Go to:
Logótipo
Você está em: Start > Publications > View > Integration of multi-modal datasets to estimate human aging
Map of Premises
Principal
Publication

Integration of multi-modal datasets to estimate human aging

Title
Integration of multi-modal datasets to estimate human aging
Type
Article in International Scientific Journal
Year
2024
Authors
Ribeiro, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Moraes, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Moreno, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: Machine LearningImported from Authenticus Search for Journal Publications
Vol. 113
Pages: 7293-7317
ISSN: 0885-6125
Publisher: Springer Nature
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-012-N91
Abstract (EN): Aging involves complex biological processes leading to the decline of living organisms. As population lifespan increases worldwide, the importance of identifying factors underlying healthy aging has become critical. Integration of multi-modal datasets is a powerful approach for the analysis of complex biological systems, with the potential to uncover novel aging biomarkers. In this study, we leveraged publicly available epigenomic, transcriptomic and telomere length data along with histological images from the Genotype-Tissue Expression project to build tissue-specific regression models for age prediction. Using data from two tissues, lung and ovary, we aimed to compare model performance across data modalities, as well as to assess the improvement resulting from integrating multiple data types. Our results demostrate that methylation outperformed the other data modalities, with a mean absolute error of 3.36 and 4.36 in the test sets for lung and ovary, respectively. These models achieved lower error rates when compared with established state-of-the-art tissue-agnostic methylation models, emphasizing the importance of a tissue-specific approach. Additionally, this work has shown how the application of Hierarchical Image Pyramid Transformers for feature extraction significantly enhances age modeling using histological images. Finally, we evaluated the benefits of integrating multiple data modalities into a single model. Combining methylation data with other data modalities only marginally improved performance likely due to the limited number of available samples. Combining gene expression with histological features yielded more accurate age predictions compared with the individual performance of these data types. Given these results, this study shows how machine learning applications can be extended to/in multi-modal aging research. Code used is available at https://github.com/zroger49/multi_modal_age_prediction.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 25
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Predicting Age from Human Lung Tissue Through Multi-modal Data Integration (2023)
Article in International Conference Proceedings Book
Moraes, A; Moreno, M; Ribeiro, R; Ferreira, G

Of the same journal

Special ILP mega-issue: ILP-2003 and ILP-2004 (2006)
Another Publication in an International Scientific Journal
Rui Camacho; Ross King; Ashwin Srinivasan
Metalearning and Algorithm Selection: progress, state of the art and introduction to the 2018 Special Issue (2018)
Another Publication in an International Scientific Journal
Pavel Brazdil; Giraud Carrier, C
Introduction to the special issue on meta-learning (2004)
Another Publication in an International Scientific Journal
Giraud Carrier, C; Vilalta, R; Pavel Brazdil
Guest editors' introduction: special issue on Inductive Logic Programming and on Multi-Relational Learning (2015)
Another Publication in an International Scientific Journal
Gerson Zaverucha; Vitor Santos Costa
Guest Editors introduction: special issue of the ECMLPKDD 2015 journal track (2015)
Another Publication in an International Scientific Journal
Concha Bielza; Joao Gama; Alipio Jorge; Indre Zliobaite

See all (40)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-26 at 18:19:31 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book