Go to:
Logótipo
Você está em: Start > Publications > View > Linear aeroelastic analysis of cantilever hybrid composite laminated plates with curvilinear fibres and carbon nanotubes
Map of Premises
Principal
Publication

Linear aeroelastic analysis of cantilever hybrid composite laminated plates with curvilinear fibres and carbon nanotubes

Title
Linear aeroelastic analysis of cantilever hybrid composite laminated plates with curvilinear fibres and carbon nanotubes
Type
Article in International Scientific Journal
Year
2021
Authors
Pedro Camacho
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications Without AUTHENTICUS Without ORCID
Pedro Ribeiro
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Title: Composite StructuresImported from Authenticus Search for Journal Publications
Vol. 266
ISSN: 0263-8223
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em ISI Web of Science ISI Web of Science
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00T-PDM
Abstract (EN): In this paper, cantilever laminated composite plates, subjected to supersonic airflow, are studied in the linear elastic regime. The considered material is a multiscale three-phase composite, constituted by epoxy resin reinforced with multi-walled carbon nanotubes and curvilinear carbon fibres. The orientation of the fibres is defined using three different functions. A model based on a third-order shear deformation theory and a Aversion finite element is applied. Furthermore, a hierarchical approach is applied to characterise the mechanical properties of the composite material. A combination of adequate micromechanics based models, including a modified version of the Halpin-Tsai model, the Rule of Mixtures, a unit cell-based model, and the Chamis model, is implemented. The aeroelastic analysis is performed considering the linear piston theory to evaluate flutter (dynamic instability) and divergence (static instability) in such structures. The improvements achieved through the combination of carbon nanotubes and curvilinear fibres on the instabilities are explored.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 11
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Smart composites and composite structures In honour of the 70th anniversary of Professor Carlos Alberto Mota Soares (2016)
Another Publication in an International Scientific Journal
Benjeddou, A; Araujo, AL; Carrera, E; Reddy, JN; António Torres Marques; Mota Soares, CMM
Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads (2018)
Another Publication in an International Scientific Journal
Paroissien, E; da Silva, LFM; Lachaud, F
Reinforcement of CFRP single lap joints using metal laminates (2019)
Another Publication in an International Scientific Journal
Morgado, MA; Ricardo Carbas; Marques, EAS; da Silva, LFM
Multifunctional Material Systems: A state-of-the-art review (2016)
Another Publication in an International Scientific Journal
Ferreira, ADBL; Novoa, PRO; António Torres Marques

See all (201)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-11-09 at 15:15:53 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book