explanation.

Other required transformation to ”regenerate” the 2-D element is performed according to Eqs.
(4) and (5), where relationships between the mean and relative shear stresses and the shear
stresses on the interfaces of the generic shell layer σt

zα, σb
zα, σt

βz and σb
βz can be easily estab-

lished.

According to the previous discussion, the relationship between the original and ”regenerated”
set of generalized variables used to defined the in-plane displacement field can be established
by means of a transformation matrices Tu and Tτ as

ū0

v̄0

w̄0

θ̄α

θ̄β

 = Tu


ūt

ūb

v̄t

v̄b

w̄

 ,


¯̄τ zα
¯̃τ zα

¯̄τ βz
¯̃τ βz

 = Tτ


σ̄t

zα

σ̄b
zα

σ̄t
βz

σ̄b
βz

 . (80)

Performing the previous transformations into the FE elemental matrices in Eq. (72), where
the elemental matrices and vectors are transformed according to (similar relations hold for the
stiffness matrices)

M∗l
uu = TT

uM
l
uuTu, M∗l

ττ = TT
τM

l
ττTτ , M∗l

uτ = TT
uM

l
uτTτ ,

F∗l
u = TT

uF
l
u, F∗l

τ = TT
τF

l
τ ,

(81)

yields [
M∗l

uu M∗l
uτ

M∗l
τu M∗l

ττ

]{
¨̄u
∗l
(t)

¨̄τ
∗l
(t)

}
+

[
K∗l

uu K∗l
uτ

K∗l
τu K∗l

ττ

]{
ū∗l(t)
τ̄ ∗l(t)

}
=

{
F∗l

u (t)
F∗l

τ (t)

}
, (82)

From this point forward, the generic layer elemental matrices can be assembled in the thickness
direction in order to create the desired multilayer FE according to the representative multi-
layer shell model to be generated. Displacement and shear stress continuity at the through-the-
thickness interfaces of adjacent elements (discrete layers) is imposed in the assemblage process,
as is usually done with the displacement DoF of 3-D elements, and it is assumed that no slip-
page occurs in the interfaces between adjacent layers. It is worthy to mention that the resultant
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multilayer elemental matrices are needed, for example, when there is the need to consider seg-
mented layers, as is the case when dealing with arbitrary damping treatments (piezoelectric or
viscoelastic patches) mounted on a host shell structure or stiffness reinforcements in a particular
zone of a composite shell structure. After the through-the-thickness assemblage, the multilayer
elemental matrices are written as[

Me
uu Me

uτ

Me
τu Me

ττ

]{
¨̄u

e
(t)

¨̄τ
e
(t)

}
+

[
Ke

uu Ke
uτ

Ke
τu Ke

ττ

]{
ūe(t)
τ̄ e(t)

}
=

{
Fe

u(t)
Fe

τ (t)

}
, (83)

where the superscript (·)e is used to denote multilayer elemental matrices and vectors.

Assuming homogeneous shear stress conditions on the free top and bottom surfaces of the
multilayer shell element and performing a dynamic condensation to the shear stress DoFs, as
suggested for a generic system, for example, by Kidder (1973), O’Callahan (1989) or Gordis
(1994), one gets the multilayer FE elemental equations in terms of elemental reduced matrices
and vectors in terms of only displacement variables as

M̂e
uu

¨̄u
e
(t) + K̂e

uuū
e(t) = F̂e

u(t). (84)

A generic fully discretized global electro-mechanical system is obtained by ”in-plane” assem-
bling the elemental multilayer FE matrices and vectors yielding

Muu¨̄u(t) + Kuuū(t) = Fu(t), (85)

where the superscript (·)e and the hat above the elemental matrices and vectors have been
dropped to denote global matrices and vectors of the fully discretized FE model.

CONCLUSION

Based on a fully refined mathematical model of general anisotropic shells a ”mixed” FE model
has been conceptually proposed for multilayer shells. However, for practical reasons, related
with the complexity of the formulation, simplifications regarding the through-the-thickness dis-
tribution of the transverse displacement were considered and a partially refined theory was
derived with additional restrictions inherent to doubly-curved orthotropic shells physics. No
simplifications regarding the thinness of the shell were considered and a plane stress state was
considered for the partially refined theory.

It was shown that the refined assumptions and relaxation of some of Love’s classical assump-
tions led to a ”mixed” definition of the displacement field in terms of the same generalized
displacements of the FSDT and CLT, and shear stresses on the top and bottom surfaces. The
governing equations of a generic single layer of the multilayered shell were derived with Hamil-
ton’s principle in conjunction with the ”mixed” displacement field definition. The DoFs of
the resultant four-noded generic elastic single layer FE model were then ”regenerated” into
an equivalent eight-node 3-D formulation in terms of top and bottom translations and shear
stresses, and a transverse displacement (and its derivatives) constant in the elemental volume.
The through-the-thickness assemblage of the ”regenerated” FE model of the single layer al-
lowed the generation of a ”refined” multilayer FE assuring displacement and shear stress in-
terlayer continuity. The dynamic condensation of the stress DoFs allowed the reduction of the
refined multilayer piezo-elastic FE to a an equivalent representation similar in structure to the
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one obtained with a first-order partial layerwise theory, but considering nonlinear in-plane dis-
placements, quadratic shear stresses definitions and also interlayer continuity and homogeneous
conditions of the shear stresses at the top and bottom surfaces of the multilayer FE.

The resultant partially refined ”mixed” FE model presents a good trade-off between accuracy
and complexity and is therefore expected to yield a good representativeness of doubly curved
orthotropic shells with segmented (discontinuous) layers in static and vibration analysis.

APPENDIX

Strain-Displacement and Equilibrium Equations in Orthogonal Curvilinear Coordinates

Taking into account that for shell structures Hz = 1, from the equations of 3-D theory of
elasticity, the strain components of the shell layer are defined as a function of displacements by
Sokolnikoff (1956, pp. 177-184) as

εαα =
1

Hα

∂u

∂α
+

1

HαHβ

∂Hα

∂β
v +

1

Hα

∂Hα

∂z
w, εzα = Hα

∂

∂z

(
u

Hα

)
+

1

Hα

∂w

∂α
,

εββ =
1

HαHβ

∂Hβ

∂α
u+

1

Hβ

∂v

∂β
+

1

Hβ

∂Hβ

∂z
w, εβz = Hβ

∂

∂z

(
v

Hβ

)
+

1

Hβ

∂w

∂β
,

εαβ =
Hα

Hβ

∂

∂β

(
u

Hα

)
+
Hβ

Hα

∂

∂α

(
v

Hβ

)
, εzz =

∂w

∂z
,

(A1)

where u = u (α, β, z), v = v (α, β, z) and w = w (α, β, z) are the displacement components of
an arbitrary point of the shell in the directions of the tangents to the coordinate lines (α, β, z),
respectively.

The equilibrium equations of a differential element of the body of the shell layer in the tri-
orthogonal system of curvilinear coordinates (Sokolnikoff, 1956) is represented by the partial
differential equations

∂

∂α
(Hβσαα) +

∂

∂β
(Hασαβ) +

∂

∂z
(HαHβσzα)

− ∂Hβ

∂α
σββ −

∂Hα

∂β
σαβ +Hβ

∂Hα

∂z
σzα +HαHβPα = 0,

∂

∂β
(Hασββ) +

∂

∂α
(Hβσαβ) +

∂

∂z
(HαHβσβz)

− ∂Hα

∂β
σαα −

∂Hβ

∂α
σαβ +Hα

∂Hβ

∂z
σzβ +HαHβPβ = 0, (A2)

∂

∂z
(HαHβσzz) +

∂

∂α
(Hβσzα) +

∂

∂β
(Hασβz)

−Hβ
∂Hα

∂z
σαα −Hα

∂Hβ

∂z
σββ +HαHβPz = 0,

where Pα = Pα (α, β, z), Pβ = Pβ (α, β, z) and Pz = Pz (α, β, z) are the corresponding projec-
tions of the volumetric force in the direction of the tangents to the shell curvilinear coordinate
system.
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First Order Shear Deformation Theory (FSDT) of Anisotropic Shells

According to Love’s first approximation assumptions for thin shells (the so-called classical
Kirchhoff-Love theory of shells), the following strain and stress definitions are derived for
anisotropic shells, by relaxing the so-called Kirchhoff’s hypothesis that normals to the unde-
formed middle surface remain straight and normal to the deformed middle surface and suffer
no extension (see Leissa, 1993, Sec. 1.3). Instead, it is considered that normals before deforma-
tion remain straight but not necessarily normal after deformation, which basically relaxes the
condition of nil out-of-plane shear strains. That theory is known as FSDT, or Reissner-Mindlin
theory applied to shells, and over the years has been shown to be a more accurate approach for
modeling moderately thick shells.

Consistent with the assumptions of a moderately thick shell theory, the displacement compo-
nents were postulated as

u∗(α, β, z) = u0(α, β) + zθα(α, β),

v∗(α, β, z) = v0(α, β) + zθβ(α, β),

w∗(α, β, z) = w0(α, β),

(A3)

where u0 = u0(α, β), v0 = v0(α, β) and w0 = w0(α, β) are the tangential and transverse
displacements referred to a point on the middle surface, respectively, and θα = θα(α, β) and
θβ = θβ(α, β) are the rotations of a normal to the reference middle surface.

Thus, taken into account the strain-displacement equations of the 3-D elasticity in orthogonal
curvilinear coordinates in Eqs. (A1), as proposed by Byrne, Flügge, Goldenveizer, Lur’ye and
Novozhilov between the 1940s and 1960s (cf. Leissa, 1993, Sec. 1.4), and in a similar form to
what has been presented, for example, by Reddy (2004, Sec. 8.2.3) or Leissa (1993, Sec. 1.4.1),
the in-plane strain definitions are given as

ε∗αα (α, β, z) = z
(0)
α ε

∗(0)
αα (α, β) + z

(1)
α ε

∗(1)
αα (α, β) ,

ε∗ββ (α, β, z) = z
(0)
β ε

∗(0)
ββ (α, β) + z

(1)
β ε

∗(1)
ββ (α, β) ,

ε∗αβ (α, β, z) = z
(0)
αβ ε

∗(0)
αβ (α, β) + z

(1)
αβ ε

∗(1)
αβ (α, β) ,

(A4)

where

z
(i)
α =

zi

(1 + z/Rα)
, z

(0)
αβ = z

(0)
α z

(0)
β

(
1− z2

RαRβ

)
,

z
(i)
β =
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(1 + z/Rβ)
, z

(1)
αβ = z

(0)
α z

(0)
β z

(
1 +

z

2Rα

+
z

2Rβ

)
,

(A5)

with i = 0, 1 and

ε∗(0)
αα (α, β) =

1

Aα

∂u0

∂α
+

v0

AαAβ

∂Aα

∂β
+
w0

Rα

,

ε
∗(0)
ββ (α, β) =

1

Aβ

∂v0

∂β
+

u0

AαAβ

∂Aβ

∂α
+
w0

Rβ

,

ε
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αβ (α, β) =

Aα

Aβ

∂
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(
u0

Aα

)
+
Aβ

Aα

∂
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(
v0

Aβ

)
,

ε∗(1)
αα (α, β) =

1

Aα

∂θα

∂α
+

1

AαAβ

∂Aα

∂β
θβ , (A6)
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ε
∗(1)
ββ (α, β) =

1

Aβ

∂θβ

∂β
+

1

AαAβ

∂Aβ

∂α
θα,

ε
∗(1)
αβ (α, β) =

Aα

Aβ

∂

∂β

(
θα

Aα

)
+
Aβ

Aα

∂

∂α

(
θβ

Aβ

)
+

1

Rα

(
1

Aβ

∂u0

∂β
− 1

AαAβ

∂Aβ

∂α
v0

)
+

1

Rβ

(
1

Aα

∂v0

∂α
− 1

AαAβ

∂Aα

∂β
u0

)
.

Regarding the previous strain definitions it is worthy to mention that the zero-order terms ε∗(0)αα ,
ε
∗(0)
ββ and ε∗(0)

αβ represent the normal (membrane) and shearing strains of the reference surface,
respectively, and the first order terms ε∗(1)αα , ε∗(1)ββ and ε

∗(1)
αβ represent the linearly distributed

bending components of strain and the torsion of the reference surface during deformation.

Considering the anisotropic (rotated orthotropic) plane-stress constitutive behavior presented in
Eq. (A14), the in-plane stresses are given as

σ∗αα (α, β, z) = c̄∗11ε
∗
αα (α, β, z) + c̄∗12ε

∗
ββ (α, β, z) + c̄∗16ε

∗
αβ (α, β, z)

= σ∗(0)
αα (α, β, z) + σ∗(1)αα (α, β, z) ,

σ∗ββ (α, β, z) = c̄∗12ε
∗
αα (α, β, z) + c̄∗22ε

∗
ββ (α, β, z) + c̄∗26ε

∗
αβ (α, β, z)

= σ
∗(0)
ββ (α, β, z) + σ

∗(1)
ββ (α, β, z) , (A7)

σ∗αβ (α, β, z) = c̄∗16ε
∗
αα (α, β, z) + c̄∗26ε

∗
ββ (α, β, z) + c̄∗66ε

∗
αβ (α, β, z)

= σ
∗(0)
αβ (α, β, z) + σ

∗(1)
αβ (α, β, z) ,

where in a similar way to the zero-order and first-order strain definitions, Eqs. (A7) are split
into zero-order and first-order stress components, where, for example, for the first of Eqs. (A7),

σ
∗(0)
αα (α, β, z) = z

(0)
α c̄∗11ε

∗(0)
αα (α, β) + z

(0)
β c̄∗12ε

∗(0)
ββ (α, β) + z

(0)
αβ c̄

∗
16ε

∗(0)
αβ (α, β) ,

σ
∗(1)
αα (α, β, z) = z

(1)
α c̄∗11ε

∗(1)
αα (α, β) + z

(1)
β c̄∗12ε

∗(1)
ββ (α, β) + z

(1)
αβ c̄

∗
16ε

∗(1)
αβ (α, β) .

(A8)

Similar relations hold for the second and third Eqs. of (A7) which for the sake of brevity are not
presented here.

Elastic Constitutive Behavior

The linear elastic constitutive equation in engineering notation is given by

σ = Cε, (A9)

where σ and ε are the stress and strain vectors and C is the elasticity matrix appropriate for the
material. The elastic material is assumed to be rotated orthotropic (anisotropic), with the axes
of orthotropy not necessarily parallel (arbitrary orientation of the generic shell layer) to the axes
of principal curvature of the shell layer (α, β, z). Representing Eq. (A9) with their full matrix
and vector terms yields

σαα

σββ

σzz

σβz

σzα

σαβ


=


c̄11 c̄12 c̄13 0 0 c̄16
c̄12 c̄22 c̄23 0 0 c̄26
c̄13 c̄23 c̄33 0 0 c̄36
0 0 0 c̄44 c̄45 0
0 0 0 c̄45 c̄55 0
c̄16 c̄26 c̄36 0 0 c̄66





εαα

εββ

εzz

εβz

εzα

εαβ


(A10)
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The relationships between the problem quantities c̄ij (i, j = 1, . . . , 6) and the original material
cij when the material system αβ-plane is rotated an angle +θ (rotating from α to β) around the
z-axis are given by

c̄11 = c11 cos4 θ + 2 (c12 + 2c66) sin2 θ cos2 θ + c22 sin4 θ,
c̄12 = c12

(
sin4 θ + cos4 θ

)
+ (c11 + c22 − 4c66) sin2 θ cos2 θ,

c̄13 = c13 cos2 θ + c23 sin2 θ,
c̄16 = (c11 − c12 − 2c66) sin θ cos3 θ + (c12 − c22 + 2c66) sin3 θ cos θ,
c̄22 = c11 sin4 θ + 2 (c12 + 2c66) sin2 θ cos2 θ + c22 cos4 θ,
c̄23 = c13 sin2 θ + c23 cos2 θ,
c̄26 = (c11 − c12 − 2c66) sin3 θ cos θ + (c12 − c22 + 2c66) sin θ cos3 θ,
c̄33 = c33,
c̄36 = (c13 − c23) sin θ cos θ,
c̄44 = c44 cos2 θ + c55 sin2 θ,
c̄45 = (c55 − c44) sin θ cos θ,
c̄55 = c55 cos2 θ + c44 sin2 θ,
c̄66 = 2(c11 + c22 − 2c12) sin2 θ cos2 θ + c66(sin

2 θ − cos2 θ)2.

(A11)

Similar relations to Eq. (A9) can be expressed for the full strain-stress relationship,

ε = Sσ, (A12)

where S is the compliance matrix, which in matrix form is written as

εαα

εββ

εzz

εβz

εzα

εαβ


=


s̄11 s̄12 s̄13 0 0 s̄16

s̄12 s̄22 s̄23 0 0 s̄26

s̄13 s̄23 s̄33 0 0 s̄36

0 0 0 s̄44 s̄45 0
0 0 0 s̄45 s̄55 0
s̄16 s̄26 s̄36 0 0 s̄66





σαα

σββ

σzz

σβz

σzα

σαβ


, (A13)

where the problem quantities s̄ij might be obtained from the relationships S = C−1 by taking
the matrix C defined in Eq. (A10).

If one now reduces Eq. (A10) to the plane-stress constitutive behavior, where σzz ≈ 0, yields
σαα

σββ

σβz

σzα

σαβ

 =


c̄∗11 c̄∗12 0 0 c̄∗16
c̄∗12 c̄∗22 0 0 c̄∗26
0 0 c̄44 c̄45 0
0 0 c̄45 c̄55 0
c̄∗16 c̄∗26 0 0 c̄∗66



εαα

εββ

εβz

εzα

εαβ

 , (A14)

where the elastic stiffness constants have been modified to take the plane-stress assumption into
account and are defined as

c̄∗11 = c̄11 −
(c̄13)

2

c̄33

, c̄∗22 = c̄22 −
(c̄23)

2

c̄33
, c̄∗66 = c̄66 −

(c̄36)
2

c̄33
,

c̄∗12 = c̄12 −
c̄13c̄23

c̄33

, c̄∗16 = c̄16 −
c̄13c̄36
c̄33

, c̄∗26 = c̄26 −
c̄23c̄36
c̄33

.
(A15)

Similar relations to the previous equations hold for the reduced compliances when the plane-
stress is considered.
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”Mixed” Displacement Field and Strains

According to the in-plane ”mixed” displacements definition in Eqs. (30) and taking into account
the shear angles definition in Eqs. (27), the displacement field can be expresses as

u(α, β, z, t) =
u0

z
(0)
α

+
z
∗(f)
α s̄55

z
(0)
α

(
∂w0
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z
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z
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α 2h
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v0

z
(0)
β

+
z
∗(f)
β s̄44

z
(0)
β

(
∂w0
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(0)
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∂w0
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+
z
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β s̄44

z
(0)
β
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z
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β s̄44

z
(0)
β 2h
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(A16)

or, alternatively,

u(α, β, z, t) = zu
11u0 + zu

13

∂w0

∂α
+ zu

14θα + zτ
11τ̄ zα + zτ

12τ̃ zα,

v(α, β, z, t) = zu
22v0 + zu

23

∂w0

∂β
+ zu

25θβ + zτ
23τ̄βz + zτ

24τ̃βz,
(A17)

where the zu
ij = zu

ij(z) and zτ
ir = zτ

ir(z) coefficients are given by
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(A18)

zτ
11 =

z
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α s̄∗55

z
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z
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z
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α
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z
(0)
β

s̄∗44
2h

. (A19)

It is worthy to mention that these terms are functions of z and incorporate elastic constants of
the material and geometric variables of the shell layer.

The non-zero coefficients of matrices zεu(z) and zετ (z) used to define the strain field in Eq. (36)
are given by

zεu
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13 =
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(A20)
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and

zετ
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(A21)

Virtual Work Terms

Virtual Work of the Inertial Forces

Taking into account Eqs. (2) and the doubly-curved shells restrictions in Eqs. (28) into Eq. (39)
yields
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∂ẅ0

∂α
+ Iuu

34 θ̈
α

0 + Iτu
13

¨̄τ zα

+ Iτu
23

¨̃τ zα) + δ
∂w0

∂β
(Iuu

23 v̈0 + Iuβ
33

∂ẅ0
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dα dβ, (A22)

where
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u
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u
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u
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u
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u
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u
25)〉 , (A23)

(Iuu
44 , I
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14z
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u
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u
11, z

u
13, z
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ττ
22 ) = ρ 〈zτ
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u
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u
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u
14, z

τ
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(Iτu
32 , I
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33 , I
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35 , I

ττ
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τ
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For convenience 〈. . .〉 denotes thickness integration and it is defined by

〈. . .〉 =

∫ +h

−h

(. . .)
1

z
(0)
α z

(0)
β

dz. (A24)

Virtual Work of the Internal Mechanical Forces

Considering the strain definitions in Eq. (34), the term δU of Eq. (41) is given by

δU =

∫
Ω0

[∫ h

−h

(σααδεαα + σββδεββ + σβzδεβz + σzαδεzα + σαβδεαβ)
1

z
(0)
α z

(0)
β

dz

]
dα dβ

=

∫
Ω0
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δ
∂u0

∂α
(N?11

αα +N?21
ββ ) + δ

∂u0

∂β
(N51

αβ) + δu0(Q
41
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∂v0
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(N?12

αα +N?22
ββ )
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32
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∂2w0

∂α2
(M?132

αα ) + δ
∂2w0

∂β2 (M?232
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∂α∂β
(M53
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∂w0

∂α
(Q43
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∂w0

∂β
(Q33
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∂θα

∂α
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∂θα

∂β
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∂θβ
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dα dβ, (A25)

where(
N?11

αα , N
?12
αα ,M
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αα ,M?132
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=
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zα, Q

43
zα, Q

44
zα

)
= 〈σzα(zεu

41 , z
εu
43 , z

εu
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53 , z
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?14
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)
= 〈σαα(z?ετ

11 , z
?ετ
12 , z

?ετ
13 , z

?ετ
14 )〉 ,(
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ββ , T
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ββ
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βz , T

34
βz

)
= 〈σβz(z

ετ
33 , z

ετ
34)〉 ,(

T 41
zα, T
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αβ, T

54
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)
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51 , z
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ετ
54)〉 .

Virtual Work of the Non-Conservative Forces

In a similar way to what has been done before, the integration with respect to z is conveniently
carrying out, and the virtual work of the non-conservative forces δW can be expressed in terms
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of prescribed forces and moments as

δW =

∫
Ω0

δw0(Z)dα dβ+

∮
Γα
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δu0(N̂
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∂w0
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dβ, (A27)

where
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(N̂22
ββ, M̂
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25
ββ) = 〈σ̂ββ (zu

22, z
u
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u
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14
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11, z
u
13, z

u
14)〉α ,

(Q̂33
βz) = 〈σ̂βz〉α ,

(T̂ 23
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23, z
τ
24)〉α ,

(T̂ 11
βα, T̂

12
βα) = 〈σ̂βα (zτ

11, z
τ
12)〉α .

Once again, for convenience, 〈. . .〉α and 〈. . .〉β denote thickness integration and are defined as

〈. . .〉α =

∫ +h

−h

(. . .)
1

z
(0)
α

dz, 〈. . .〉β =

∫ +h

−h

(. . .)
1

z
(0)
β

dz. (A29)

Internal Forces and Moments in Terms of Generalized Variables


(N?11

αα , N
?12
αα )

(N?21
ββ , N

?22
ββ )

(N51
αβ, N

52
αβ)

 =

A11∂α A12∂β A1
13 + A2

13∂αα + A3
13∂ββ A14∂α A15∂β

A21∂α A22∂β A1
23 + A2

23∂αα + A3
23∂ββ A24∂α A25∂β

A51∂β A52∂α A53∂αβ A54∂β A55∂α



u0

v0

w0

θα

θβ


+

A16∂α A17∂α A18∂β A19∂β

A26∂α A27∂α A28∂β A29∂β
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

τ̄ zα

τ̃ zα

τ̄βz

τ̃βz

 , (A30)
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{(
Q32

βz, Q
33
βz, Q
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}
=
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23 +B2

23∂αα +B3
23∂ββ B24∂α B25∂β
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
(T ?11

αα , T
?12
αα , T

?13
αα , T

?14
αα )(

T ?21
ββ , T

?22
ββ , T

?23
ββ , T

?24
ββ

)(
T 51

αβ, T
52
αβ, T

53
αβ, T

54
αβ

)
 =

C11∂α C12∂β C1
13 + C2

13∂αα + C3
13∂ββ C14∂α C15∂β

C21∂α C22∂β C1
23 + C2

23∂αα + C3
23∂ββ C24∂α C25∂β

C51∂β C52∂α C53∂αβ C54∂β C55∂α


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}
=
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v0

w0

θα
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Considering the generic internal force or moment terms in Eqs. (55),(59) and (60) as〈c̄∗11 c̄∗12 0
c̄∗12 c̄∗22 0
0 0 c̄∗66


εαα(g1)
εββ(g2)
εαβ(g5)


〉

, (A35)

where gi is used to denote a series of coefficients (gi1, gi2, . . .) of the correspondent z’s used to
define the internal forces and moments, the following rule holds to determine the Aij , Bij and
Cij coefficients (with i = 1, 2, 5 and j = 1, . . . , 9), denoted by the generic Gij ,

G11 = 〈c̄∗11z
?εu
11 g1 + c̄∗12z

u?ε
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53g5〉 ,
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(A36)

The shear coefficients Aij (with i = 3, 4 and l = 1, . . . , 9) are given by

A32 = 〈c̄?44z
εu
32 (zεu

32 , z
εu
33 , z
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35 )〉 , A33 = 〈c̄?44zεu
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A38 = 〈c?44z
ετ
33(z

εu
32 , z

εu
33 , z

εu
35 )〉 , A39 = 〈c?44zετ
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Coefficients of the Finite Element Matrices
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In the previous equations a notation was used where the zero- (1), first- (α or β) and second-
order (αα, ββ or crossed αβ) derivatives, taken as subscripts of S, of the Lagrange (L) and
Hermite (H) interpolation functions, taken as superscripts of S, define the following terms (for
the sake of brevity only a few terms are presented since the rest are obvious from the following
relations),
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