
Fine-tuning Artificial Neural Networks Automatically

FRANCISCO REINALDO, RUI CAMACHO
LUÍS PAULO. REIS

Universidade do Porto
Faculdade de Engenharia & LIACC

Rua Dr. Roberto Frias, sn, 4200-465, Porto
PORTUGAL

{reifeup,rcamacho,lpreis}@fe.up.pt

DEMÉTRIO R. MAGALHÃES

UnilesteMG
Depto de Exatas & CSI

Av. T. Neves, 35170-056, C. Fabriciano
BRASIL

reno@unilestemg.br

Abstract: To get the most out of powerful tools expert knowledge is often required. Experts are the ones with the
suitable knowledge to tune the tools’ parameters. In this paper we assess several techniques which can automat-
ically fine tune ANN parameters. Those techniques include the use of GA and Stratified Sampling. The tuning
includes the choice of the best ANN structure and the best network biases and their weights. Empirical results
achieved in experiments performed using nine heterogeneous data sets show that the use of the proposed Stratified
Sampling technique is advantageous.

Key–Words: Fine-tunning, Artificial Neural Networks, Wrapper, Stratified Sampling

1 Introduction

Artificial Neural Networks (ANN) are currently a
widely used technique to solve complex problems on
a wide range of real applications. Such applications
vary from financial predictions to control systems de-
sign. In order to achieve the expected results, ANN
experts hardly work on designing and configuration
of ANN control modules. Unfortunately, there is no
cookbook explaining how to fine tuning the techni-
cal properties that define an ANN characteristic. We
foresee that the main reason to this problem be largely
unsolved is on the substantial varying of the parame-
ter values. Since a user has extensive experience to
design and setup an ANN control module to the prob-
lem, it is difficult to obtain reliable results only by
using empirical and manual setup. In this study, we
propose an automatic method for common users can
develop and fine tuning ANNs by interlacing Machine
Learning (ML) and probabilistic techniques.

Most of the various studies consider only three
main technical properties to design and setup an ANN
control module, such as: (a) the topology; (b) the
learning rules; and (c) the initial weights on the synap-
tic connections.

The first property, the topology, represents the
ANN structure definition, i.e., the pattern of connec-
tions between neurons, the bias, the number of hid-
den layers, the number of neurons in each hidden and
output layer. The second property, the learning rules,
represents the tuning of the parameter values that de-
fine the characteristics of an adequate model, i.e., the

learning rate, the momentum rate, the steepness rate,
the kind of transfer functions to each hidden and out-
put neuron and so on. Finally, the third property deals
with the selection and distribution of the first weights
on the connection links.

Several studies concerning the automatic tun-
ing of ANN parameters may be found in the liter-
ature. Most of them use Genetic Algorithm (GA)
as a stochastic search method used to find solutions
[1]. Within this context, Prado [2] proposes the tun-
ing of the most usual parameter values using GA. In
[3], Harp et al. describe a study to find a good ANN
architecture by setting the number of layers and the
number of neurons in hidden layers. Whitley [4] uses
GA to determine best weight of an ANN. Regarding
the manual setup of parameters, Shamseldin et al.[5]
combine different transfer functions in a hidden layer
to reach the best model with a purpose to apply them
in the context of the river flow forecast combination
method.

Diverse authors have also been studied suitable
methods to initialise an ANN training by choosing the
first weights [6, 7, 8]. The methods coexist in using
of a traditional technique to randomly or probabilisti-
cally extract the first weights from an unique range of
values. After all, connections are populated by these
weights.

Other approaches to develop GA-based wrappers
have be attempted. Unfortunately, these approaches
work with only traditional parameters, instead of a
complete set. Moreover, the weights extraction pro-
cess from an unique range of values is unable to be

effective because it will hardly avoid saturation areas.
However, none of the proposed solutions consider an
approach to automatically fine tuning an ANN struc-
ture and weights by union of ML and statistic methods
at the same time and offer an harmonic solution for the
problems.

To overcome these drawbacks, we are proposing
a method to automatically achieve fine tuning results
and, to obtain low error rates. The method is devel-
oped in two main parts: a GA is first used as a wrap-
per to find adequate values to the set of ANN struc-
ture and parameters. Afterwards, in order to input the
first weights, we have used Stratified Sampling (SS)
to balance the weights on different synaptic connec-
tions. To estimate accuracy, we have used five-fold
Cross-Validation. The proposed wrapper outperforms
manual or semi-automatic setup and building ANN
structure techniques described in [2, 4, 5].

The rest of the paper is structured as follows.
Section 2 presents an overview of AFRANCI, the
tool used to develop the experiments. Section 3 de-
scribes how Genetic Algorithms were applied to tune
the ANN different parameters and structure. Section 4
explains how we improve the ANN weights values us-
ing Stratified Sampling. Experiments and results are
presented in Section 5. We draw the conclusions in
Section 6.

2 AFRANCI Tool
The proposed solutions were empirically evaluated
using the AFRANCI tool [9], which is a graphic en-
vironment used to develop Intelligent and Cognitive
Systems (ICS) [10].

AFRANCI tool has graphic facilities that lead
common users to assemble and link together the learn-
ing algorithms (control modules) on the screen at dif-
ferent levels of abstraction. A control module can be
a Machine Learning or other algorithm. After all, the
user can arrange an ICS of heterogeneous clusters of
control modules in a form of a circuit diagram[11],
which it is very familiar to engineers in digital system
projects and in model analysis system tools.

This tool has built-in some classes of open-source
PyramidNet Framework platform, preserving Feed-
forward and Recurrent ANNs. The tool supports ex-
ternal libraries, such as WEKA library [12], CN2 In-
duction Algorithm [13] and GAlib [14]. In addition,
the Tool includes Stratified Sampling and K-fold cross
validation. By using these learning libraries and statis-
tic techniques, the users can access an useful reposi-
tory to work with data pre-processing, classification,
regression, evaluation, clustering, stochastic search,
fine tuning and association rules.

Basically, AFRANCI core can be divided in
three main parts, which are the Graphic User Inter-
face (GUI), the Machine Learning Modules (MLM)
and the Automatic Open-Source Code Genera-
tor (ACG). Firstly, GUI is a set of main classes for
modeling the learning modules as graphic elements
on the desktop area. Secondly, MLM links the learn-
ing algorithms with the graphic modules, implement-
ing their construction. Finally, ACG uses a high-
performance interpretation algorithm to automatically
encode the ICS diagram in a clean and ready-to-use
standardised C++ open-source code.

The main point that leads us to use this Tool was
the easiness to manage, in a unique environment de-
velopment, the three main stages to build an ANN:
Design and Set Up; Module’s Training and Test; and
Code Generation.

Design and Set Up: the design of the structure can
be manually made by disposing graphic objects
on the desktop area or automatically made by
the use of Wizard. Manual process offers re-
sources to perform drag-and-drop actions to ar-
range the essential elements of a project, such
as input port, the module and output port on the
desktop area. An input port can be an attribute or
a sensor, as well as, the output port can be as ac-
tuator or an out variable. Each control module
loads a CSV (Comma Separated Values) sam-
ple file. A sample file provides data for learn-
ing algorithms in the training stage and defines
the respective input and output ports. To develop
a complete wired network, the interconnections
shall be established from the input port to the in-
put of the module and, consequently, from the
output of the module to the output port. The
users can change the default parameter values of
the objects or choose the learning algorithm in
design-time properties. Conversely, in the auto-
matic process, the Wizard helps the user to de-
velop a wired network of modules as circuit dia-
gram by only loading sample files;

Module’s Training and Test: this stage checks if the
whole ICS was fully interconnected and the
datasets were load by the respective modules.
The feature of automatic training process uses
the data flow sequence to trigger the training se-
quence, independently from horizontal or verti-
cal architecture level. It is worth mentioning that
AFRANCI uses a known K-fold cross validation
as an advanced statistical technique to get impar-
tial results of training and test stage.

Code Generation: the code generator will encode the
diagram of the ICS in a ready-to-use C++ code.

For instance, if we look inside of an ANN mod-
ule, we will find input and output ports, connec-
tions, synaptic connections and weights, activa-
tion functions and other self-sufficient features
acquired after the training stage.

3 The Automatic Tuning of Artificial
Neural Networks

Almost all Machine Learning systems have parameter
values that must be tuned to achieve a good quality for
the constructed models. An experienced practitioner
knows that changes in the parameter values may lead
to quite different results. This is most often a severe
obstacle to the widespread use of such systems.

As proposed by John [15] one possible approach
to overcome such situation is by the use of a wrapper.
A wrapper produces in parallel several models using
different combinations of the learning algorithm and
returns the “best” model. In our Tool the wrapper is
a Genetic Algorithm that will improve the ANN con-
struction procedure obtaining low Error Rates. This
automatic tuning of parameters completely hides the
details of the learning algorithms from the users. It is
therefore a way to make the Tool usable by a wider
range of users.

Fundamentally, a candidate is a chromosome
composed of linear chains of small units named genes.
A chromosome uses an alphabet of binary digits, inte-
gers or real values to represent in the gene each inde-
pendent feature or allele as shown in Figure 1. Each
gene has a fixed place, named locus, in the chromo-
some. A genotype is a collection of genes and alleles
to create a candidate and a phenotype is a collection
of the features of this candidate. The adaptation of
each candidate is directly related with the phenotype.
The traditional GA method[1] uses a binary alphabet,
a fixed-length bit string chromosome and a population
with a fixed size as well.

We have divided the construction of an ANN into
four major items: choosing the structure; choosing the
neuron’s transfer function; choosing the bias to use
and; deciding the values for the ANN learning algo-
rithm. All these items are encoded in a chromosome
as we explain next.

The chromosomes[14](see Figure 1) have en-
coded the following features:

• the learning rate (LR), the momentum rate (M)
and the steepness rate(Sn);

• the bias for each hidden (bHL) and output (bOL)
layer;

• the transfer functions in every neuron of the hid-
den layer (TFHL) and output (TFOL) layers;

• the number of neurons in every hidden layer
(nHL).

LR M Sn bHL bOL TFHL TFOL nHL

Figure 1: The chromosome structure encoded by the
first process.

Another ingredient for using GAs concerns the
evaluation of the solutions (chromosomes) produced,
that is, defining the fitness function. Before receive
a fitness score, first we need to obtain an objective
score, which is the error rate extracted from the cur-
rent candidate in the test phase. Using the linear scal-
ing fitness function [1, 14], the objective score is en-
coded to a proportional non negative transformed rat-
ing fitness or fitness score.

A third ingredient to implement a GA concerns
the selection of the most evolved candidates to repro-
duction. This implies more chances at spreading the
candidate features in the next generation, i.e., to “pre-
serve the knowledge” of that candidate. We have im-
plemented one of the most popular methods to choose
reproductive candidates called the roulette wheel se-
lection method[1]. This method selects a candidate
based on the highest fitness score relative to the re-
maining part of the population. The portion of the
roulette wheel of each candidate is given by Equation
(1), where xi is the candidate with a f(xi) probability
area to be selected.

Portion(xi) =
f(xi)∑N

i=1 f(xi)
(1)

A fourth item required to implement a GA is
the combination of existing candidates and use a sex-
ual crossover with one-cut point crossover technique,
where the selection point is random. After that, the
parents change the right side, generating two offspring
and preserving the same previous population size. We
have also used, additionally, the mutation operator
that “disturbs” the chromosome of an existing chro-
mosome to produce one new offspring.

Finally, the last process sets the stop measure of
the GA search. We chose the number of generations
achieved because after several evolutional steps, the
last generation brings the “best” candidates with the
highest fitness scores. After that, the GA evolves.

When used as a search method, the GA strength
comes from: the totally parallel search on the solu-
tion space. The GA drives the search to promising

areas via a population of potential candidates, mini-
mizing the risk of find a solution in a maximum or
minimum local; the blind search, referring to known
only the necessary candidate cost function; the use
of stochastic operators to guide to a extensive search
having knowledge accumulated in earlier iterations.
In addition, GA combines representation of candidate
solutions and problem-specific genetic operators [16],
in which there is a trend for good solutions each time
an evolve process is re-started [1]. By this way, GA
solves the problems by collecting knowledge about
the problem and using knowledge to create acceptable
solutions.

4 Improving the Learning Process of
Artificial Neural Networks

The performance of ANN learning algorithms can be
strongly affected by the initial values of weights of the
connection links. According to Fausett[6], weights
can influence the global minimisation of a network
training error function. Traditionally the initial values
of the weights are randomly generated within a spec-
ified range. However, arbitrary values selected from
a unique range can be too sparse that the initial input
signal falls in a saturate region or too small that causes
extremely slow learning. It is well known that in order
to find a high weight quality is a difficult task, noting
that the amount of connection links and the substantial
varying of the weights.

To improve the choice of the initial weights we
propose the use of Stratified Sampling (SS).

The Stratified Sampling is an inductive technique
of statistic inference used when a heterogeneity pop-
ulation is studied. In SS technique, a population is
split into s smaller proportional non-overlapping seg-
ments or strata. A stratum is a subset of the population
and each sample of the subset has a known non-zero
probability of being selected. The SS technique guar-
antees that all regions have at least one representative
sample.

Below, we explain the process. Consider a popu-
lation of samples, i.e., a set of weights. In order to bal-
ance the weights on the connection links, we use SS
to proportionally split the population in s disjoint sub-
sets. Considering that each ANN has n synaptic con-
nections {w1, w2, w3, . . . , wn} that need to be popu-
lated by samples from the subsets {A1, A2, . . . , As},
we use arrangement with repetition to distribute the
samples on the connection links. Additionally, we use
Random Sampling technique of the SS method to se-
lect the proportional number of samples from each
s to populate every n. To put in another way, we
will have sn possible solutions. For example, assum-

ing six different weights {w1, w2, . . . , w6} have two
strata A1 = [−0.5, 0[and A2 = [0, 0.5], using the ar-
rangement with repetition, the number of ANN being
trained will be T = sn = (26) = 128, taking into
account that SS will be call S = T × n = 768 times
both strata. Finally, the best set of first weights is dis-
covered when the error rate of the test phase is closer
to zero.

The main benefits of this new method are: fast-
ness and easiness; stratified samples with high qual-
ity; flexibility to work with several range of weights;
reduction of the sample size; reaches satisfactory out-
comes.

5 Experiments
5.1 Research Data and Experiment Design
The techniques presented in sections 3 and 4 were
evaluated using nine heterogeneous data sets from the
UCI[17] and DELVE [18] repositories. The data sets
are shown in Table 1. The Letter, RingNorm, Splice,
Titanic and TwoNorm datasets were set as classifica-
tion, while the Abalone, Addd10, Boston and Hwang
datasets are regression ones. In all of the experiments
we have used a K-fold Cross-Validation method with
five cycles to estimate the predictive accuracy of the
techniques.

Dataset Attributes Examples
Letter 16 20000
RingNorm 20 7400
Splice 60 3190
Titanic 3 2201
TwoNorm 20 7400
Abalone 8 4177
Addd10 10 9792
Boston 13 506
Hwang 11 13600

Table 1: Data sets used in the experiments.

Three sets of experiments (tests) were devised in
order to produce a fair comparison. First we construct
the ANN we have experienced user choice of its struc-
ture and hand-tuned its parameters. This experiment
produced the base-line results, the results with which
our proposed technique’s results are compared. The
second experiment uses GA to choose the structure
and tune the ANN parameters automatically. In the
last experiment Stratified Sampling (SS) was used to
improve on ANN basic training.

In the first experiment the ANN was set by hand-
tuning. ANN has been set to: three layers; back-

propagation learning algorithm; random weights ini-
tialisation from [−0.5, +0.5]; five neurons set to sig-
moid transfer function in the hidden layer, and bias set
to value 1; one neuron set to sigmoid transfer function
in the output layer, and bias set to value 1; learning
rate, momentum rate and steepness rate set to 0.8, 0.2
and 1, respectively; stop the training phase when the
error rate gets below 0.1 or the training epochs reaches
50.

In the second experiment the ANN was set by us-
ing a GA-based wrapper. GA has been set to: 50
candidates; 30 generations; mutation probability set to
1%; crossover probability of 90%; population replace-
ment percentage set to 25%. Consequently, the ANN
has been set to: back-propagation learning algorithm;
random weights initialization from [−0.5, +0.5]; the
limit of three times more neurons in the hidden layer
than in the input layer; one out of seven transfer func-
tions in each hidden and output neurons, and bias set
to value 1; one neuron in the output layer, and bias set
to value 1; learning rate, momentum rate and steep-
ness rate set to respective default internal range; stop
the training phase when the error rate achieves 0.1 or
the training epochs achieve 50.

In the third experiment the ANN was set by us-
ing a Stratified Sampling approach to split the set of
weights in two intervals A1 = [−0.5, 0[and A2 =
[0, +0.5]. Other ANN parameters has been set using
the parameter values of the first experiment.

5.2 Experimental Results
The experimental results are reported in tables 2 to
4. It is presented both the average error rate and std.
deviation of training and test datasets. The average
represents the obtained result from the arithmetic sum
of five cycles (K-fold technique) of the same dataset
together and then dividing the total by the number of
cycles. The winner result percentage of each dataset
was obtained by variance coefficient between two re-
spective techniques. For the sake of clearness, all av-
erage error rate and std. deviation values presented in
tables 2 to 4 are in the order of 1E − 10.

From tables 2 to 4, the following conclusions can
be drawn. First, it is worth noting that all the tables
listed in this study show good results. Every tech-
nique which used the wrapper reduced the error rate.
Second, as can be observed in Table 2, the use of GA
turns out to be better in eight cases out of nine due
to the structural risk minimization principle of ANN,
such as local minima and over fitting. Third, there
were good results in the Stratified Sampling approach,
as presented in Table 3. This approach wins in six
cases out of nine, in which only the ANN connec-
tion weights is balanced. Finally, the use of Stratified

ANN ANN
Data set hand-tuning with GA Winner

test1(T1) test2(T2)
Letter 123.6(13.8) 102.6(1.9) T2(9.3%)
RingNorm 981.7(123.0) 267.9(10.7) T2(8.5%)
Splice 16.8(2.2) 16.8(0.6) T2(9.5%)
Titanic 11.3(0.9) 9.5(0.5) T2(3.3%)
TwoNorm 475.2(257.2) 141.8(23.5) T2(38%)
Abalone 99.9(7.5) 70.1(5.1) T2(0.2%)
Addd10 31223(950) 30460(855) T2(0.2%)
Boston 107982(27495) 84110(17309) T2(4.9%)
Hwang 1342.8(15.9) 1174.6(24.6) T1(0.9%)

Table 2: Comparing hand-tuned ANN with ANN
tuned by a GA. The values in the table were all multi-
plied by 1E − 10.

ANN ANN
Data set hand-tuning with SS Winner

test1(T1) test3(T3)
Letter 123.6(13.8) 109.2(1.6) T3(9.7%)
RingNorm 981.7(123.0) 238.0(7.0) T3(9.6%)
Splice 16.8(2.2) 16.5(2.3) T1(0.6%)
Titanic 11.3(0.9) 9.2(0.3) T3(4.5%)
TwoNorm 475.2(257.2) 120.2(3.3) T3(51%)
Abalone 99.9(7.5) 77.9(12.9) T1(9.1%)
Addd10 31223(950) 30445(910) T3(0.1%)
Boston 107982(27495) 95979(95691) T3(12%)
Hwang 1342.8(15.9) 1354(24.42) T1(0.6%)

Table 3: Comparing hand-tuned ANN with ANN
tuned by SS. The values in the table were all multi-
plied by 1E − 10.

Sampling is better in six cases out of nine, as shown
in Table 4, and it is an efficient technique in reducing
ANNs error rates.

When comparing the results obtained from the
different experiments listed above, we saw that ANN
hand-tuning won four cases whereas ANN with GA
won eleven cases and ANN with SS had a dominant
portion of twelve cases. The third experiment demon-
strates that Stratified Sampling is the most feasible
and reliable way to get an improved tuning of ANN
parameters. In conclusion, the SS technique demon-
strates that a balanced connection weight has a big in-
fluence on the development of reliable ANNs.

ANN ANN
Data set with GA with SS Winner

test2(T2) test(T3)
Letter 102.6(1.9) 109.2(1.6) T3(0.5%)
RingNorm 267.9(10.7) 238.0(7.0) T3(1.1%)
Splice 16.8(0.6) 16.5(2.3) T2(10.1%)
Titanic 9.5(0.5) 9.2(0.3) T3(1.2%)
TwoNorm 141.8(23.5) 120.2(3.3) T3(13.9%)
Abalone 70.1(5.1) 77.9(12.9) T2(9.3%)
Addd10 30460(855) 30445(910) T2(0.2%)
Boston 84110(17309) 95979(95691) T3(6.6%)
Hwang 1174.6(24.6) 1354(24.42) T3(0.3%)

Table 4: Comparing ANN tuned by GA with ANN
tuned by SS. The values in the table were all multi-
plied by 1E − 10.

6 Conclusion
In this paper two techniques to fine tune ANNs using
AFRANCI have been described. The techniques show
that ANNs can be tuned using either a Genetic Algo-
rithm (GA) or a Stratified Sampling (SS) to achieve
good results. Under a wrapper, GA builds the best
ANN structure by choosing the correct transfer func-
tions, the right biases, and other essential ANN pa-
rameters. On the other hand, SS balances the connec-
tion weights of an ANN structure hand-tuned. Since
it is easy to implement, GA is the most used fine tun-
ing technique to draw the best ANN structure. How-
ever, empirical evaluation on nine popular data sets
has confirmed that the SS obtained better results with
the lowest error rates. Thus, the evaluation of the pro-
posed tune suggests that better results can be achieved
when the SS is used.

Acknowledgements: The research was supported by
the University of Porto(PT) and UnilesteMG(BR) in
the case of the first author, it was also supported by
FCT under grant # POSI/EIA/63240/2004.

References:

[1] Goldberg, D.E.: Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley
Professional (1989)

[2] Prados, D.: New learning algorithm for training mul-
tilayered neural networks that uses genetic-algorithm
techniques. Electronics Letters 28(16) (30 JUL 1992)
1560–1561

[3] Harp, S.A., Samad, T., Guha, A.: Towards the ge-
netic synthesis of neural network. In: Proceedings
of the third international conference on Genetic algo-

rithms, San Francisco, CA, USA, Morgan Kaufmann
Publishers Inc. (1989) 360–369

[4] Whitley, D.L.: Cellular genetic algorithms. In: Pro-
ceedings of the 5th International Conference on Ge-
netic Algorithms, San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc. (1993)

[5] Shamseldin, A.Y., Nasr, A.E., OConnor, K.M.: Com-
parison of different forms of the multi-layer feed-
forward neural network method used for river flow
forecasting. Hydrology and Earth System Sciences
(HESS) 6(4) (2002) 671–684

[6] Fausett, L.V.: Fundamentals of neural networks: ar-
chitectures, algorithms, and applications. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (1994)

[7] Nguyen, D., Widrow, B.: Improving the learning
speed of 2-layer neural networks by choosing initial
values of the adaptative weights. Volume 3. (1990)
21–26

[8] Erdogmus, D. Fontenla-Romero,
O.P.J.A.B.A.C.E.J.R.: Accurate initialization
of neural network weights by backpropagation
of the desired response. In: Proceedings of the
International Joint Conference on Neural Networks.
Volume 3., IEEE (2003) 2005–2010

[9] Reinaldo, F., Siqueira, M., Camacho, R., Reis, L.P.:
Multi-strategy learning made easy. WSEAS Trans-
actions On Systems, Greece 5(10) (2006) 2378–2384
ISSN 1109-2777.

[10] Reinaldo, F., Certo, J., Cordeiro, N., Reis, L.P., Ca-
macho, R., Lau, N.: Applying biological paradigms
to emerge behaviour in robocup rescue team. In
Bento, C., Cardoso, A., Dias, G., eds.: EPIA. Vol-
ume 3808 of Lecture Notes in Computer Science.,
Springer (2005) 422–434 ISSN: 03029743.

[11] Reinaldo, F., Siqueira, M., Camacho, R., Reis, L.P.:
A tool for multi-strategy learning. Research in Com-
puter Science 26 (2006) 51–60

[12] Witten, I.H., Frank, E.: Data Mining: Practical ma-
chine learning tools and techniques. 2nd. edn. Mor-
gan Kaufmann, San Francisco (2005)

[13] Clark, P., Niblett, T.: The cn2 induction algorithm.
Mach. Learn. 3(4) (1989) 261–283

[14] MIT, Wall, M.: Galib: a library of genetic algorithm
components. http://lancet.mit.edu/ga/ (2006)

[15] John, H.G.: Cross-validated c4.5: Using error es-
timation for automatic parameter selection. Techni-
cal note stan-cs-tn-94-12, Computer Science Depart-
ment, Stanford University, California (1994)

[16] Holland, J.H.: Adaptation in Natural and Artificial
Systems. University of Michigan Press (1975)

[17] D.J. Newman, S. Hettich, C.B., Merz, C.: UCI repos-
itory of machine learning databases (1998)

[18] : DELVE data for evaluating learning in valid exper-
iments (2003)

