Abstract (EN):
Electrokinetic flows driven by electro-osmotic forces are especially relevant in micro and nano-devices, presenting specific applications in medicine, biochemistry, and miniaturized industrial processes. In this work, we integrate analytical solutions with numerical methodologies to explore the fluid dynamics of viscoelastic electro-osmotic/pressure-driven fluid flows (described by the generalized Phan-Thien-Tanner (gPTT) constitutive equation) in a microchannel under asymmetric zeta potential conditions. The constitutive equation incorporates the Mittag-Leffler function with two parameters (alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}), which regulate the rate of destruction of junctions in a network model. We analyze the impact of the various model parameters on the velocity profile and observe that our newly proposed model provides a more comprehensive depiction of flow behavior compared to traditional models, rendering it suitable for modeling complex viscoelastic flows.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
18