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Abstract 13 

 14 
Recent molecular methodologies have demonstrated a complex microbial ecosystem in 15 

cystic fibrosis (CF) airways, with a wide array of uncommon microorganisms co-16 

existing with the traditional pathogens. Although there are lines of evidence supporting 17 

the contribution of some of those emergent species for lung disease chronicity, clinical 18 

significance remains uncertain for most cases. A possible contribution for disease is 19 

likely to be related with the dynamic interactions established between microorganisms 20 

within the microbial community and with the host. If this is the case, management of 21 

CF will only be successful upon suitable and exhaustive modulation of such mixed 22 

ecological processes, which will also be useful to predict the effects of new therapeutic 23 

interventions. 24 
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CF lung environment – the key for microbial diversity  31 

Pulmonary infections caused by bacterial species are recognized as the major cause of 32 

morbidity and mortality of cystic fibrosis (CF) patients, leading to premature death in 33 

90% of cases (Rajan and Saiman, 2002). The respiratory tract of CF patients is a 34 

compartmentalized niche, which is spatially and temporally heterogeneous according 35 

to the anatomic site and to the period of disease evolution (Hélène et al, 2012). The 36 

viscous and dehydrated mucus formed on the epithelial-cell surface of the CF airways 37 

is composed of heterogeneous availabilities of antibiotics and nutrients (e.g. products 38 

of inflammatory cell death, such as DNA and actin polymers), as well as steep oxygen 39 

gradients (with zones ranging from aerobic to completely anaerobic) (Yang et al, 2011), 40 

which altogether constitute selective forces that may drive the selection and evolution 41 

of microbes. Therefore, CF airways offer a favorable environment for the colonization 42 

and proliferation of a large variety of microbes, contributing to the persistence of the 43 

infection. It is suggested that the microbiome composition may be a great predictor of 44 

disease progression, i.e. on severity and outcome (Klepac-Ceraj et al, 2010; Delhaes et 45 

al, 2012; Peters et al, 2012). 46 

The polymicrobial communities in CF may be defined as a varied collection of 47 

organisms (bacteria, fungi, and viruses), with bacterial species being probably the most 48 

frequently isolated microbes and presenting a wide number of phylogenetically diverse 49 

bacterial genera already detected (Guss et al, 2011). Within these highly diverse 50 

bacterial communities, Pseudomonas aeruginosa is recognized as the most significant 51 

and the most commonly isolated pathogen (Lipuma, 2010). However, the recent use of 52 

efficient microbiological diagnostic tools, particularly molecular technologies, has 53 

facilitated the identification of a wide spectrum of atypical microorganisms, evidencing 54 

a polymicrobial nature of the CF airways (Bittar et al, 2008; Guss et al., 2011). 55 
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Although the full pathogenic potential of most unusual species remains unclear, 56 

relevant recent research on microbial interactions between atypical and conventional 57 

CF-species might provide knowledge concerning the real role on the pathogenicity 58 

associated to those unusual pathogens and in parallel in the advance of novel 59 

therapeutic strategies for the management of the disease. 60 

With this review, it is intended to provide a general outline of the main aspects about 61 

CF lung disease, carefully emphasising the microbiome composition in CF airways, 62 

including the major pathogens and the emergent microorganisms. Lastly, several 63 

relevant microbial interactions recently reported and the significance that such 64 

ecological and evolutionary processes shaping the CF microbial communities may have 65 

on CF antibiotic treatment will also be assessed. 66 

 67 

Pathophysiology of the CF lung disease  68 

Cystic fibrosis was first described in 1938, as a result of the observation by Dorothy 69 

Andersen of scar (fibrosis) tissue and formation of cysts within the pancreas of a human 70 

patient (Andersen, 1938). CF is caused by mutations on the CF transmembrane 71 

conductance regulator (CFTR) gene (230 kb) encoding a protein with 1480 aminoacids. 72 

Over than 1900 mutations have been identified 73 

(http://www.genet.sickkids.on.ca/cftr/app/, accessed June 19th, 2013) to date in CFTR. 74 

The most prevalent of those mutations (ΔF508) is the deletion of three nucleotides, at 75 

the position 508 of the protein sequence, which corresponds to the loss of the aminoacid 76 

phenylalanine (Figure 1). CFTR acts as a chloride channel in apical cell membranes of 77 

multiple organs (e.g. respiratory, digestive, reproductive and sweat glands) epithelia. 78 

Therefore, its malfunction may lead to serious complications in varied organs 79 

http://www.genet.sickkids.on.ca/%20cftr/app/
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(Radlovic, 2012), of which the respiratory system is affected with higher frequency and 80 

severity, with major cause of morbidity and mortality in CF patients (Heijerman, 2005).  81 

In the lungs, the defective chloride ion transport across epithelial cell surface often 82 

results in the decrease of the volume of the periciliary fluid in the lower respiratory 83 

tract, compromising the mucociliary clearance (Boucher, 2004a). Thus, the CF lung 84 

disease results from the overproduction of dehydrated and viscous mucus that 85 

chronically blocks the airways and hampers the respiration of the patients (Figure 2). 86 

This often encourages the persistent colonization of bacteria in the lungs, resulting in 87 

the subsequent intermittent cycles of bacterial infections and persistent inflammatory 88 

responses, which ultimately lead to progressive lung injury (Lubamba et al, 2012). 89 

CF affects different racial and ethnical groups, but is more common among Caucasians 90 

(white people) (Cystic Fibrosis Foundation, Patient Registry, Annual Data Report 91 

2010). It is an autosomal recessive disease, since the effect of CF is hidden by the 92 

presence of a working copy of the CFTR gene (i.e. CF only develops when neither of 93 

the two copies of the CFTR gene present in the body cells works normally). 94 

  95 

The CF airways microbiome 96 

Traditionally, the detection and identification of microbial species from CF respiratory 97 

samples has relied on culture-based techniques. However, it is well accepted that 98 

culture only detects a limited number of microbes and occasionally misidentifies 99 

emergent microorganisms (Bittar and Rolain, 2010). Over the past decades, a 100 

significant progress on the development of molecular approaches, including 101 

polymerase chain reaction – PCR, electrophoretic profiling (e.g. terminal restriction 102 

fragment length polymorphism - T-RFLP; denaturing/temperature gradient gel 103 

electrophoresis – DGGE/TGGE), microarrays, high-throughput parallel sequencing, 104 
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16S, 18S or ITS (Internal transcribed spacer) gene sequencing, has led to the detection 105 

and identification of a far more diverse microbial community in the CF airways, 106 

revealing the polymicrobial nature of CF-associated infections (Rogers et al, 2003; 107 

Rogers et al, 2004; Sibley et al, 2006; Bittar et al., 2008; Guss et al., 2011; Delhaes et 108 

al., 2012; Willner et al, 2012; Zhao et al, 2012). These polymicrobial communities are 109 

not static populations, and contain specific groups of microbes highly associated with 110 

disease-derived factors (e.g. antibiotic selective pressure) and/or other perturbations 111 

(e.g. changes in pH, temperature oxygen) (Conrad et al, 2013; Lynch and Bruce, 2013). 112 

Substantial shifts in the airway microbiome composition, namely on the community 113 

richness (i.e. absolute counts of different types of microbes), evenness (i.e. relative 114 

distribution/abundance of community members) and diversity (i.e. the index estimated 115 

by into account the richness and evenness, giving information about the rarity and 116 

commonness of species in the community) are very likely to occur in CF. In general, 117 

these parameters have a significant negative correlation with patient age (reducing for 118 

older patients) and in parallel with the decline in pulmonary health (Cox et al, 2010). 119 

Furthermore, shifts from clinically stability to episodes of exacerbations may lead to 120 

alterations in the relative abundance of species within the community (Carmody et al, 121 

2013).  A deep characterization of these polymicrobial communities in CF will certainly 122 

provide a better understanding of the relationship between the lung microbiome, disease 123 

pathogenesis and treatment outcome. 124 

In this section, we will first focus on the traditional pathogens, which are herein defined 125 

as those species that are recurrently recovered from CF respiratory secretions and with 126 

undisputed pathogenic potential. An exhaustive list with the emergent organisms, many 127 

of them considered atypical, for which pathogenic potential and clinical significance 128 

still remains to be determined, will then be assessed.  129 
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 130 

Traditional bacterial pathogens 131 

A limited number of species are increasingly recognized to significantly contribute for 132 

CF lung disease, with prevalence dependent from patient-age (Figure 3). 133 

Staphylococcus aureus and Haemophilus influenzae are the most common pathogens 134 

in younger CF patients (Burns et al, 1998; Lambiase et al, 2006), with S. aureus being 135 

the first to infect and colonize children (Saiman and Siegel, 2004), reaching a 136 

prevalence rate of nearly 50 % by the age of 10 years. This organism has been well 137 

recognized as a potential pathogen, causing epithelial damage (Lyczak et al, 2002) and 138 

worsening the inflammatory response when co-colonized with P. aeruginosa (Sagel et 139 

al, 2009). Hypermutability and formation of robust biofilms (Hauser et al, 2011) has 140 

significantly contributed to the adaptability of S. aureus to CF lung environment. 141 

Additionally, the incidence of the small colony variant phenotype and methicillin-142 

resistant S. aureus is progressively increasing in the CF lung, showing potential threats 143 

for adult patients (Spicuzza et al, 2009). Haemophilus influenzae also presents high 144 

prevalence rates within pediatric patients (~20 %), and is capable to form biofilms in 145 

the epithelial surface, persisting and causing disease pathogenesis (Starner et al, 2006). 146 

The high prevalence of hypermutable strains of H. influenza is likely to benefit the 147 

species by promoting a faster adaptation to the changing CF lung environment, for 148 

instance when an antibiotic therapy is started (Watson et al, 2004). 149 

By 18 years of age, 80 % of patients are colonized with P. aeruginosa, whereas 3.5 % 150 

harbor bacteria from the Burkholderia cepacia complex (BCC) group (Hoiby, 2011). 151 

P. aeruginosa is considered the key CF pathogen, both in terms of prevalence and 152 

pathogenicity, and is clearly associated with the reduced life expectancy in CF patients 153 

(Lyczak et al., 2002). The ability of P. aeruginosa to develop a biofilm in CF airways 154 
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is well recognized (Worlitzsch et al, 2002; Boucher, 2004b). Hassett and colleagues 155 

(Hassett et al, 2002) proposed two models for biofilm formation by P. aeruginosa 156 

(Figure 4), among which one that is supposed to better represent mono-species biofilms 157 

formed in CF airway in vivo, with P. aeruginosa embedded in the dehydrated viscous 158 

mucus. P. aeruginosa early colonization in the mucus often results in acute persistent 159 

infection, with the pathogen in the non-mucoid form. The adaptive evolution of P. 160 

aeruginosa to the CF mucus environment rapidly evolves throughout a series of genetic 161 

and phenotypic mutations, by conversion to a mucoid phenotype (due to alginate 162 

overproduction) and formation of biofilm (Hoiby et al, 2010a). The alginate allows 163 

protection of P. aeruginosa biofilm against stressful conditions such as the action of 164 

the immune cell system (Hoiby et al, 2001; Hoiby et al, 2010b), osmotic and oxidation 165 

stresses and eradication by antibiotic treatment (Yang et al, 2008; Hoiby et al., 2010a). 166 

Thus, the mucoid phenotype of P. aeruginosa is often correlated with the decline of CF 167 

lung function and increased tissue damage. Also, the high rate of hypermutability 168 

(Kenna et al, 2007), and intrinsic antibiotic resistance mechanisms (e.g multi-drug 169 

efflux pumps and an impermeable outer membrane) have considerably contributed to 170 

the well-adaptation of P. aeruginosa to the CF environment (Worlitzsch et al., 2002; 171 

Yoon et al, 2002).  The survival of P. aeruginosa into anaerobic mucus layers is also 172 

recognized (Worlitzsch et al., 2002; Yoon et al., 2002), conferring the organism 173 

enhanced tolerance to many antibiotics (Borriello et al, 2004). 174 

The 17 members of the BCC group are phenotypically indistinguishable but some of 175 

them (B. multivorans, B. cenocepacia, B. cepacia, and B. dolosa) are highly 176 

transmissible, have pathogenic potential, are very resistant to antibiotic therapy (Miller 177 

and Gilligan, 2003) and may lead to a fatal pneumonia known as “cepacia syndrome” 178 

(Vandamme et al, 2003). B. cenocepacia, initially the member most commonly isolated 179 
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from CF patients, accounts for the majority of CF infections caused by the BCC group, 180 

presenting a high arsenal of virulence traits (e.g. biofilm formation-ability, production 181 

of secretion systems, formation of colony variants, presence of lipopolysaccharide and 182 

other cell envelope structures) that has been associated to an almost pandrug-resistance 183 

of the species (Loutet and Valvano, 2010; Suppiger et al, 2013). 184 

 185 

Emergent microorganisms  186 

In addition to the bacterial species documented as CF pathogens, culture-independent 187 

approaches have revealed a far greater microbial diversity than the one previously 188 

recognized (Table 1). These CF dynamic communities, containing as many as 100 to 189 

1000 bacterial species (Harris et al, 2007; Klepac-Ceraj et al., 2010), still involve many 190 

other microbial species, which remain to be characterized. This complex diversity 191 

suggests that the microbiome of the CF airways niche is far from being fully described.  192 

Among the bacteria increasingly identified in the sputum of patients with CF are 193 

anaerobes, which numbers are comparable to those of the typical aerobic pathogens 194 

(Bittar et al., 2008; Tunney et al, 2008; Guss et al., 2011), refuting the hypothesis of 195 

contamination from the oral cavity. Since the 1990s, the ubiquitous environmental 196 

organism nontuberculous mycobacteria has been increasingly isolated from the sputum 197 

of patients with CF (Torrens et al, 1998; Valenza et al, 2008), and has now a recognized 198 

clinical significance, with a role in the transition of the infection from acute  to chronic 199 

and lifelong (Pierre-Audigier et al, 2005). 200 

Likewise, there is increasing evidence of diverse fungi having an impact in CF. These 201 

include species from Aspergillus (Bakare et al, 2003), Candida (Chotirmall et al, 2010) 202 

and Scedosporium genera (Bouchara et al, 2009; Blyth et al, 2010). The majority of 203 

these fungal infections are caused by opportunistic molds, with different fungal species 204 
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presenting variable rates of prevalence, reflecting variations in the geographic 205 

distributions and/or lacking of standardization of the mycological examination methods 206 

(Bouchara et al., 2009). A. fumigatus and C. albicans are the most commonly recovered 207 

fungi from CF patients (Cimon et al, 2000; Bakare et al., 2003), with the first species 208 

being responsible for various diseases in CF patients, the most common being allergic 209 

bronchopulmonary aspergillosis (de Almeida et al, 2006). More recently, Pneumocystis 210 

jirovecii, an opportunistic fungus that causes pneumonia in immunosuppressed 211 

individuals, has emerged in Brazilian and European CF patients (Gal et al, 2010; 212 

Pederiva et al, 2012). 213 

Also, viral populations (e.g. adenovirus, influenza A and B, respiratory syncytial virus 214 

– RSV, rhinovirus) are present in CF polymicrobial communities, with rhinovirus 215 

showing high prevalence in a number of studies (Olesen et al, 2006; de Almeida et al, 216 

2010; Kieninger et al, 2013). If initially the impact of respiratory viruses could have 217 

been underestimated because of the low detection rate by conventional laboratory 218 

techniques (usually tissue culture), the advent of new viral detection techniques have 219 

further enhanced the awareness of respiratory viruses in CF exacerbations. Respiratory 220 

viruses such as the RSV, influenza and rhinovirus have been linked to an increased risk 221 

of exacerbations, leading to the deterioration in clinical status in CF (Wat et al, 2008; 222 

Wark et al, 2012; Kieninger et al., 2013). However, the presence of viral communities 223 

seems not to affect the type or frequency of bacterial infection (Olesen et al., 2006). 224 

Although there are already some preliminary data about the implication of some 225 

unusual species in the pathophysiology of CF (Waters et al, 2007; Ulrich et al, 2010; 226 

Costello et al, 2011), even with such findings, the pathogenesis and clinical relevance 227 

of these emergent microorganisms remain unclear. In effect, the adaptation to the CF 228 
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airways niche, the interactions between organisms, the impact on the respiratory status 229 

of CF patients and even the antimicrobial susceptibility pattern still is to be determined.  230 

 231 

Host-microbe and microbe-microbe interactions in CF polymicrobial 232 

communities  233 

Social interactions among microorganisms are central to the functioning of any 234 

microbial community (Hansen et al, 2007). The large variety and concentration of 235 

microbes present within polymicrobial communities, living in close proximity, drive 236 

for species-specific physical and chemical interactions that have been developed over 237 

thousands of years of coevolution (Peters et al., 2012). In CF, microbiome diversity 238 

leads to potential interactions between microbes, which may influence the behaviour of 239 

the individual species, the activities of the community as a whole, and the relationships 240 

between the host and microbial population. While a few studies have provided 241 

information on interactions between the typical CF-associated bacteria (Tomlin et al, 242 

2001; Hoffman et al, 2006; Palmer et al, 2007), only a limited number of studies have 243 

demonstrated interactions displayed by some emergent organisms in CF context 244 

(Figure 5). Some studies have shown that the virulence of known CF pathogens, such 245 

as P. aeruginosa, is clearly stimulated by the presence of several species (including 246 

anaerobes) previously thought to be as clinically insignificant (Duan et al, 2003; Sibley 247 

et al, 2008). Also, Stenotrophomonas maltophilia leads to altered biofilm formation and 248 

increased resistance to antibiotics by P. aeruginosa (Twomey et al, 2012). Modulation 249 

of P. aeruginosa gene expression is presumably influenced by interactions between 250 

bacterial species mediated by intercellular signalling molecules. Fungal-bacterial 251 

interactions are also well recognized in diverse contexts (Frey-Klett et al, 2011). In CF, 252 

antagonistic relationships were found between P. aeruginosa and the fungal species 253 
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Aspergillus fumigatus and Candida albicans, with the small diffusive molecules 254 

secreted by P. aeruginosa inhibiting the filamentation and the subsequent biofilm 255 

formation of those fungal populations (Holcombe et al, 2010; Mowat et al, 2010). 256 

Additionally, relationships between bacteria and viruses are becoming well-explored in 257 

literature. A good example is the control of bacterial populations such as P. aeruginosa, 258 

B. cenocepacia and S. aureus by bacteriophages – viruses that infect bacteria (Carmody 259 

et al, 2010; Hsieh et al, 2011; Morello et al, 2011), with phages producing hydrolases 260 

that degrade bacterial exopolysaccharides (Donlan, 2009; Glonti et al, 2010). 261 

Conversely, bacteriophages may act as vehicles for bacterial resistance in CF airways. 262 

The higher abundance of phage communities present in the respiratory tract of CF 263 

patients (Willner et al, 2009), encompassing a reservoir of mobile genes associated to 264 

antimicrobial resistance often result in the spread of virulence among bacteria. The 265 

consequence is the alteration of the bacterial genome, resulting in adaptation and in the 266 

emergence of multi-drug resistant bacteria in the CF airways (Rolain et al, 2009; 267 

Fancello et al, 2011; Rolain et al, 2011). Likewise, the presence of other viruses in CF 268 

airway stimulate the bacterial adherence by major pathogens such as S. aureus, H. 269 

influenza and Streptococcus pneumoniae (Smith et al, 1976).  270 

Recently, the atypical bacteria Inquilinus limosus and Dolosigranulum pigrum were 271 

showed to interact synergistically with the traditional pathogen P. aeruginosa, by 272 

displaying ability to develop dual-species consortia with increased tolerance to a wide 273 

range of antibiotics under in vitro aerobic conditions (Figure 6). Although not fully 274 

understood, these cooperative relationships were suggested to be the result of a more 275 

diverse ecosystem, leading to a higher number of cells in the biofilm, to different spatial 276 

arrangements in biofilm-encased cells within the overall consortia and also to more 277 

diverse types of matrix composition, which may result in different responses towards 278 
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antibiotics (Lopes et al, 2012). Therefore, this may suggest that both species may 279 

influence the behavior of the individual species or even the activities of the 280 

polymicrobial communities residing in the CF airways.  281 

With the constant challenges that CF polymicrobial communities undergo during the 282 

course of infection, there is a potential to exploit the relationship between the resident 283 

microbes, as well as on how these multispecies interactions govern the scope and the 284 

progression (severity or outcome) of the disease and ultimately how the host responds 285 

to polymicrobial infections.  286 

 287 

CF antibiotic treatment – importance of shaping polymicrobial 288 

interactions  289 

Current therapy for CF focuses on minimizing the microbial community and the host’s 290 

immune response through the aggressive use of several therapeutics, including 291 

antibiotics, bronchodilators, anti-inflammatory drugs, mucolytic agents and airway 292 

clearance techniques (Touw et al, 1995). Antibiotic therapy is currently the central 293 

therapeutic strategy in CF, and has important advances over the past 50 years in the 294 

treatment of the infection have been achieved (Doring et al, 2012; Chmiel et al, 2013). 295 

It is often employed as a maintenance therapy and/or to treat infectious exacerbations, 296 

attempting to reduce the sputum bacterial load and improving pulmonary symptoms. 297 

The selection of antibiotics is based upon the estimation of the in vitro antimicrobial 298 

sensitivities of a limited number of species cultured from sputum, and are generally 299 

directed to the most isolated pathogen P. aeruginosa (Balfour-Lynn and Elborn, 2007; 300 

Rogers et al, 2010b). Although there may be a convincing correlation between in vitro 301 

and in vivo susceptibilities for acute exacerbations by P. aeruginosa, with early 302 

colonization being successfully suppressed by aggressive antibiotic therapy 303 
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(Schelstraete et al, 2013)), the correlation between results of conventional antibiotic 304 

susceptibility testing and treatment outcome is dramatically reduced for chronic 305 

infections (Smith et al, 2003), with infection typically persisting for life. In here, the 306 

microorganism is well-adapted to the in vivo CF environment (see sections above) 307 

demonstrating a distinct behavior than that observed under in vitro conditions (Rogers 308 

et al, 2010a).  309 

Because CF infection is no longer viewed as being caused by a single pathogen, 310 

antibiotics used to target a small group of species recognized as key CF pathogens may 311 

not have similar effect when other atypical species are present (Lopes et al. submitted 312 

for publication). For example, several studies have demonstrated that the anaerobic 313 

community found in CF airway is highly resistant to intravenous antibiotics usually 314 

applied to treat P. aeruginosa infection, with insignificant reduction in cell numbers 315 

(Worlitzsch et al., 2002; Tunney et al., 2008).  316 

In parallel, dynamic compositional changes within microbial populations which are 317 

dependent from the environmental heterogeneity conditions found in CF (Hauser et al., 318 

2011) as well as social interactions between microorganisms within polymicrobial 319 

communities should not be dismissed. This ecological perspective is believed to have 320 

important impact for CF therapeutics, offering the prospect of novel approaches to 321 

antibiotic treatment. The control of chronic airway infections by, for instance, 322 

disturbing some factor within the lung that regulates the microbial community stability 323 

and function (e.g. presence of another community member, a nutrient, or an 324 

environmental attribute) would be an interesting alternative to antibiotics targeting only 325 

a specific pathogen (Conrad et al., 2013). Longer longitudinal studies of composition 326 

and dynamics of microbial communities and simultaneously checking for the clinical 327 

status of patients and treatment outcomes would be also necessary. 328 
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Therefore, a more deep appreciation of the ecological and evolutionary nature that 329 

shape the airway communities as well as their effects on lung disease is critically 330 

important for the optimal use of current therapies and the development of newer 331 

breakthroughs on CF therapy.  332 

 333 

Concluding Remarks  334 

Advances in culture-independent molecular assays have enabled to detect a diverse 335 

array of microbial species, in addition to those recognized as clinically important for 336 

CF pathophysiology. These polymicrobial infections are increasingly viewed as 337 

complex communities of interacting organisms, with dynamic processes key to their 338 

pathogenicity. Hence, moving the focus of the management from an individual species 339 

to the polymicrobial infections and modeling interactions between such traditional and 340 

atypical microorganisms will be helpful to predict the effects of new therapeutic 341 

interventions, thus dismissing much of the current antibiotic therapy empiricism and 342 

increasing the effectiveness of CF therapies. 343 
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Table 1. Atypical microorganisms emerging in the respiratory tracts of patients with CF 747 

Genus Examples of identified species Detection and/or identification method(s)a References 

Gram-negative bacteria     

     Acinetobacter A. baumanii Biochemical and molecular approaches (Coenye et al., 2002) 

     Achromobacter A. xylosoxidans Culture, 16S rRNA gene sequencing (Harris et al., 2007; Bittar et al., 

2008) 

     Agrobacterium A. radiobacter Culture, 16S rRNA gene sequencing (Bittar et al., 2008) 

     Bergeyella  16S rRNA gene sequencing (Bittar et al., 2008) 

     Bordetella B. hinzii Biochemical and molecular approaches (Bittar et al., 2008; Guss et al., 2011) 

     Brevundimonas B. diminuta 16S rRNA gene sequencing (Coenye et al., 2002; Menuet et al., 

2008) 

     Chryseobacterium C. indologenes, C. miningosepticum Biochemical and molecular approaches (Coenye et al., 2002) 

     Comamonas 

C. testosteroni Biochemical and molecular approaches 
(Coenye et al., 2002; Bittar et al., 

2008) 

     Coxiellaceae 

 rRNA gene sequencing 
(Coenye et al., 2002; Guss et al., 

2011) 

     Craurococcus C. roseus T-RFLP (Harris et al., 2007) 

     Chromobacterium C. violaceum Biochemical and molecular approaches (Rogers et al., 2004) 
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     Cuprivadius  16S rRNA gene sequencing (Coenye et al., 2002) 

     Eikenella  E. corrodens 16S rRNA gene sequencing (Kalka-Moll et al., 2009) 

     Escherichia E. coli Culture, biochemical and molecular approaches (Harris et al., 2007; Bittar et al., 2008; 

Guss et al., 2011) 

     Gemella G. haemolysans 16S rRNA gene sequencing (Coenye et al., 2002; Bittar et al., 

2008; Tunney et al., 2008) 

     Herbaspirillum  Biochemical and molecular approaches (Bittar et al., 2008) 

     Inquilinus I. limosus Biochemical and molecular approaches (Coenye et al., 2002) 

     Kingella K. denitrificans, K. oralis 16S rRNA gene sequencing (Coenye et al., 2002; Bittar et al., 

2008) 

     Klebsiella  K. pneumoniae Culture, biochemical approaches (Bittar et al., 2008) 

     Lysobacter L. enzymogenes rRNA gene sequencing (Steinkamp et al., 1989; Khanbabaee 

et al., 2012) 

     Moraxella M. osloensis, M. catarrhalis Biochemical and molecular approaches (Harris et al., 2007) 

     Morganella  Biochemical and molecular approaches (Coenye et al., 2002; Bittar et al., 

2008) 

     Neisseria  16S rRNA gene sequencing (Coenye et al., 2002) 

     Ochrobactrum O. anthropic 16S rRNA gene sequencing (Tunney et al., 2008; Guss et al., 

2011) 
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     Paenibacillus P. cineris Culture (Menuet et al., 2008) 

     Pandoreae  Biochemical and molecular approaches (Leao et al., 2010) 

     Paracoccus P. halodenitrificans T-RFLP (Coenye et al., 2002) 

     Pseudomonas P. huttiensis, stutzeri Culture, Biochemical and molecular approaches (Rogers et al., 2004) 

     Ralstonia R. gilardii, R. mannitolytica Biochemical and molecular approaches (Coenye et al., 2002; Bittar et al., 

2008) 

     Rhizobium R. radiobacter Biochemical and molecular approaches (Coenye et al., 2002) 

     Rickettsiales  rRNA gene sequencing (Coenye et al., 2002) 

     Serratia  S. marcescens Culture, Biochemical and molecular approaches (Harris et al., 2007) 

     Sphingomonas S. paucimobilis Culture, Biochemical and molecular approaches (Burns et al., 1998; Coenye et al., 

2002; Tunney et al., 2008; Guss et al., 

2011) 

     Stenotrophomonas  S. maltophilia Culture, rRNA gene sequencing (Coenye et al., 2002) 

     Xantomonas X. hyacinthi Biochemical and molecular approaches (Coenye et al., 2002) 

    

Gram-positive bacteria     

     Carnobacterium  16S rRNA gene sequencing (Bittar et al., 2008) 

     Corynebacterium C. pseudodiphtheriticum Mass spectrometry and molecular methods (Bittar et al., 2008; Guss et al., 2011) 
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     Dolosigranulum D. pigrum 16S rRNA gene sequencing (Bittar et al., 2008) 

     Ganulicatella G. adiacens, G. elegans 16S rRNA gene sequencing (Harris et al., 2007; Bittar et al., 2008; 

Guss et al., 2011) 

     Lactobacillus L. delbrueckii 16S rRNA gene sequencing (Bittar et al., 2008; Guss et al., 2011) 

     Mycobacteriumb M. avium, M. abscessus 16S rRNA gene sequencing (Harris et al., 2007; Bittar et al., 

2008) 

     Mycrococcus  16S rRNA gene sequencing (Tunney et al., 2008; Guss et al., 

2011) 

     Nocardia N. asteroides Culture (Lumb et al., 2002) 

     Rothia R. mucilaginosa 16S rRNA gene sequencing (Bittar et al., 2008; Tunney et al., 

2008) 

     Staphylococcus S. epidermidis, S. hominis 16S rRNA gene sequencing (Tunney et al., 2008) 

     Streptococcus S. constellatus, S. iniae, S.  intermedius etc. Culture, T-RFLP, 16S rRNA gene sequencing (Harris et al., 2007; Bittar et al., 2008; 

Tunney et al., 2008; Sibley et al., 

2009) 

     Tropheryma T. wippley rRNA gene sequencing (Harris et al., 2007) 

    

Anaerobic bacteria     

     Actinomyces A. odontolyticus Culture, Biochemical and molecular approaches (Tunney et al., 2008; Worlitzsch et 

al., 2009; Guss et al., 2011) 
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     Bacteroides  Culture, Biochemical and molecular approaches (Worlitzsch et al., 2009; Guss et al., 

2011) 

     Bifidobacterium  16S rRNA gene sequencing (Tunney et al., 2008) 

     Bulleidia  16S rRNA gene sequencing (Tunney et al., 2008; Guss et al., 

2011) 

     Capnocytophaga C. leadbetteri Culture, Biochemical and molecular approaches (Harris et al., 2007; Worlitzsch et al., 

2009; Guss et al., 2011) 

     Clostidrium  Culture, Biochemical and molecular approaches (Tunney et al., 2008; Worlitzsch et 

al., 2009) 

     Dialister D. pneumosintes 16S rRNA gene sequencing (Bittar et al., 2008; Worlitzsch et al., 

2009; Guss et al., 2011) 

     Eubacterium  Culture, Biochemical approaches (Worlitzsch et al., 2009) 

     Fusobacterium F. necrophorum, F. nucleatum Culture, Biochemical and molecular approaches (Harris et al., 2007; Tunney et al., 

2008; Worlitzsch et al., 2009; Guss et 

al., 2011) 

     Gemella G. morbillorum Culture, Biochemical and molecular approaches (Bittar et al., 2008; Worlitzsch et al., 

2009; Guss et al., 2011) 

     Lachnospiraceae  16S rRNA gene sequencing (Bittar et al., 2008) 

     Lactobacillus  Culture, Biochemical and molecular approaches (Tunney et al., 2008; Worlitzsch et 

al., 2009) 
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     Mobiluncus  Culture, Biochemical approaches (Worlitzsch et al., 2009) 

     Peptostreptococcus  Culture, Biochemical and molecular approaches (Bittar et al., 2008; Tunney et al., 

2008; Worlitzsch et al., 2009) 

     Porphyromonas  rRNA gene sequencing (Harris et al., 2007; Guss et al., 2011) 

     Prevotella P. denticola, P. melaninogenica, P. salivae etc. Culture, Biochemical and molecular approaches (Harris et al., 2007; Tunney et al., 

2008; Worlitzsch et al., 2009; Guss et 

al., 2011) 

     Propionibacterium  Culture, Biochemical and molecular approaches (Tunney et al., 2008; Worlitzsch et 

al., 2009) 

     Selemonas S. noxia, S. infelix 16S rRNA gene sequencing (Bittar et al., 2008) 

     Staphylococcus S. saccarolyticus Culture, Biochemical and molecular approaches (Tunney et al., 2008; Worlitzsch et 

al., 2009) 

     Streptococcus S. pneumoniae, S. salivarius, S. thermphilus etc. Culture, Biochemical and molecular approaches (Bittar et al., 2008; Tunney et al., 

2008; Worlitzsch et al., 2009; 

Khanbabaee et al., 2012) 

     Tannerella T. forsythensis 16S rRNA gene sequencing (Bittar et al., 2008) 

     Veilonella V. atypica, V. dispar 16S rRNA gene sequencing (Tunney et al., 2008; Worlitzsch et 

al., 2009; Guss et al., 2011) 

     Wolinella  Culture, Biochemical approaches (Worlitzsch et al., 2009) 
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Fungi    

     Acrophialophora A. fusispora Culture (Cimon et al., 2005) 

     Alternaria  Culture (Nagano et al., 2007) 

     Aspergillus A. fumigatus, A. flavus, A. nidulans, A. terreus, A. 

niger 

Culture, PCR, ITS gene sequencing and 

galactomannan enzyme immunoassay 

(Bakare et al., 2003; Bouchara et al., 

2009; Delhaes et al., 2012; Warren et 

al, 2012) 

     Candida C. albicans, C. parapsilosis, C. dubliniensis Culture, PCR and ITS gene sequencing (Bakare et al., 2003; Bouchara et al., 

2009; Chotirmall et al., 2010; Delhaes 

et al., 2012) 

     Cladosporium  Culture (Nagano et al., 2007) 

     Cryptococcus  Culture, PCR and ITS gene sequencing (Delhaes et al., 2012) 

     Exophiala E. dermatidis Culture, PCR and ITS gene sequencing (Kusenbach et al., 1992; Diemert et 

al., 2001; Horre et al., 2004; Griffard 

et al., 2010; Delhaes et al., 2012) 

     Geosmithia G. argillacea Culture, microscopy, PCR and ITS gene 

sequencing 

(Barton et al., 2010; Giraud et al., 

2010) 

     Malassezia  Culture, PCR and ITS gene sequencing (Delhaes et al., 2012) 

     Neosartoria  Culture, PCR and ITS gene sequencing (Delhaes et al., 2012) 

     Paecilomyces P. variotii Culture (Nagano et al., 2007) 
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     Penicillium P. emersonii Culture (Cimon et al., 1999) 

     Physalospora  Culture, PCR and ITS gene sequencing (Delhaes et al., 2012) 

     Pneumocystis P. jirovecii PCR  (Gal et al., 2010; Delhaes et al., 2012; 

Pederiva et al., 2012) 

     Scedosporium S. apiospermum, S. prolificans Culture, PCR and ITS gene sequencing (Defontaine et al., 2002; Blyth et al., 

2010; Delhaes et al., 2012) 

     Trichosporon T. mycotoxinivorans Culture (Hickey et al., 2009) 

    

Viruses    

     Mastadenovirus Adenovirus  (Smyth et al., 1995; Punch et al., 

2005; Olesen et al., 2006) 

     Metapneumovirus      Human metapneumovirus PCR (Olesen et al., 2006) 

     Influenza virus (A and B) Influenza (A and B) viruses PCR and immunological methods (Smyth et al., 1995; Punch et al., 

2005; Olesen et al., 2006) 

     

Respirovirus/Rubalavirus 

Human arainfluenza viruses PCR and immunological methods (Smyth et al., 1995; Punch et al., 

2005; Olesen et al., 2006) 

     Pneumovirus      Respiratory syncytial virus PCR and immunological methods (Smyth et al., 1995; Punch et al., 

2005; Olesen et al., 2006) 
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     Enterovirus 

 

Rhinovirus PCR and immunological methods (Smyth et al., 1995; Punch et al., 

2005; Olesen et al., 2006) 

a Legends for abbreviated methods: T-RFLP: terminal restriction fragment length polymorphism; PCR: polymerase chain reaction; ITS: Internal 748 

transcribed spacer 749 

b Although Mycobacterium is included as a gram-positive in this table, indeed this bacterial genera is exceptionally impervious to gram staining due to a 750 

waxy-coated cell surface 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 
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Figures  762 

Figure 1: 763 
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Figure 2: 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

Altered CFTR gene 

(ΔF508) 
Malfunctioning 

CFTR protein 

Defective chloride/sodium 

transport 

Reduced airway 

surface liquid  

Impaired mucociliary 

clearance 

Mucus obstruction 

Infection Inflammation 

END-STAGE LUNG DISEASE 



 - 44 - 

Figure 3: 779 
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Figure 4: 795 
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Figure 5: 811 
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Figure 1. Location of the CFTR gene in the long (q) arm of the chromosome 7 and mutation ΔF508, corresponding to the deletion of 844 

phenylalanine aminoacid in the position 508 of the CFTR protein. 845 

 846 

Figure 2. Cascade of events that characterizes the pathophysiology of the CF lung disease. Adapted from Lubamba et al, 2012. 847 

 848 

Figure 3. Age-specific prevalence of the traditional pathogens recovered from CF respiratory samples. Based on UK CF Registry annual data 849 

Report 2009. 850 

 851 

Figure 4. Models proposed by Hassett et al, (2002) for P. aeruginosa biofilm formation on biofilm formation on: A) biotic or abiotic surfaces 852 

and within B) CF airway mucus. In A) biofilm is formed in 5 developmental stages: (1) free-swimming (planktonic) bacteria; (2) attachment 853 

of planktonic bacteria to the surface mediated by flagella and type IV pili; (3) bacteria lose their surface-appendages and forms 854 

“microcolonies”; (3) as the cell propagation increases, these “microcolonies” mature into “macrocolonies” and start to produce 855 

exopolysachharides; (4) formation of a mature biofilm self-producing a thick and protective exopolysaccharide matrix, development of oxygen 856 

gradients; (5) initiation of biofilm detachment/dispersion; In B) the development of the biofilm starts with P. aeruginosa readily penetrating 857 

into the mucus (1), followed by adaptation of bacteria to the anaerobic environment by losing their surface-appendages, converting to the 858 
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mucoid form and forming microcolonies within alginate coats (2) and finally macrocolonies resisting to immune system defenses, setting the 859 

stage for chronic infection (3). Images were adapted from Hassett et al. (2002) and from Worlitzsch et al. (2002), respectively. 860 

 861 

Figure 5. Lines of evidence that may facilitate adaptation of some unusual microorganisms to the in vivo CF environment and may support 862 

their contributions to the lung disease chronicity. 863 

 864 

Figure 6. Multiplex PNA assay applied to the three-species 24-h-old in vitro biofilms formed by P. aeruginosa, I. limosus and D. pigrum 865 

formed on polystyrene coupons. P. aeruginosa (red cells) seem to dominate the consortium, together with D. pigrum (bluish cells). On its turn, 866 

the low number of I. limosus cells (green, indicated by arrows) mean that this species could be outcompeted by the other species present in the 867 

consortium. Similar interactions between other microorganisms of different species have also been visualized. 868 

 869 

 870 


