Abstract (EN):
A long-period-grating-based fiber optic Michelson modal interferometer with coherence addressing and heterodyne interrogation is studied as a sensing structure for measuring environmental refractive index, temperature, and liquid level. The effects of several system parameters on the measurements are investigated. Experimental results show that the sensitivity to the external refractive index increases with the order of cladding mode and with a reduction of the fiber diameter. The decrease of the fiber diameter from 125 mu m down to 70 mu m enhances the sensitivity to the external index by a factor of 2.7. It is also shown that the use of a silica-core fiber increases the sensitivity to the external index by a factor of 1.4 and reduces the thermal sensitivity by a factor of 2.5 compared to a standard fiber. (C) 2008 Society of Photo-Optical Instrumentation Engineers.
Language:
English
Type (Professor's evaluation):
Scientific
Contact:
pcaldas@inescporto.pt
No. of pages:
7