Go to:
Logótipo
Você está em: Start > Publications > View > Do we really need a segmentation step in heart sound classification algorithms?
Map of Premises
Principal
Publication

Do we really need a segmentation step in heart sound classification algorithms?

Title
Do we really need a segmentation step in heart sound classification algorithms?
Type
Article in International Conference Proceedings Book
Year
2021
Authors
Oliveira, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Nogueira, D
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Renna, F
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Ferreira, C
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Jorge, AM
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Coimbra, M
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Other information
Authenticus ID: P-00V-WT1
Abstract (EN): Cardiac auscultation is the key screening procedure to detect and identify cardiovascular diseases (CVDs). One of many steps to automatically detect CVDs using auscultation, concerns the detection and delimitation of the heart sound boundaries, a process known as segmentation. Whether to include or not a segmentation step in the signal classification pipeline is nowadays a topic of discussion. Up to our knowledge, the outcome of a segmentation algorithm has been used almost exclusively to align the different signal segments according to the heartbeat. In this paper, the need for a heartbeat alignment step is tested and evaluated over different machine learning algorithms, including deep learning solutions. From the different classifiers tested, Gate Recurrent Unit (GRU) Network and Convolutional Neural Network (CNN) algorithms are shown to be the most robust. Namely, these algorithms can detect the presence of heart murmurs even without a heartbeat alignment step. Furthermore, Support Vector Machine (SVM) and Random Forest (RF) algorithms require an explicit segmentation step to effectively detect heart sounds and murmurs, the overall performance is expected drop approximately 5% on both cases.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 4
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-30 at 10:36:03 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book