Abstract (EN):
Up to today, several techniques have been used to produce biodegradable porous scaffolds for tissue engineering. In this work, a new technique based on extrusion by using blowing agents in combination with a 50:50 (wt.%) blend of starch/cellulose acetate (SCA) was studied. The results show that by using this technique it was possible to obtain scaffolds with 70% of porosity and a fully interconnected network of pores, with sizes ranging from 200 to 500 pm. After their production, the mechanical properties of these scaffolds were tested, presenting a compressive modulus of 124.6 +/- 27.2 MPa and a compressive strength of 8.0 +/- 0.9 MPa. These values are within the best found in the literature and show that by using this technique, it is possible to produce scaffolds that, from a mechanical standpoint, may be suitable for bone tissue engineering. Cell culturing experiments showed that cells were viable and that there were no signs of cellular death after 3 weeks of culture. Finally, biochemical assays demonstrate that cells maintained the osteogenic phenotype throughout the experiment and deposition of mineralized extracellular matrix could be detected.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
7