Go to:
Logótipo
Você está em: Start > Publications > View > Automatic sign language to text translation using MediaPipe and transformer architectures
Map of Premises
Principal
Publication

Automatic sign language to text translation using MediaPipe and transformer architectures

Title
Automatic sign language to text translation using MediaPipe and transformer architectures
Type
Article in International Scientific Journal
Year
2025
Authors
Maia, WF
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
António Mendes Lopes
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
David, SA
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: NeurocomputingImported from Authenticus Search for Journal Publications
Vol. 642
ISSN: 0925-2312
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-018-RSC
Abstract (EN): This study presents a transformer-based architecture for translating Sign Language to spoken language text using embeddings of body keypoints, with the mediation of glosses. To the best of our knowledge, this work is the first to successfully leverage body keypoints for Sign Language-to-text translation, achieving comparable performance to baseline models without reducing translation quality. Our approach introduces extensive augmentation techniques for body keypoints, and convolutional keypoint embeddings, and integrates Connectionist Temporal Classification Loss and position encoding for Sign2Gloss translation. For the Gloss2Text stage, we employ fine-tuning of BART, a state-of-the-art transformer model. Evaluation on the Phoenix14T dataset demonstrates that our integrated Sign2Gloss2Text model achieves competitive performance, with BLEU-4 scores that show marginal differences compared to baseline models using pixel embeddings. On the How2Sign dataset, which lacks gloss annotations, direct Sign2Text translation posed challenges, as reflected in lower BLEU-4 scores, highlighting the limitations of gloss-free approaches. This work addresses the narrow domain of the datasets and the unidirectional nature of the translation process while demonstrating the potential of body keypoints for Sign Language Translation. Future work will focus on enhancing the model's ability to capture nuanced and complex contexts, thereby advancing accessibility and assistive technologies for bridging communication between individuals with hearing impairments and the hearing community.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 13
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

The vitality of pattern recognition and image analysis (2015)
Another Publication in an International Scientific Journal
Luisa Mico; Joao M Sanches; Jaime S Cardoso
ydata-profiling: Accelerating data-centric AI with high-quality data (2023)
Article in International Scientific Journal
Clemente, F; Ribeiro, GM; Quemy, A; Santos, MS; Pereira, RC; Barros, A
The vitality of pattern recognition and image analysis (2015)
Article in International Scientific Journal
Micó, L; Sanches, JM; Jaime S Cardoso
Pre-processing approaches for imbalanced distributions in regression (2019)
Article in International Scientific Journal
Branco, P; Torgo, L; Rita Ribeiro
Predicting satisfaction: perceived decision quality by decision-makers in Web-based group decision support systems (2019)
Article in International Scientific Journal
João Carneiro; Pedro Saraiva; Luís Conceição; Ricardo Santos; Goreti Marreiros; Paulo Novais

See all (22)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-08 at 01:40:44 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book