Resumo (PT):
From the results of the research carried out in the last years on fibre reinforced cement based materials, it can be pointed out that, for the fibre contents usually employed in practice, the post-peak tensile behaviour is the most improved material characteristic. However, difficulties in carrying out valid direct tensile tests have limited the research in this field. The scarcity of investigation on the tensile behaviour of glass fibre reinforced concrete (GFRC) is also probably due to the ageing problems of GFRC systems. In order to contribute to a better knowledge of the uniaxial tensile behaviour of GFRC, deformation-controlled uniaxial tensile tests were carried out at Stevin Laboratory (NL). Polymer-modified glass fibre reinforced cement (PGFRC) specimens manufactured by spray up and premix techniques, and GFRC specimens are tested at the age of 28 days. The experimental response of the tested specimens is illustrated and the results are used to validate a computational code developped for the analysis of fibre reinforced concrete (FRC) structures, wherein the most recent concepts of fracture mechanics of brittle materials are included.
Abstract (EN):
From the results of the research carried out in the last years on fibre reinforced cement based materials, it can be pointed out that, for the fibre contents usually employed in practice, the post-peak tensile behaviour is the most improved material characteristic. However, difficulties in carrying out valid direct tensile tests have limited the research in this field. The scarcity of investigation on the tensile behaviour of glass fibre reinforced concrete (GFRC) is also probably due to the ageing problems of GFRC systems. In order to contribute to a better knowledge of the uniaxial tensile behaviour of GFRC, deformation-controlled uniaxial tensile tests were carried out at Stevin Laboratory (NL). Polymer-modified glass fibre reinforced cement (PGFRC) specimens manufactured by spray up and premix techniques, and GFRC specimens are tested at the age of 28 days. The experimental response of the tested specimens is illustrated and the results are used to validate a computational code developped for the analysis of fibre reinforced concrete (FRC) structures, wherein the most recent concepts of fracture mechanics of brittle materials are included.
Language:
Portuguese
Type (Professor's evaluation):
Scientific