Abstract (EN):
Protein carbonylation is a common feature in cells exposed to oxidants, leading to protein dysfunction and protein aggregates. Actin, which is involved in manifold cellular processes, is a sensitive target protein to this oxidative modification. T-cell proteins have been widely described to be sensitive targets to oxidative modifications. The aim of this work was to test whether the formation of protein aggregates contributes to the impaired proliferation of Jurkat cells after oxidative stress and to test whether actin as a major oxidation-prone cytoskeletal protein is an integral part of such protein aggregates. We used Jurkat cells, an established T-cell model, showing the formation of actin aggregates along with the decrease of proteasome activity. The presence of these protein aggregates inhibits Jurkat proliferation even under conditions not influencing viability. As a conclusion, we propose that an oxidative environment leads to actin aggregates contributing to T-cell cellular functional impairment.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
10