Go to:
Logótipo
Você está em: Start > Publications > View > Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models
Map of Premises
Principal
Publication

Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models

Title
Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models
Type
Article in International Scientific Journal
Year
2023
Authors
Machado, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Dias, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 117
ISSN: 0952-1976
Publisher: Elsevier
Other information
Authenticus ID: P-00X-FW1
Abstract (EN): Purpose: Visual perception enables robots to perceive the environment. Visual data is processed using computer vision algorithms that are usually time-expensive and require powerful devices to process the visual data in real-time, which is unfeasible for open-field robots with limited energy. This work benchmarks the performance of different heterogeneous platforms for object detection in real-time. This research benchmarks three architectures: embedded GPU-Graphical Processing Units (such as NVIDIA Jetson Nano 2 GB and 4 GB, and NVIDIA Jetson TX2), TPU-Tensor Processing Unit (such as Coral Dev Board TPU), and DPU-Deep Learning Processor Unit (such as in AMD-Xilinx ZCU104 Development Board, and AMD-Xilinx Kria KV260 Starter Kit). Methods: The authors used the RetinaNet ResNet-50 fine-tuned using the natural VineSet dataset. After the trained model was converted and compiled for target-specific hardware formats to improve the execution efficiency.Conclusions and Results: The platforms were assessed in terms of performance of the evaluation metrics and efficiency (time of inference). Graphical Processing Units (GPUs) were the slowest devices, running at 3 FPS to 5 FPS, and Field Programmable Gate Arrays (FPGAs) were the fastest devices, running at 14 FPS to 25 FPS. The efficiency of the Tensor Processing Unit (TPU) is irrelevant and similar to NVIDIA Jetson TX2. TPU and GPU are the most power-efficient, consuming about 5 W. The performance differences, in the evaluation metrics, across devices are irrelevant and have an F1 of about 70 % and mean Average Precision (mAP) of about 60 %.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 15
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Using Recurrent Neural Networks to improve initial conditions for a solar wind forecasting model (2024)
Article in International Scientific Journal
Barros, FS; Graça, PA; Lima, JJG; Pinto, RF; André Restivo; Villa, M
The impact of heterogeneous distance functions on missing data imputation and classification performance (2022)
Article in International Scientific Journal
Santos, MS; Pedro Henriques Abreu; Fernandez, A; Luengo, J; Santos, J
NORMO: A new method for estimating the number of components in CP tensor decomposition (2020)
Article in International Scientific Journal
Fernandes, S; Fanaee T, H; João Gama
Exploring Design smells for smell-based defect prediction (2022)
Article in International Scientific Journal
Sotto Mayor, B; Elmishali, A; Kalech, M; Rui Abreu

See all (12)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-09-07 at 13:46:06 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book