Go to:
Logótipo
Você está em: Start > Publications > View > A Two-Stage U-Net framework for Interactive Segmentation of lung nodules in CT scans
Map of Premises
Principal
Publication

A Two-Stage U-Net framework for Interactive Segmentation of lung nodules in CT scans

Title
A Two-Stage U-Net framework for Interactive Segmentation of lung nodules in CT scans
Type
Article in International Scientific Journal
Year
2025
Authors
Fernandes, L
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Pereira, T
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: IEEE AccessImported from Authenticus Search for Journal Publications
Vol. 13
ISSN: 2169-3536
Publisher: IEEE
Indexing
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-018-RZ2
Abstract (EN): Segmentation of lung nodules in CT images is an important step during the clinical evaluation of patients with lung cancer. Furthermore, early assessment of the cancer is crucial to increase the overall survival chances of patients with such disease, and the segmentation of lung nodules can help detect the cancer in its early stages. Consequently, there are many works in the literature that explore the use of neural networks for the segmentation of lung nodules. However, these frameworks tend to rely on accurate labelling of the nodule centre to then crop the input image. Although such works are able to achieve remarkable results, they do not take into account that the healthcare professional may fail to correctly label the centre of the nodule. Therefore, in this work, we propose a new framework based on the U-Net model that allows to correct such inaccuracies in an interactive fashion. It is composed of two U-Net models in cascade, where the first model is used to predict a rough estimation of the lung nodule location and the second model refines the generated segmentation mask. Our results show that the proposed framework is able to be more robust than the studied baselines. Furthermore, it is able to achieve state-of-the-art performance, reaching a Dice of 91.12% when trained and tested on the LIDC-IDRI public dataset. © 2013 IEEE.
Language: English
Type (Professor's evaluation): Scientific
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Exploring the differences between Multi-task and Single-task with the use of hxplainable AI for lung nodule classification (2024)
Article in International Conference Proceedings Book
Fernandes, L; Pereira, T; Oliveira, HP

Of the same journal

Understanding Business Models for the Adoption of Electric Vehicles and Charging Stations: Challenges and Opportunities in Brazil (2023)
Another Publication in an International Scientific Journal
Bitencourt, L; Dias, B; Soares, T; Borba, B; Quirós Tortós, J; Costa, V
Space Imaging Point Source Detection and Characterization (2024)
Another Publication in an International Scientific Journal
Ribeiro, FSF; P. J. V. Garcia; Silva, M; Jaime S Cardoso
Key Indicators to Assess the Performance of LiDAR-Based Perception Algorithms: A Literature Review (2023)
Another Publication in an International Scientific Journal
José Machado da Silva; K. Chiranjeevi; Correia, M. V.
IEEE ACCESS SPECIAL SECTION EDITORIAL: SOFT COMPUTING TECHNIQUES FOR IMAGE ANALYSIS IN THE MEDICAL INDUSTRY - CURRENT TRENDS, CHALLENGES AND SOLUTIONS (2018)
Another Publication in an International Scientific Journal
D. Jude Hemanth; Lipo Wang; João Manuel R. S. Tavares; Fuqian Shi; Vania Vieira Estrela
Generating Synthetic Missing Data: A Review by Missing Mechanism (2019)
Another Publication in an International Scientific Journal
Santos, MS; Pereira, RC; Costa, AF; Soares, JP; Santos, J; Pedro Henriques Abreu

See all (109)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-09-01 at 20:59:52 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book