Go to:
Logótipo
Você está em: Start > Publications > View > On the electrohydrodynamic jet printing of two-dimensional material-based inks for printed electronics
Map of Premises
Principal
Publication

On the electrohydrodynamic jet printing of two-dimensional material-based inks for printed electronics

Title
On the electrohydrodynamic jet printing of two-dimensional material-based inks for printed electronics
Type
Article in International Scientific Journal
Year
2024
Authors
Rijo, PC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Vega, EJ
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Montanero, JM
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: Physics of FluidsImported from Authenticus Search for Journal Publications
Vol. 36
ISSN: 1070-6631
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-017-DY8
Abstract (EN): Electrohydrodynamic (EHD) jet printing is a well-known advanced manufacturing technique that uses electric fields to generate and control fine jets of fluid for high-precision deposition of materials. This method enables the printing of extremely fine features, making it ideal for applications such as printed electronics. However, little is known about the optimal conditions for achieving consistent jet stability and droplet formation, especially when dealing with complex and volatile fluids laden with two-dimensional (2D) nanoparticles. In this work, we study the electrohydrodynamic printing process of 2D material-based inks using toluene as the main carrier fluid. Adding ethyl cellulose to toluene allows us to increase the stability of the suspensions and establish the steady cone-jet mode of electrospray. A small amount of ethanol increases the fluid conductivity, stabilizing the steady cone-jet mode and reducing the jet diameter. The inks behave as leaky-dielectric, weakly viscoelastic liquids. For this reason, the jet diameter and minimum flow rate obey the scaling laws for electrospray of Newtonian liquids. We determine the optimal parameter conditions for the EHD printing of our inks directly onto a non-conductive substrate. The influence of the substrate's velocity on the width of the printed lines is analyzed. These findings enlarge the knowledge about how to increase the throughput in the EHD jet printing process while controlling the resolution of the printed lines when using volatile solvents, 2D nanomaterials, and non-conductive substrates.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 11
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Rising of a single Taylor drop in a stagnant liquid-2D laminar flow and axisymmetry limits (2016)
Article in International Scientific Journal
F. J. N.Direito; J. B. L. M. Campos; J. M. Miranda
Revisiting the flat plate laminar boundary layer flow of viscoelastic FENE-P fluids (2021)
Article in International Scientific Journal
S. Parvar; C. B. da Silva; Fernando Tavares de Pinho
Parametric analysis of the transient back extrusion flow to determine instantaneous viscosity (2021)
Article in International Scientific Journal
Fakhari, A; Galindo Rosales, FJ
Numerical simulations of suspensions of rigid spheres in shear-thinning viscoelastic fluids (2023)
Article in International Scientific Journal
Ayar, O; Fernandes, C; Ferrás, LL; Alves, MA
Numerical simulation of a thixotropic-viscoelastic model in contraction geometries (2024)
Article in International Scientific Journal
Castillo-Sánchez, HA; de Araújo, MSB; Bertoco, J; Fernandes, C; Ferrás, LL; Castelo, A

See all (19)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2025-06-18 at 15:30:03 | Acceptable Use Policy | Data Protection Policy | Complaint Portal