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Abstract
This article presents the design and evaluation of an algorithm for urinary bladder segmentation in medical images, from
contrastless CT studies of patients suffering from bladder wall tumours. These situations require versatile methods of
segmentation, able to adapt to the structural changes the tumours provoke in the bladder wall, reflected as irregularities
on the images obtained, creating adversities to the segmentation process. This semi-automatic method uses Fuzzy
c-Means clustering, a Gaussian-curve-based intensity transformation, and Active Contour Models, requiring only the
physician’s input of a single seed point for each anatomical view, in order to segment the bladder volume in all frames
that include it.
The performance of the method was evaluated on eight TCGA-BLCA collection patients, achieving approximately 79%
of successful segmentations for small tumour patients (below 2.0 cm of diameter), and approximately 72% between 2.0
and 2.9 cm. Successful segmentations for small tumour patients presented an average of 3.7 mm Hausdorff Distance
and 91.0% Degree of Overlap. The promising performance attained, especially for small tumour patients, revealed a
high potential of this method to serve as basis for an effective early-stage bladder wall tumour CAD system.
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Introduction

According to the most recent statistics, concerning the year
of 2015, urinary bladder cancer is the fifth most frequent type
of cancer, responsible for almost 80,000 new cases and more
than 15,000 deaths in the United States of America alone.1

Despite these worrying statistics, urinary bladder cancer is
one of the most survivable types of cancer. In cases of early
detection, with cancer still confined to the bladder, 94% of
the patients have been successfully treated and survived the
cancer. However, for late detections, the survival rate drops
abysmally to 6%.2

This colossal difference calls for a correct and thorough
examination of all cases where haematuria, the common and
usually sole visible symptom,3;4 presents itself, in order to
ensure the detection of tumours before the cancer invades
surrounding structures or metastasis takes place, and thus
guarantee the greatest survival probability for the patient.

In this race against time, cystoscopy is the commonly
performed, and usually required, exam.2–5 However, it
presents many setbacks, as it is very limited, time-
consuming, invasive, and painful,4;5 thus being currently
supported or replaced by imaging technologies.6

Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI) are the usual choices.7 MRI is the most
commonly used for the development of urinary bladder
computer-aided-diagnosis (CAD) systems, as it provides
good image resolution and soft tissue contrast, allowing
easy distinction between them.6 However, CT is the imaging
method most used by physicians for manual diagnosis and

staging, due to the lower exam costs and much faster
completion times,8 and because it provides higher patient
comfort, despite the exposure to ionizing radiation.7

There is, thus, a lack of correspondence between the
imaging modality commonly used for manual diagnosis by
physicians, and the technology most of the CAD methods are
prepared to use. Also, among the few CAD methods that use
CT images, the large majority was tested solely in patients
without cancer, or only with early-stage tumours, that do
not influence greatly the overall image of the bladder and,
thus, offer little extraordinary adversity to the segmentation
process.

In this article, we present an enhancement of the Fuzzy-
Snake Segmentation algorithm,9 using Fuzzy c-Means
clustering, a Gaussian-curve-based intensity transformation,
and Active Contour Models (Snakes). The method was
designed to segment the bladder in the axial, coronal, and
sagital views of CT studies, aiming to be simple and versatile
enough to adapt to various patients suffering from bladder
wall cancer, with diverse tumour dimensions and locations.
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In the following sections of this article, a detailed outline
of the method is exposed, along with the results and
discussion of the performance evaluation, and a comparison
with other commonly used algorithms for urinary bladder
segmentation.

Exploring common methods
Considering the goal of precisely segmenting the urinary
bladder in a plurality of adverse conditions, such as different
patients, with different bladder sizes and shapes, and/or
different tumour dimensions and locations, it stands to
reason that the least complex methods should be the ones
to effectively fit this generalization need.

Thus, the first step towards the development of the
final method was exploring the most common segmentation
methods, that present good results for a wide range
of applications, including medical image processing and,
specifically, bladder segmentation: Active Contour Models
(Snakes),10–14 Region Growing,12;15–17 and Chan-Vese
Models.18–24

As the method developed, these algorithms were tested on
eight patients of The TCGA Urothelial Bladder Carcinoma
collection.25;26 The wide variety of clinics, equipments,
bladder cancer patients, and their characteristics, makes this
collection of CT and MRI studies a great tool to adequately
and thoroughly confirm the capabilities of the methods for
bladder segmentation.

Overview of the methods
Active Contour Models ACM or, commonly, Snakes,27

are spline curves that iteratively move along the image,
converging to regions of local energy minima. Energy is
a combination of image energy, with a strong contribution
from intensity gradient magnitude, that attracts the snake to
edge regions, and of internal energy and external constraints,
that control the evolution and smoothness of the contour. In
this case, a circumference of 15px radius centred in a user
input seed point inside the bladder was used as initialization,
and the parameters were optimized manually.

Region Growing One of the simplest methods of image
segmentation, Region Growing (RG) uses seed points on the
image that will partition the space in regions, by iteratively
adding one neighbouring pixel to a region if they are similar
enough in intensity. However, it has no smoothness or shape
constraints for the contour. In this case, only one seed point
was used, and the stopping criterion was the maximum
intensity difference between the region and the neighbouring
point ϵ = 0.15.

Chan-Vese Models Also called Active Contours Without
Edges,28 the Chan-Vese method (CV) can be described as
a combination of Region Growing and ACM. Like Region
Growing, Chan-Vese Models also use region intensity
similarities to grow the region being segmented, and do not
rely on gradient computations as ACM. However, Chan-Vese
Models also include area and perimeter regularizing terms
that help enforce a degree of smoothness to the contour.
Here, a 11× 11px square, centred on the already mentioned
seed point, was used as initial mask for the segmentations.

Figure 1. Examples of common results, which illustrate the
behaviour of the three related methods (final segmentation
contours (red lines) and seed point locations (red crosses); first
row: ACM results; second row: Region Growing results; third
row: Chan-Vese Model results).

Common Results

From the application of the three related methods to the
images under studied, some patterns of behaviour could be
observed (Fig. 1).

With ACM, it was common to observe an overwhelming
attraction of the contour to bone edges instead of bladder
edges, as the former generally has much higher gradient
magnitude due to bone’s maximum intensity on the images.
Also, when the bladder wall is much more intense than the
bladder lumen, it is frequent for the snake to segment the
lumen only.

With Region Growing, due to the lack of contour
smoothness constraints, it was frequent to obtain irregular
contours and, due to being based on intensity similarities,
higher-intensity tumours and darker regions of the bladder
lumen were frequently left out of the segmented region,
while, in other cases, leakages to similar neighbouring
structures was also frequent.

Finally, Chan-Vese Model presented better results,
reducing the influence of bone edges and intensity
differences, avoiding the occurrence of leakages, and
producing smooth contours. However, the contours rarely fit
the true edge of the bladder and, instead, usually fell short.

Analysing these results, it was possible to conclude that,
the better results of Chan-Vese Model denote that the likely
path to solve this problem is combining the region properties
of Region Growing and the smoothness of ACM. However,
a refined method must be developed in order to obtain better
segmentation performance.
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Figure 2. Outline of the method.

The approach

Structure and overview

The method developed consisted in an enhancement of the
Fuzzy-Snake method, proposed by Bueno et al.9 The Fuzzy-
Snake method was built around the same objective as this
one, i. e. to segment the urinary bladder in contrastless
CT images. Despite presenting results for a large variety
of cancer patients, no indication is given on whether the
patients’ tumours are in the bladder (that could influence
greatly the segmentation results), or whether the method was
tested for images of anatomical views other than axial.

Our improved method consisted on five steps (Fig. 2).
First, for each view (axial, coronal, and sagital), a single seed
point, roughly in the centre of the bladder area is selected
on the middle frame (where the bladder is larger). This
seed point is to be used as reference for some following
procedures, as the centre for the cropping of the region of
interest, and as the centre for the mode computation before
the Gaussian reweighing. The method benefits from the
selection of the seed point as close as possible to the centre
of the bladder area; however, it was developed to be flexible
to variations.

Afterwards, a fuzzy c-means clustering is applied to each
image under study, the image region of interest is cropped
and an intensity transformation based in a Gaussian curve
is applied, and a final segmentation is obtained using ACM.
The details of each of these steps are presented in the
following sections.

Figure 3. Example of the application of the Fuzzy c-Means
clustering algorithm, with c = 15 (left: original image; right: FCM
image).

Fuzzy c-means clustering
Fuzzy c-Means (FCM) clustering is the designation given to
an algorithm first developed by Dunn,29 and later improved
by Bezdek et al.,30;31 based on the widely used k-Means
method.32 FCM is an unsupervised clustering method used
to group data points according to the similarity between their
attributes.

In images, the FCM algorithm clusters their pixels
according to their intensity, into c clusters. In each iteration,
the algorithm computes the centroid of each cluster, and
determines a measure of membership to each cluster for each
point, according to the similarity of the pixel’s and centroid’s
intensities. Thus, the Fuzzy c-Means algorithm iteratively
approximates to the minimum of its goal function, defined
as:

J(U, V ) =

c∑
i=1

N∑
k=1

(uik)
m||xk − νi||2. (1)

where c and N represent, respectively, the number of clusters
and the number of pixels, U the set of membership values
uik, and v the set of cluster centroids νi. The values of uik

and νi are computed through the expressions:

uik =

 c∑
j=1

(
||xk − νi||
||xk − νj ||

) 2
m−1

−1

,∀i, k. (2)

νi =

∑N
k=1(uik)

m.xk∑N
k=1(uik)m

,∀i, k. (3)

The algorithm comes to a stop when it reaches a set limit
of iterations, or when the sum of the centroids norm variation
between iterations is lower than a defined threshold ϵ:

Ei =

c∑
i=1

||νi,t+1 − νi,t|| < ϵ. (4)

Each pixel, in the end, joins the cluster that corresponds
to its highest measure of membership. As proposed by
Bueno et al.,9 and confirmed though the experimentation
with c between 9 and 20, the number of clusters was
defined as 15. The labels obtained were ordered according
to the intensity of the image regions they were attributed
to, and the combination of this with the number of clusters
allowed to obtain a thorough separation of the different
tissues in each image into different clusters (see Fig. 3),
each being attributed a different label. This separation
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is enhanced by the Gaussian reweighing, that effectively
consists on a transformation of the label ordering, that will
be essential to maximise the performance of the subsequent
ACM segmentation. The FCM application also effectively
performs a histogram stretch on the image, and reduces
intracluster noise and variations, eliminating the need for
image pre-processing.

Cropping of the region of interest
In order to obtain a correct computation of the cluster
centroids and measures of membership, the FCM method
requires the entire image as input. However, for the following
steps, this is not necessary, and is even undesirable,
as performing segmentation or other image processing
computations in entire images can be time consuming.

Thus, each square image, after FCM, is cropped into a
square region of interest (ROI), centred on the seed point,
with side length LROI = LI/3, where LI is the side length
of the original image (Fig. 4).

This step ensures the reduction of the total number of
pixels to a ninth of the original, effectively reducing the
time needed to perform the following computations. In all
images used for testing the method, the whole bladder region
was consistently inside the ROI, independently of the seed
point location inside it, even when considering seed point
selection in the extremities of the bladder region; and it thus
expected to correctly include the whole bladder in images of
any patient, and be flexible to variable seed point locations.

Gaussian reweighing
After the cropping of the ROI, the labels of each pixel,
originated by the FCM on the first step, had to be transformed
into intensity values.

This step was not included in the original Fuzzy-
Snake method. Instead, the ACM used by Bueno et
al.9 was modified in order to receive both the original
and FCM images. In this case, where we want to
preserve the generalization capabilities of the method, this
modification could undermine our objective. Thus, the
original formulation of ACM is used.

To the FCM image (with label [1, 15] for each pixel)
is applied an intensity transformation based on a Gaussian
curve (Fig. 4). The mode m of the labels of a square 5× 5px
neighbourhood centred on the seed point is determined,
representing the main label of the bladder region, and is used
as mean of a Gaussian curve with σ = 0.5. The new intensity
value yi of each pixel, according to its FCM label xi, is then

Figure 4. Example of the cropping of the ROI and Gaussian
reweighing (left: FCM image with seed point (red cross) and the
limit lines of the ROI; center: cropped ROI; right: reweighed
image).

Figure 5. Example of the application of ACM after FCM and
Gaussian reweighing. (left: reweighed image; right: ACM
segmentation result). The usefulness of ACM in ignoring the
noise inside the bladder region and fitting the true bladder
contour is visible.

computed through the expression:

yi = e
−(xi−m)2

2σ2 . (5)

This transformation is used mainly to increase the
intensity difference between the clusters with labels close to
the mode m, weighing the bladder region with the highest
intensity, and thus enhancing the gradient magnitude on the
bladder edge, and highly attenuating the influence of bone
edges and other different structures on the ACM that follows.

Active contour model segmentation
The last step is the segmentation of the reweighed ROI.
Active Contour Models (ACM, commonly designated as
Snakes), were first described by Kass et al.,27 and were ever
since praised by their usefulness and applicability in multiple
computer vision applications.

ACM are spline curves ν(s) = (x(s), y(s)), that progress
iteratively under the influence of image forces (Eimage),
external constraint forces (Eexternal), and internal forces
(Einternal), until converging to locations of energy minima.
The overall energy is defined by:

Esnake =

∫ 1

0

[Einternal(ν(s)) + +Eimage(ν(s))

+ Eexternal(ν(s))]ds.

(6)

The internal energy depends on the mechanical properties
of the spline, through its first and second order derivatives,
weighted using the α and β parameters, with:

Einternal =

(
α(s)

2
|νs(s)|2 +

β(s)

2
|νss(s)|2

)
. (7)

The image energy is computed through a weighted
combination of energy functionals, relative to the energy of
lines, edges, and line terminations on the image, through the
expression:

Eimage =(wlineEline + wedgeEedge

+ wtermEterm) ,
(8)

where the line, edge, and line termination energy are
computed through:

Eline = I(x, y) , (9)
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Table 1. Subjective evaluation of segmentations by patient
tumour dimensions (T.S. - tumour diameter, N.F. - total number
of frames, S.S. - number of successful segmentations).

T.S. (cm) N.F. S.S. Success Rate (%)
0–1.9 155 123 79.4

2.0–2.9 129 93 72.1
⩾ 3.0 206 113 54.9

Eedge = −|∇I(x, y)|2 , and (10)

Eterm =
CyyCx

2 − 2CyyCxCy + Cxx + Cy
2

(Cx
2 + Cy

2)3/2
, (11)

where C(x, y) = Gσ(x, y) ∗ I(x, y) is a slightly smoothed
version of the image.

Here, a circumference of 15px radius centred on the
seed point is used as initialization, and grew to fit the
highest gradient region (now corresponding to the edge of
the bladder). To preserve generalization capabilities, the
default parameters of the snake toolbox used33 were mostly
maintained, with α = β = 0.2, k = 2.0, wline = 0.04,
wedge = 2.0, wterm = 0.01, σ1 = σ2 = 2.0, and without
Gradient Vector Flow optimization.

The ACM allows to obtain a smooth boundary of the
bladder region, fitted to the true contours of the bladder, and
resistant to possible noise inside this region that may remain
after FCM and the reweighing (Fig. 5).

Results and discussion
The algorithm was tested on all frames, individually, of
the three views (axial, coronal, and sagital), of contrastless
CT studies of eight different patients of the TCGA-BLCA
collection.25;26 These studies were chosen randomly, among
the available variety, as long as they included contrastless CT
images spanning the entire bladder, on all three anatomical
views.

The studied TCGA-BLCA collection posed an interesting
challenge (and opportunity) for this approach. Due to
the large plurality of patients characteristics, equipment
specificities, and acquisition settings, it increases the
adversities that are be encountered by the method on its
goal to segment the bladder, and effectively ensures it can
be applied in a wide variety of contexts.

In order to obtain both extensive and rigorous measures
of performance, the results were evaluated both subjectively
and objectively. The location and dimensions of the bladder
wall tumours were determined, for comparison purposes, and
ground-truths of the frames used in the objective evaluation
were obtained from an expert.

Subjective performance assessment
All segmentations performed were evaluated subjectively,
and classified as ’Successful’ or ’Unsuccessful’. The former
was reserved to the segmentations that presented a final
contour that adapted to the true bladder boundary in all
of its extension, while the latter was attributed to the
remainder ons. The evaluation results are presented in Table
1, where the success rate is the percentage of ’Successful’
segmentations performed.

The highest success rates were obtained for patients with
smaller tumours, with almost 80% for less than 2.0 cm of
diameter, while, for tumours greater than 3.0 cm, the success
rate of the method dropped to approximately 55%. The
segmentations obtained through the proposed method were
also compared with the ones produced by ACM, Region-
Growing, and Chan-Vese Model. The new method proved to
be much more efficient at fitting the true edge of the bladder
(see Fig. 6 for some examples), while Region Growing and
Chan-Vese usually caused leakages and/or left certain areas
out, and ACM did not adapt to the true contour of the bladder
and deviated to higher gradient zones.

For larger tumour patients, this size proved to be the
method’s main cause of failure, with the tumour frequently
being left out of the segmented region. However, this was
rarely observed in frames with tumours smaller than 2.0 cm.
Other causes of failure, independent of the tumour size, were
encountered, such as the incapacity to adapt to the smaller
bladder area in the few first and last frames of each view,
and, more rarely, the effect of neighbouring structures on the
snake contour.

Objective performance assessment
Having the rates of successful segmentations determined
through a subjective evaluation, two random sample
segmentation results for each view, one classified as
successful and the other as unsuccessful, were selected for

Method ACM R.Growing Chan-Vese

Figure 6. Comparison of some results obtained by the
proposed method and the common methods explored, for
images belonging to subjects with tumours of different
dimensions (red contour: segmentation result, blue contour:
ground-truth; tumour sizes, from first to last row: 1.2 cm, 1.2 cm,
2.7 cm, 3.1 cm, and 3.2 cm).
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Table 2. Objective evaluation of segmentations by patient
tumour dimensions, for the sample successful segmentations
(T.S. - tumour diameter, N.F. - number of frames evaluated, HD -
Hausdorff Distance, OL - Degree of Overlap).

Successful Segmentations
T.S. (cm) N.F. HD (mm) OL (%)

0–1.9 9 3.7±0.9 91.0±4.4
2.0–2.9 6 5.7±2.4 84.9±4.1
⩾ 3.0 9 6.1±2.8 85.4±10.3

Table 3. Objective evaluation of segmentations by patient
tumour dimensions, for the sample unsuccessful segmentations
(T.S. - tumour diameter, N.F. - number of frames evaluated, HD -
Hausdorff Distance, OL - Degree of Overlap).

Unsuccessful Segmentations
T.S. (cm) N.F. HD (mm) OL (%)

0–1.9 9 19.3±8.7 70.3±10.9
2.0–2.9 6 19.5±3.6 62.2±11.4
⩾ 3.0 9 22.7±5.8 65.5±11.8

each patient, and compared to the ground truth using two
metrics: Hausdorff Distance (HD) and Degree of Overlap
(OL, using the Jaccard similarity index) (Tables 2 and 3).

The best results were found, as expected, for patients
with smaller tumours, with the method presenting similar
performance to that of the original Fuzzy-Snake method for
tumours under 2.0 cm of diameter (91.0% OL), as well as
a reduced Hausdorff Distance, that proves the adequacy of
the segmentation contour to the ground-truth. For successful
segmentations, the average results were always above 84%
OL and below 7 mm HD. For the unsuccessful segmentations
(the less common situations), the HD and OL values
were, respectively, around 19–23 mm and 60–70%, which
generally corresponded to the size of the tumour region on
the frames that, when left out, was the most common source
of unsuccessful segmentations.

In Tables 4 and 5, the results of the evaluation according to
the anatomical view are presented, in order to allow for the
assessment of the method’s performance in each view. As
expected, for images with larger tumours, the performance is
worse. The method seems to work better with axial images,

Table 4. Objective evaluation of segmentations by patient
tumour dimensions and anatomical view, for the sample
successful segmentations (T.S. - tumour diameter, HD -
Hausdorff Distance, OL - Degree of Overlap).

T.S. (cm) HD (mm) OL (%)
Axial 0–1.9 3.3±1.1 94.3±1.7

2.0–2.9 6.2±2.8 87.8±5.0
⩾ 3.0 4.8±3.9 91.0±5.3

Coronal 0–1.9 3.5±0.1 90.9±2.8
2.0–2.9 4.1±0.6 85.0±0.1
⩾ 3.0 5.8±2.7 88.4±5.8

Sagital 0–1.9 4.3±1.2 87.6±5.8
2.0–2.9 6.8±3.5 81.8±4.9
⩾ 3.0 7.8±1.2 76.7±13.7

Overall 0–1.9 3.7±0.9 91.0±4.4
2.0–2.9 5.7±2.4 84.9±4.1
⩾ 3.0 6.1±2.8 85.4±10.3

Table 5. Objective evaluation of segmentations by patient
tumour dimensions and anatomical view, for the sample
unsuccessful segmentations (T.S. - tumour diameter, HD -
Hausdorff Distance, OL - Degree of Overlap).

T.S. (cm) HD (mm) OL (%)
Axial 0–1.9 18.0±9.0 72.6±10.8

2.0–2.9 18.9±0.2 64.3±5.7
⩾ 3.0 27.2±4.9 71.0±14.2

Coronal 0–1.9 15.8±4.0 76.1±8.6
2.0–2.9 18.8±6.6 64.3±4.9
⩾ 3.0 22.1±3.8 58.4±7.7

Sagital 0–1.9 24.2±12.1 62.3±11.7
2.0–2.9 20.8±4.0 58.1±23.4
⩾ 3.0 18.9±6.7 67.0±13.1

Overall 0–1.9 19.3±8.7 70.3±10.9
2.0–2.9 19.5±3.6 62.2±11.4
⩾ 3.0 22.7±5.8 65.5±11.8

but this may be a result of the higher spatial resolution of
these images versus the other views. The proposed method is
also compared with ACM, RG, and CV methods (cf. Table
6), showing significantly improvements in all cases.

Conclusions

To conclude, the proposed method has overcome the
difficulties associated with the task at hand, and successfully
segment the urinary bladder using the most common imaging
technology used in clinics, the contrastless computed
tomography, while effectively maintaining the simplicity
needed to generally fit the wide range of characteristics of
different bladder wall tumour patients.

The evaluation results of the proposed method, both
subjective and objective, strongly suggest its use as basis
for a reliable CAD system. Along with an equally effective
inner wall segmentation method, and perhaps tridimensional
reconstruction for visualization purposes, the method could
be the key to help bladder cancer diagnosis, especially for
early-stage tumours.

Table 6. Objective evaluation of segmentations by patient
tumour dimensions, and comparison with results of ACM,
Region Growing, and Chan-Vese (T.S. - tumour diameter, HD -
Hausdorff Distance, OL - Degree of Overlap; best results
obtained for each metric and each tumour size are presented in
bold).

T.S. (cm) HD (mm) OL (%)
This method 0–1.9 3.7±0.9 91.0±4.4

2.0–2.9 5.7±2.4 84.9±4.1
⩾ 3.0 6.1±2.8 85.4±10.3

ACM 0–1.9 11.9±4.9 79.2±11.6
2.0–2.9 17.8±7.9 59.6±14.1
⩾ 3.0 16.1±8.0 66.9±13.9

R. Growing 0–1.9 7.1±3.6 89.4±4.7
2.0–2.9 16.0±13.9 80.0±10.9
⩾ 3.0 13.5±10.0 72.5±17.4

Chan-Vese 0–1.9 12.4±10.2 80.8±10.7
2.0–2.9 24.9±3.9 70.1±1.6
⩾ 3.0 22.0±14.3 55.7±32.3
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Future work possibilities include the evaluation of the
proposed method with a larger number of studies, the
reconstruction of the segmentations to obtain tridimensional
models of the bladder, and the use of the method directly
in 3D, merging the three views in one single process, and
comparing its performance to the method proposed in this
article.
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