Go to:
Logótipo
Você está em: Start > Publications > View > Shear behaviour of RC-UHPFRC composite beams without transverse reinforcement
Map of Premises
Principal
Publication

Shear behaviour of RC-UHPFRC composite beams without transverse reinforcement

Title
Shear behaviour of RC-UHPFRC composite beams without transverse reinforcement
Type
Article in International Scientific Journal
Year
2022
Authors
Sine, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Mário Jorge Pimentel
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Sandra Nunes
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Dimande, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 257
ISSN: 0141-0296
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em ISI Web of Science ISI Web of Science
Publicação em Scopus Scopus - 0 Citations
Clarivate Analytics
Other information
Authenticus ID: P-00W-7N9
Abstract (EN): Strengthening existing reinforced concrete (RC) beams and slabs using a thin layer of ultra-high performance fibre reinforced cementitious composites (UHPFRC), plain (U) or reinforced (RU) with ordinary steel bars, has been shown to be a very effective way of increasing the flexural capacity in hogging moment regions. However, as the increase in the flexural strength can be very significant, the shear strength of the composite RC-RU or RC-U elements may govern the capacity of the strengthened element and must be conveniently assessed to provide suitable design recommendations. In this regard, the available experimental evidence concerning the shear strength of beams (or one-way shear strength for slabs) is relatively limited. In this work, the results of an experimental campaign are presented where the influence of important parameters was systematically evaluated, namely the reinforcement ratios in the original RC beam and the new UHPFRC layer, the size effect, the thickness of the UHPFRC layer and the sign of the being moment -hogging or sagging -changing the state of stress in the UHPFRC layer from tensile to compressive. The structural behaviour is discussed, and an analytical approach for calculating the shear strength is evaluated.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 19
Documents
We could not find any documents associated to the publication with allowed access.
Related Publications

Of the same journal

Reduced scale models based on similitude theory: A review up to 2015 (2016)
Another Publication in an International Scientific Journal
Coutinho, CP; Baptista, AJ; J. Dias Rodrigues
Numerical modelling of the cyclic behaviour of RC elements built with plain reinforcing bars (2011)
Another Publication in an International Scientific Journal
Jose Melo; Catarina Fernandes; Humberto Varum; Hugo Rodrigues; Anibal Costa; António Arêde
Assessment of train running safety on bridges: A literature review (2021)
Another Publication in an International Scientific Journal
Pedro Aires Montenegro; H. Carvalho; D. Ribeiro; Rui Calçada; M. Tokunaga; M. Tanabe; W. M. Zhai
3D numerical simulation of the cracking behaviour of a RC one-way slab under the combined effect of thermal, shrinkage and external loads (2020)
Article in International Scientific Journal
Gomes, J; Carvalho, R; Carlos Sousa; Granja, J; Rui Faria; Schlicke, D; Azenha, M
3D FEM analysis of the effect of buried phononic crystal barriers on vibration mitigation (2019)
Article in International Scientific Journal
Pedro Alves Costa; Carlos Albino; Luis Godinho; Paulo Amado Mendes; Daniel Dias da Costa; Delfim Soares Júnior

See all (137)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-20 at 13:40:28 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book