Go to:
Logótipo
Você está em: Start > Publications > View > Towards a Modular On-Premise Approach for Data Sharing
Map of Premises
Principal
Publication

Towards a Modular On-Premise Approach for Data Sharing

Title
Towards a Modular On-Premise Approach for Data Sharing
Type
Article in International Scientific Journal
Year
2021
Authors
Magalhaes, L
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Brandao, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: SensorsImported from Authenticus Search for Journal Publications
Vol. 21 No. 2
Final page: 5805
ISSN: 1424-3210
Publisher: MDPI
Other information
Authenticus ID: P-00V-APG
Abstract (EN): The growing demand for everyday data insights drives the pursuit of more sophisticated infrastructures and artificial intelligence algorithms. When combined with the growing number of interconnected devices, this originates concerns about scalability and privacy. The main problem is that devices can detect the environment and generate large volumes of possibly identifiable data. Public cloud-based technologies have been proposed as a solution, due to their high availability and low entry costs. However, there are growing concerns regarding data privacy, especially with the introduction of the new General Data Protection Regulation, due to the inherent lack of control caused by using off-premise computational resources on which public cloud belongs. Users have no control over the data uploaded to such services as the cloud, which increases the uncontrolled distribution of information to third parties. This work aims to provide a modular approach that uses cloud-of-clouds to store persistent data and reduce upfront costs while allowing information to remain private and under users' control. In addition to storage, this work also extends focus on usability modules that enable data sharing. Any user can securely share and analyze/compute the uploaded data using private computing without revealing private data. This private computation can be training machine learning (ML) models. To achieve this, we use a combination of state-of-the-art technologies, such as MultiParty Computation (MPC) and K-anonymization to produce a complete system with intrinsic privacy properties.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 18
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

yy Optical Fiber Temperature Sensors and Their Biomedical Applications (2020)
Another Publication in an International Scientific Journal
Roriz, P; Susana Silva; Frazao, O; Novais, S
Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies (2018)
Another Publication in an International Scientific Journal
Dias, D; Cunha, JPS
Visualization of Urban Mobility Data from Intelligent Transportation Systems (2019)
Another Publication in an International Scientific Journal
Sobral, T; Teresa Galvão Dias; José Luís Moura Borges
Visual Sensor Networks and Related Applications (2019)
Another Publication in an International Scientific Journal
Costa, DG; Francisco Vasques; Collotta, M
Urban Safety: An Image-Processing and Deep-Learning-Based Intelligent Traffic Management and Control System (2021)
Another Publication in an International Scientific Journal
Selim Reza; Hugo S. Oliveira; José J. M. Machado; João Manuel R. S. Tavares

See all (228)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-15 at 11:34:37 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book