Abstract (EN):
In this work, we propose a novel algorithm for heart sound segmentation. The proposed approach is based on the combination of two families of state-of-the-art solutions for such problem, hidden Markov models and deep neural networks, in a single training framework. The proposed approach is tested with heart sounds from the PhysioNet dataset and it is shown to achieve an average sensitivity of 93.9% and an average positive predictive value of 94.2% in detecting the boundaries of fundamental heart sounds.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
4