Go to:
Logótipo
Você está em: Start > Publications > View > Weakly supervised Video Anomaly Detection based on 3D Convolution and LSTM
Map of Premises
Principal
Publication

Weakly supervised Video Anomaly Detection based on 3D Convolution and LSTM

Title
Weakly supervised Video Anomaly Detection based on 3D Convolution and LSTM
Type
Article in International Scientific Journal
Year
2021-11
Authors
Zhen Ma
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications Without AUTHENTICUS Without ORCID
José J. M. Machado
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
João Manuel R. S. Tavares
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Title: SensorsImported from Authenticus Search for Journal Publications
Vol. 21 No. 22
Pages: 1-12
ISSN: 1424-3210
Publisher: MDPI
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em ISI Web of Science ISI Web of Science
Publicação em Scopus Scopus - 0 Citations
Scientific classification
CORDIS: Technological sciences
FOS: Engineering and technology
Other information
Authenticus ID: P-00V-P02
Resumo (PT):
Abstract (EN): Weakly supervised video anomaly detection is a recent focus of computer vision research thanks to the availability of large-scale weakly supervised video datasets. However, most existing research works are limited to the frame-level classification with emphasis on finding the presence of specific objects or activities. In this article, a new neural network architecture is proposed to efficiently extract the prominent features for detecting whether a video contains anomalies. A video is treated as an integral input and the detection follows the procedure of video-label assignment. The extraction of spatial and temporal features is carried out by three-dimensional convolutions, and then their relationship is further modeled using an LSTM network. The concise structure of the proposed method enables high computational efficiency, and extensive experiments demonstrate its effectiveness. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 12
Documents
File name Description Size
sensors-21-07508-v2 Article 2076.83 KB
Related Publications

Of the same journal

yy Optical Fiber Temperature Sensors and Their Biomedical Applications (2020)
Another Publication in an International Scientific Journal
Roriz, P; Susana Silva; Frazao, O; Novais, S
Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies (2018)
Another Publication in an International Scientific Journal
Dias, D; Cunha, JPS
Visualization of Urban Mobility Data from Intelligent Transportation Systems (2019)
Another Publication in an International Scientific Journal
Sobral, T; Teresa Galvão Dias; José Luís Moura Borges
Visual Sensor Networks and Related Applications (2019)
Another Publication in an International Scientific Journal
Costa, DG; Francisco Vasques; Collotta, M
Urban Safety: An Image-Processing and Deep-Learning-Based Intelligent Traffic Management and Control System (2021)
Another Publication in an International Scientific Journal
Selim Reza; Hugo S. Oliveira; José J. M. Machado; João Manuel R. S. Tavares

See all (228)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2025-07-06 at 00:20:50 | Acceptable Use Policy | Data Protection Policy | Complaint Portal