Go to:
Logótipo
Você está em: Start > Publications > View > A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains
Map of Premises
Principal
Publication

A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains

Title
A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains
Type
Article in International Scientific Journal
Year
2006
Authors
Teixeira, MAC
(Author)
Other
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Miranda, PMA
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Journal
The Journal is awaiting validation by the Administrative Services.
Vol. 132
Pages: 2439-2458
ISSN: 0035-9009
Other information
Authenticus ID: P-004-H22
Abstract (EN): An analytical model of orographic gravity wave drag due to sheared flow past elliptical mountains is developed. The model extends the domain of applicability of the well-known Phillips model to wind profiles that vary relatively slowly in the vertical, so that they may be treated using a WKB approximation. The model illustrates how linear processes associated with wind profile shear and curvature affect the drag force exerted by the airflow on mountains, and how it is crucial to extend the WKB approximation to second order in the small perturbation parameter for these effects to be taken into account. For the simplest wind profiles, the normalized drag depends only on the Richardson number, Ri, of the flow at the surface and on the aspect ratio, gamma, of the mountain. For a linear wind profile, the drag decreases as Ri decreases, and this variation is faster when the wind is across the mountain than when it is along the mountain. For a wind that rotates with height maintaining its magnitude, the drag generally increases as Ri decreases, by an amount depending on gamma and on the incidence angle. The results from WKB theory are compared with exact linear results and also with results from a non-hydrostatic nonlinear numerical model, showing in general encouraging agreement, down to values of Ri of order one.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 20
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

The importance of friction in mountain wave drag amplification by Scorer parameter resonance (2012)
Article in International Scientific Journal
Teixeira, MAC; Arga'in, JL; Miranda, PMA
The effect of wind shear and curvature on the gravity wave drag produced by a ridge (2004)
Article in International Scientific Journal
Teixeira, MAC; Miranda, PMA
Resonant gravity-wave drag enhancement in linear stratified flow over mountains (2005)
Article in International Scientific Journal
Teixeira, MAC; Miranda, PMA; Argain, JL; Valente, MA
Orographic Drag Associated with Lee Waves Trapped at an Inversion (2013)
Article in International Scientific Journal
Teixeira, MAC; Argain, JL; Miranda, PMA
On the Momentum Fluxes Associated with Mountain Waves in Directionally Sheared Flows (2009)
Article in International Scientific Journal
Teixeira, MAC; Miranda, PMA

See all (18)

Of the same journal

The importance of friction in mountain wave drag amplification by Scorer parameter resonance (2012)
Article in International Scientific Journal
Teixeira, MAC; Arga'in, JL; Miranda, PMA
The effect of a stable boundary layer on orographic gravity-wave drag (2021)
Article in International Scientific Journal
Turner, HV; Teixeira, MAC; Methven, J
The dependence of mountain wave reflection on the abruptness of atmospheric profile variations (2020)
Article in International Scientific Journal
Teixeira, MAC; Argain, JL

See all (19)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-28 at 23:21:39 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book